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Accurate values of the asymptotic susceptibility critical exponent (y), critical amplitude (I ), and

the leading "correction-to-scaling" exponents and amplitudes for quench-disordered ferromagnets
have been determined for the first time through an elaborate analysis of precise and comprehensive
ac susceptibility data taken on amorphous Fe„Ni80 „8»Si&(x =10, 13, and 16) alloys in the critical
region. Consequently, the present work provides unambiguous experimental verification of theoret-
ical predictions based on renormalization-group (RG) calculations, and testifies to their correctness

by demonstrating that the exponent y of the ordered three-dimensional Heisenberg ferromagnet is

not affected by the presence of quenched disorder and that the "frozen" disorder plays the role of an
irrelevant scaling field (in the RG sense).

I. INTRODUCTION

Considerable efforts devoted to the understanding of
critical phenomena in spin systems with quenched disor-
der during the past decade have not been able to pin-
point' the role played by quenched or "frozen" disorder
in affecting the critical behavior of pure (ordered) three-
dimensional (3D) Heisenberg ferromagnets. Theoretical.
views on this subject are divided, as is evident from the
following remarks. Early high-temperature series-
expansion (HT) treatment of the quenched random site-
diluted Heisenberg model yielded an anomalous depen-
dence of the susceptibility critical exponent y on the con-
centration, x, i.e., for x near 1, y appeared to increase
rapidly from its pure value (y = 1.4) and to attain a value
as high as 2.5 at a concentration well above the percola-
tion threshold, x, . Later Brown et al. applied the HT
method to a quenched random bond-diluted Heisenberg
model and found that y retains its pure value even for
concentrations close to x, . On the other hand, some of
the existing renormalization group (RG) calculations
(henceforth referred to as "conventional" theories), based
on the random-exchange Heisenberg model (REHM),
which includes both quenched random site- and bond-
diluted Heisenberg models, indicate that the critical
properties of a pure spin system, for which the specific-
heat critical exponent a is negative, are unaffected by
the presence of short-ranged quenched disorder. A spe-
cial RG treatment of REHM (henceforth referred to as
"unconventional" theory), on the other hand, predicts
that the values of critical exponents for the 30 spin sys-
tem with a (0 depend on the amount of quenched disor-
der present; in the weak-disorder limit, crossover to new
exponents occurs at s [= ( T —T, ) /T, ]= 10 whereas for
x close to x, (strong-disorder limit) the exponents assume
their liiniting values (which are close to the Fisher-
renormalized tricritical exponent values but considerably
larger than the pure ones) over a wide teinperature

range, e.g., for x=x„y=2.0 from a=10 down to
a=10 . The situation on the experimental side is no
better and has been mainly complicated by a large
scatter'o in the values of critical exponents reported for
amorphous ferromagnets (e.g., values of the susceptibility
critical exponent y scatter between 1.1 and 1.75 whereas
y=1.386 for the ordered 3D Heisenberg ferromagnet).
A critical evaluation" of the experimental techniques and
methods of data analysis, employed in the literature to
arrive at the reported exponent values, has revealed that
the observed scatter can be traced back to one or more of
the following serious problems. (i) Extrapolation to zero
magnetic field (H), required in the asymptotic analysis"
( A A) to estimate "zero-field" quantities like spontaneous
magnetization (M, ) and initial susceptibility (Po) from
the magnetization (M) data taken in finite external fields,
introduces errors' due to the nonlinearity of the M' P

versus (H/M)'~r isotherms. (ii) In the scaling-equation-
of-state (SES) analysis, " systematic uncertainties result
from the choice of the magnetic equation of state and the
presence of numerous free fitting parameters. (iii) Due
attention has not been paid to the important fact that a
given analysis, while covering as wide a range of reduced
temperature, e, as possible, should nevertheless be re-
stricted to data that are free from specious but noncriti-
cal effects and provide both lower and upper bounds to
the temperature range over which a meaningful asymp-
totic critical exponent may be extracted. (iv) Indepen-
dent of the method of analysis, it is imperative that in a
given experiment a wide range in reduced temperature,
particularly in the immediate vicinity of the Curie tem-
perature, T„ is sampled and the relative error in T, is
small.

Frequent oversight of the problems (iii) and (iv), in par-
ticular, has resulted in aUerage rather than asymptotic ex-
ponents in a large number of cases. Thus an unambigu-
ous experimental verification of the theoretical predic-
tions is possible only when the uncertainties resulting
from the above-mentioned problems are minimized as far
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as possible through a judicious choice of the experimental
technique and a careful data analysis. So far as a precise
determination of the exponent y is concerned, uncertain-
ties arising from (i) and (ii) can be completely eliminated
in an ac susceptibility (ACS} measurement, which is the
most direct and accurate method" of determining Xo( T),
whereas the problems (iii) and (iv) can be successfully
tackled through highly accurate measurements and an
elaborate data analysis.

II. RELEVANT THEORETICAL CONCEPTS:
BRIEF RESUME

Within the framework of the linearized renor-
malization-group theory, ' ' the two-point correlation
function, in its most general form, can be written as

X(s,H, I hi, j )=E rDo(H/E, [hi, /E "j ) (3)

with the susceptibility exponent y defined as y =(2—g)v.
Next, let us address ourselves to the question: what is the
effect of the relevant and irrelevant scaling fields on the
"zero-field" susceptibility, Xo? If only the relevant scal-
ing fields are present and H =0, Eq. (3) reduces to

According to the fluctuation-dissipation theorem, in the
vicinity of the critical point, the magnetic susceptibility,
g, and spin-spin correlation function are related through
the zeroth-moment expression, i.e., X=po= fd R G(R).
In view of Eq. (2), such a relation between P and G(R)
implies that

G(R, sH, I hi, j ) =R ' +"'G(Rs",RH", jhge "j), &o(& Iga j ) =&(s 0 tga j ) =s &( Iga j « (4)

where R is the spatial separation, s= ( T —T, )/T, is the
reduced separation in temperature from the critical
point, T„d is the spatial dimensionality, H is the order-
ing (magnetic) field, Ihi, j are other relevant (A,„&0)
and/or irrelevant (A, & &0) fields, A, i, are related to the ei-
genvalues Ak of the linear renormalization operator L as

LQi, ——Ai, Q& bQ& (n——ote that A, & are independent ofk

the choice of the rescaling factor b ), b = ( 2+y —a ) /2
and v are the gap and spin-spin correlation length ex-
ponents, respectively, and G(x,y, . . . ) is the generalized
scaling function. The spatial moments of the pair corre-
lation function (1}can then be calculated using the well-
known relation

p = fd"R iR i
G(R)

= fd RR ' "R~+' "G(Rs",RH", [hi, s "j)
d/2 "dRR-+' &G(Rs,RH"-",Ih s ""j)

I (d/2) o

By dropping the numerical factors and changing the in-
tegration variable to co=Re." in the integral, one obtains
the result

—v(m+2 —g)f d m+1 —vt
Pm -&

0

Q G(Q), olH /6, I hi s j )

(s"-&' +)D.(H/e', Ih„/e""" j) .

where a new exponent tI)i, ——vA, i„associated with every
scaling field gi, =—hi„eigenoperator Qi, pair, i.e. (g&, Q&),
has been introduced. Since for the case under considera-
tion I P& j & 0, the reduced scaling fields

Igi, j = tgi, j /s are small for temperatures far from the
critical point (in a sense Igi, j are normalized according to
distance from the critical point}, start making their pres-

1/I~, r'
ence felt at crossover temperatures I si', j —tgi, j and
as the temperature approaches the critical point tgi, j be-
come very large so that the perturbation treatment
breaks down. The true asymptotic behavior as c.~0,
therefore, certainly differs from the one corresponding to
Igl, j =0 and depends on the nature of the eigenoperator
Q&. 'the crossover scaling function, X(z), describes the
changeover from the pure ([gz j =0) critical behavior at
temperatures far from the critical point to the new criti-
cal behavior at temperatures in the immediate vicinity of
T, and its actual shape determines how slow or how fast
the actual crossover occurs. Furthermore, Eq. (4) asserts
that the shift in the critical temperature,

[T,(gi, ) —T,(0)]/T, (0), is proportional to g„.Anoth-
er interesting case arises when all the relevant fields are
zero but the irrelevant scaling fields have a finite magni-
tude. Since A, l, are all negative in this case, the reduced

scaling fields I hi, j = I hi, /e "j tend to zero as s~O. For
temperatures close to the critical point, the generalized
scaling function Do(x,y) in Eq. (3) can, therefore, be ex-

panded about rk ——hke. =0 for all k with the result
'vl X„ l

X(e,H, Ih„j }=e rD(H/E ) 1+ g h„E
-l~„ l

aao
+—,

' gh, h, e
vlA, , l

vlA, .
l

~ DO

f.()T& I r,. =r.=OI

where D(H/E ) =Do(H/c, I ri, ——0 j ). In the absence of ordering field, the above expression yields the "zero-field" sus-
ceptibility in the form

X(s,O, Ih„j)=X(e,0,0) 1 + g h„f„e " +—,' g h, h, f,,s ' ' +
k t%J

2hl 262=I s r(1+b»e +b2, s +c,2e +c22s + ) . (5)
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In Eq. (5), the zero-field susceptibility in the pure case
(i.e., when I h„) =0), X(e,0,0)= I e r, I is the asymptotic
critical amplitude,

BDo 8 Do

Br I „=oI '~ ar, ar, I, =,, =oI

the indices I and m denote the first- and second-order
derivatives of Do with respect to r, respectively, and
b,„=v

~

A.„~ . Note that the terms analytic in e have been
omitted in Eq. (5) and b, , & b,2&. . . because the leading
corrections for small c. originate from the least negative
A.k and carry a factor c . Thus the effect of the ir-
relevant fields is to give rise to corrections to the dom-
inant singular behavior leaving the leading singularity in
the asymptotic behavior unaltered (i.e., no crossover from
the pure (I hi, ) =0) behavior occurs).

For pure isotropic spin systems with space as well as
spin dimensionality of 3 (d =3, n =3), i.e., for an ordered
(crystalline) isotropic 3D nearest-neighbor Heisenberg
ferromagnet, the conAuent corrections to the susceptibili-
ty involve a single exponent 6 [i.e., for such systems,

and A2 ——0 in Eq. (5)] only. The HT series-
expansion method' and RG calculations' yield the best
theoretical values for the correction exponent' b, and the
corresponding correction amplitude' p [=b

& &
in Eq. (5)]

for d =3, n =3 systems as b, =0.550+( —)0.016 and

p =0.45+0.24( —0. 17 ), respectively. Introduction of
even a small amount of anisotropy, which acts as a
relevant scaling field' in the RG sense, in such systems
results in a crossover to a new critical behavior, whose
exact nature depends on the type of anisotropy present. '

Critical phenomena in quench-disordered spin systems
are not as clearly understood as they are in pure (ordered}
systems. The main reason for this is that both the appli-
cability and/or accuracy of HT series expansion and the
reliability with which the results obtained by RG calcula-
tions, based on s(=4—d) expansion, on quenched ran-
dom systems can be extrapolated to e = 1 or 2 (d =3 or 2)
are a suspect whereas the same techniques (HT and RG)
adequately describe the pure critical behavior. The so-
called "conventional" RG theories demonstrate that
the exponent /=A, v, characterizing the crossover from
the pure to the random fixed point, is identically' equal
to a, the specific-heat critical exponent of the pure sys-
tern, to order c. for d =2 and d =3 systems so that the
pure fixed point is stable against short-ranged quenched
disorder only when a &0 (i.e., for 3D Heisenberg and
3D X1' systems) whereas a crossover to random fixed
point, which describes a new sharp phase transition
characterized by a set of new critical exponents, is ex-
pected to occur for systems with a &0 (3D Ising sys-
tems). By contrast, the so-called "unconventional" RG
theory, which also employs c expansion, asserts that in
presence of quenched disorder the pure fixed point is not
stable even for systems with n &0, the critical exponents
vary continuously with the impurity concentration x and
in the extreme disorder limit (as x ~x, }, the exponents

Xp(e)=1 e r(1+@&e '+PP '), (6)

where only the leading correction terms have been re-
tained, p, (—:b» ) and p2 (—:b2i ) are the "correction-to-
scaling" amplitudes and the exponent b2 (=5) has the
same value as for the pure system while the exponent 6&,
which is much smaller in magnitude than h2 and there-
fore more important, occurs only in the presence of
quenched disorder. The best theoretical estimates of the
exponents 6& and 62 presently available are 6& ——0.09 and
b, 2

——0.48. These values, however, differ significantly
from the expected pure values, i.e., 5,=

~ a~ ~

=0.115
and 52 ——6=0.55, because the results of the field-
theoretical approach, leading to the above estimates of
5& and 62, are only to second order in the fixed-point
coupling.

III. EXPERIMENTAL DETAILS

High-precision (relative accuracy better than 10 ppm)
ac susceptibility measurements were performed on amor-
phous (a-) Fe„Nigp B~9Si, (x =10,13,16) alloy ribbons,
having typical dimensions of 0.04&(2)&20 rnrn and
prepared by the single-roller technique, at constant tern-
perature values (-20 mK apart for T~T, and —100
mK for T» T, ) during both cooling and heating cycles
in the reduced-temperature interval —0.05 (c.(0.05 in
the absence and presence of a static magnetic field, Hd„
applied parallel to the ac driving field, H„(both H„and
Hd, are directed along the length in the ribbon plane to
minimize demagnetizing effects) using LC oscillator'
(H„=5 mOe and frequency v=15 kHz) and mutual in-
ductance' (H„=100 mOe and v=87 Hz, and Hd, -l
Oe) methods. The sample temperature, monitored by a
precalibrated platinum resistance sensor in the latter
method and by a copper-constantan thermocouple in the
former, was, in both cases, kept constant to within +10
mK during the measurement period at every fixed tem-
perature setting. The coil assembly part of the sample
holder was wrapped in a Mu-metal sheet to eliminate the
effect of the earth's magnetic field on the ACS measure-
rnents. A detailed compositional analysis of the alloy
strips used in this work, using JEOL FCS four crystal
(wavelength dispersive) spectrometer in conjunction with
JSM 35 JEOL scanning electron microscope, revealed

approach the Fisher-renormalized values (i.e., a= —1,
P=0.5, @=2, 5=5, v= 1, r1=0} and are independent of
the spin dimensionality n.. A recent field-theoretical
treatment of 2D and 3D quenched random spin systems,
which does away with the c. expansion and hence yields
more reliable results, confirms all the results of the "con-
ventional" RG theories including the main prediction
that the quenched disorder in n =3,d =3 spin systems
plays the role of an irrelevant scaling field (since A, &0)
and as such gives rise to an additional leading conAuent
correction term in the expression for Xp(e ) that is charac-
terized by the exponent b, &(

=
~

X
~

v =
~

u
~

} besides
the one present in pure systems and involving the ex-
ponent 62 (=b.), i.e., for 3D-Heisenberg quench disor-
dered systems Eq. (5) takes the form
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that the change in the Fe concentration, x, over the en-
tire length ( =2 cm) of a given ribbon strip did not exceed
0.005 at. % in any case. In view of our earlier finding
that within the composition range of present interest T,
varies with x as dT, /dx =26 K/at %%uo, th econcentra-
tion fluctuations in the alloy sample would give rise to a
fluctuation in T, of the order 5T, =0. 13 K. Therefore,
the data taken in the reduced temperature range
c (5T, /T, have not been included in the data analysis.

IV. RESULTS AND DATA ANALYSIS

Xo(s)=I,ff e (7)

where I,I and y,z are the effective critical amplitude and
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FIG. 1. Initial susceptibility, Xo, as a function of temperature
for amorphous Fe„Nizo „B»Sil alloys. Note the change of
scale for x = 10, 13, and 16.

Magnetic after-effect measurements and ACS data tak-
en in the cooling and heating runs revealed that the
domain and hysteresis effects become important for tem-
peratures (T —T, ) 50. 1 K. Data taken in this tempera-
ture range have been left out of the analysis. Though the
preliminary ACS data on the glassy alloys in question
have been reported by us previously, ' more precise (by
an order of magnitude) and exhaustive measurements as
well as an elaborate data analysis are presented in this pa-
per. Results of the ACS measurements performed on a-
Fe„Ni8p B]9Si, alloys in zero and finite static magnetic
fields are shown in Fig. 1. Note that the susceptibility
data presented in this figure have been corrected for
demagnetization, i.e., Xo( s ) =Xm„,( s ) /[1 —NXm, »( s ) ],
where the demagnetizing factor N has been determined
from the low-field ( -20 Oe) magnetization data taken on
the same glassy alloy strips as those used for the present
study.

The "conventional" RG theories predict a temperature
dependence of the initial susceptibility, Xo(e), for temper-
atures (a~0) not too close to T„of the form given by
Eq. (6), which includes the leading "correction-to-
scaling" conAuent singularity terms. Experimentally,
however, it is customary to fit Xo(s) in a finite tempera-
ture range near T, to a pure power law

critical exponent, respectively. This is so because a direct
determination of the parameters p„p2, 5&, and 52
demands a very high precision in the measurements
which is often difficult to achieve in practice. For tem-
peratures very close to T„a simple relation (see the Ap-
pendix) exists between y, ff and y, i.e.,

jef V I 1~1~ I 2~2~ (8)

where c. is a mean reduced temperature of the tempera-
ture range covered in the experiment. It is evident from
Eq. (8) that (i) the experimentally deterinined effective ex-
ponent y,z may significantly differ from the theoretically
predicted asymptotic (universal) exponent y, and (ii)

y, ff(e), defined as ' y,ff(e)=d [lnXO '(s)]/d(lns}, coin-
cides with y only in the limit c.~0+, i.e.,
y =lim, 0+[y,ff(s)]. Note that y,ff(e) is a local measure
for the degree of singularity of Xo(s) in the critical region
and is given by Eq. (8) with e replaced by e. A corre-
sponding relation between I,z- and I, obtained by com-
bining Eqs. (7) and (8), and comparing the resulting ex-
pression with Eq. (6), is given by

(9)

= ( T —T, ) /yeff ~ 1'eff), (10)

is used. According to this method, the X(T) versus T
plot in the asymptotic critical region (ACR), where Xo( T)
can be approximated by a power law [Eq. (7)], is a
straight line whose slope is 1/y, ff and intercept on the T
axis yields T, . Since the Xo(T) data points are taken at
temperature intervals of -20 mK and the three-point
differentiation method is used to evaluate dXO(T)/dT,
smoothing of the data over a temperature interval -40
mK occurs. Plots of X(T) against e in Fig. 2 for the in-
vestigated glassy alloys demonstrate the validity of Eq.
(10) [and hence of Eq. (7}]in a narrow temperature range
above T, . The choice of the parameters T, and y,z that
gives the best least-squares fit to the X(T) data based on
Eq. (10) over the specified reduced temperature range is
given in Table I. The lower and upper bounds to the
temperature range over which these fits are made and the
optimal values of the fitting parameters are arrived at by
the procedure whose details are given in our earlier re-
port. ' Values of T, and y,& so obtained are then used in
Eq. (7} to compute the corresponding values of I',ff. Data
points are noticed to start deviating at a temperature ccQ
(shown in Fig. 2 by downward arrows) from the fitted
straight lines and the deviations become more and more

where ( ),„denotes the average over the investigated re-
duced temperature range.

Equations (7)—(9) demonstrate that a prior knowledge
of I,z, y,z, and T, is required for extracting values of I,
y, p„p2, 6, , and 62 from the experimental data. In or-
der to achieve high accuracy in the determination of T,
and y, ff (and hence of I",ff), the analytical method of
Kouvel and Fisher ' (KF), which is based on the alterna-
tive form of Eq. (7), i.e.,

X(T)=—Xo '(T)[dXO '(T)/dT]
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FIG. 2. Temperature dependence of the quantity
Xp (dip 'IdT) ' for a-Fe„Nisp B]9Si, alloys. Different data
symbols in this figure have the same meaning as that indicated
in Fig. 1.

this finding implies that y,tt(E) increases for e y coo. This
behavior is now known to be a characteristic' " prop-
erty of amorphous ferromagnets. Additional points that
deserve attention are (i) width of the ACR (E(Eco) in-
creases with increasing Fe concentration, and (ii) the so-
called "crossover temperature, " ceo, shifts to lower tem-
peratures (from 5.5X10 to 4.0&&10 ) for the alloy
with x =16 as a result of annealing at 400 K for two
hours. Both these observations conform well with the re-
sults of our earlier magnetization measurements. ' "'
Since the behavior of quench disordered ferromagnets in
the ACR is the main concern of this paper, the above ob-
servations will not be discussed here.

Attempt was first made to extract the values of I, y,
p~, p2, b &, bz, and T, by fitting Xo(e) data to Eq. (6) using
a nonlinear least-squares fit computer program that treats
I, y, p&, p2, and T, as free fitting parameters but keeps
(h„b2) pair fixed at a given value in the ranges
0.01 & 6, & 0.20 and 0.35 & Az & 0.75, respectively. The
same procedure is repeated for another fixed value of the
pair (b, 62) which differs from the previous value by
(+0.01,+0.01). Best fits, as inferred from the smallest
value of the mean square error, are obtained for
5& ——0. 10+0.05 and b, 2

——0.53+0.10 with the parameter
values that have undesirably large uncertainty but are
otherwise close to those (determined by the following
method) listed in Table I. A substantial reduction in this
uncertainty is achieved by decreasing the number of free
parameters as follows. Keeping T, fixed at the value de-
duced earlier by the KF method (Table I), y,gE) and

pronounced as c increases beyond Eco. In view of the
definition of y, s(E), i.e.,

y,gs)=d [lnXO '(E)]/d(lne)

=[Xo(e)dXO '( e) /de] e= e[ T, /X( T)],
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plot. Consistent with Eq. (9), the straight line through
the data points on this plot, obtained by the least-squares
method, passes through the origin and its slope is a direct
measure of I . Figures 3 and 4 serve to demonstrate the
typical quality of the least-squares fits to the y,s(E) and

I,s(c. ) data based on Eqs. (g) and (9) with the choice of
parameters I,y, p, ,p2, b, , and b ~ arrived at by the above
method. Fits involving only one correction term at a

2.3
Ol
C)

2.2

2.1-
'o

20-
~
~

C)

I,s(c. ) in the ACR are computed for each experimental
run from Eqs. (11) and (7}, respectively. Accurate values
of y, p&, and p2 are then given by the choice of these pa-
rameters which yields the smallest value of the mean
square error (I ) when least-squares fits to the y,s(E)
data are attempted based on Eq. (8) (with E in this equa-
tion replaced by E; for details see the Appendix) while b, ,
and 62 are varied in fixed steps of 0.01 within the ranges
0.01 & 6, &0.20 and 0.35 & A2 &0.75, as mentioned
above (note that T, for all such fits remains constant at
the value given by the KF method). The best values of
the parameters y, p&, p2, A„and b2 so obtained and list-
ed in Table I are then used to construct the I,s(c, ) versus
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FIG. 4. ([y y,g—E}]/b,e ') , vs Die '/b, , e
' and I,QE} vs

—(P 16)c + /l25PE }

N =(1+Pie '+@2', ')C, plots for amorphous

Fe»Nit;&B»Si& (second experimental run) based on the choice of
the parameters p&, p, , 5&, 5&, y, and I that gives the best least-

squares fit of the y,ge} and I,ge} data to Eqs. (8}and {9)of the
text. The dashed straight lines through the data points, ob-

tained by the least-squares method, demonstrate the validity of
Eqs. (8) and (9).
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Fe~0Ni70B1g gt&

2nd run; T& =187.27K

time in Eq. (6) [i.e., when either p, , or p2 is set equal to
zero in Eq. (6}]have also been attempted with the result
that the quality of fits, compared to those that take into
account both the correction terms, deteriorates, as in-
ferred from the increased value of 7, even though the
values of I and y remain unaltered (as expected}.

V. DISCUSSION
1378
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FIG. 3. Variation of the effective critical amplitude, I,gc},
and critical exponent, y,ge. ), with reduced temperature c for
the glassy alloy Fe,ONi, oB»Si &

(second experimental run).
Dashed curves denote the result of the least-squares fits to the
data based on Eqs. (8) and (9) of the text, while the error limits
give the measure of uncertainty in these quantities due to the
uncertainty in T, .

Table I lists the values of the parameters p&, p2, 5&, hz,
I, y, and those of T„ I,~, and y,& obtained by the KF
method and compares them with (a) the corresponding
eftective exponent and amplitude values determined pre-
viously' '" for the same compositions as the present ones
using the modified asymptotic analysis, " (b) the ydr
values for crystalline ferromagnets" Fe, Ni, and (c) the
values of y, A&, and A2 predicted by the theory. ' Im-
portant points that emerge from this comparison are (i)
the KF analysis, Eq. (10), of the ACS data and the
asymptotic analysis of the bulk magnetization data yield
identical results (values of T„ l,s; and y,z) for the glassy
alloys of the same composition and coming from the
same batch, (ii) the width of the ACR for y and the value
of y,z are roughly the same in both crystalline and amor-
phous ferromagnets, (iii) asymptotic critical exponent y
and the "correction-to-scaling" exponents 5, and h2 do
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not depend on composition and possess values that are in
excellent agreement with those predicted by the "conven-
tional" RG theories, ' (iv) by contrast, the correction
amplitudes p, , and pz are composition-dependent (con-
sistent with the generally accepted thesis that the correc-
tion amplitudes, unlike correction exponents, are not
universal by themselves but their ratios are); the values of
p2 determined in the present work fall within the range of
values (0.28 &iM &0.69) given by the HT series expansion
treatment' of an isotropic 3D nearest-neighbor spin-
infinity Heisenberg model, and (v) exponent y retains its
"pure" value' regardless of the alloy composition in the
reduced temperature region where, according to the "un-
coventional" RG theory, ' a crossover to the new ex-
ponents (y=2.0 is expected ' for the glassy alloys in
question as the critical concentration x, for the appear-
ance of long-range ferromagnetic ordering in the present
alloy series is x, =4.9 at. %) should have already taken
place (see Introduction). While observation (i) vindicates
the use of the AA method' '" to deduce reliable and ac-
curate values of I,& and y,z from the magnetization data
taken in finite external fields, observations (ii) —(v) cou-
pled with our earlier finding' '" that both the sign and
magnitude of the specific heat exponent, a, for the inves-
tigated amorphous alloys closely agree with those deter-
mined for a in crystalline ferromagnets and with the
theoretical value for isotropic nearest-neighbor 3D
Heisenberg ferromagnet testify to the validity of the
theoretical prediction, based on the "conventional" RG
theories, that the critical behavior of ordered n =3, d =3
spin system with a & 0 remains unaltered in the presence
of quenched disorder.

At this stage, it should be emphasized that some
amount of caution has to be exercised while considering
the implications of the above-mentioned agreement be-
tween theory and experiment, as is evident from the fol-
lowing arguments. In view of the fact that the "conven-
tional" RG theories are based on quenched random site-
and/or bond-diluted nearest-neighbor Heisenberg model
and that the critical concentrations for bond- and site-
percolation for nearest-neighbor exchange interactions on
the fcc lattice (which forms an adequate description 5 of
the nearest-neighbor atomic configuration in the glassy
alloys under consideration) are' p, =0. 119 and

p,'=0. 195, respectively, whereas for a-Fe„Niso „B&9Si&
alloy series the percolation concentration is not reached
until p, =4.9/80=0.061 (this value exactly matches with
the critical concentration for site-percolation on the fcc
lattice when the exchange interactions are not confined to
the nearest neighbors only but their range extends to
third nearest-neighbor distance'), we cannot claim to
have determined the asymptotic and "correction-to-
scaling" exponents and amplitudes for a dilute nearest-
neighbor 3D Heisenberg ferromagnet; the parameters of
interest in the theory. Note that the longer range of the
exchange interactions in the glassy alloys in question has
also been previously inferred from bulk magnetization
measurements and that Monte Carlo calculations on
phase transitions in bond- and site-disordered classical
Heisenberg ferromagnets demonstrate that the site disor-
der is mainly responsible for the concave-upward curva-

If c. denotes the mean reduced temperature of the tem-
perature range over which the Xo(s) data are fitted to a
single power law, Eq. (7), and if I and y are also deduced
from the Xo(E) data taken in the same temperature range
using Eq. (6) [note that I and y are not expected to de-
pend on the temperature range covered in the experi-
ment, provided this temperature range falls within the
asymptotic critical region, since they are the asymptotic
values], Eqs. (6) and (7) can be rewritten in the form

Xo(s)=rt (1+@,E '+p2E '), (A 1)

and

(A2)

A direct relation between y,z and y can be obtained by
equating the values of

d [lnXO(K)]/d (1ns) =ed [1nXO(s)]/dE

computed from Eqs. (Al) and (A2), i.e.,

[ln(r, ffs
' )]= in[I s ~(1+@,K '+iu, E ')] .

dE dE,

After a few simplifying steps, the following result is ar-
rived at

b, 2 b,
i

Y ff 7 (Pl~le +P2~2e )/( I +Vis +P2e

(6l+b2j 2 2A,
+j ii 2(~i+~2)s ' '+i ~~ ~

Retaining the leading correction terms only, the above
expression reduces to

'Yea = 'V 8i~ &~
—82~2~

When y, ff in Eq. (A2) is replaced by the right-hand side of
Eq. (A3) and the result is equated to the rhs of Eq. (Al), a
relation between I,~ and I of the following type is ob-
tained:

or

~z=I c (1+p,c. '+p2c. '),

I,ff=I ((1+p,e '+}u2E ')E

(A4)

ture of Xo '(T) observed in a large number of amorphous
ferromagnetic alloys, including the present ones. In the
light of the foregoing remarks, the striking agreement be-
tween the theoretically predicted and experimentally ob-
served values for the asymptotic and "correction-to-
scaling" exponents should be taken to imply that the
universality hypothesis, which asserts that the range and
type of exchange interaction both are of no consequence
so long as the spin-spin correlation length diverges at T„
is basically correct.

APPENDIX
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or

and

7 ff (e) Y 81~1 e P2~2e

tr r—.ff(e)l~~i~ ={ i+{ 2(~2~ (A5)

where ( ),„denotes the average over the reduced tem-

perature range covered in the fit. At this stage, it should
be emphasized that Eqs. (A3) and (A4) are not only valid
for a mean reduced temperature E but also for any tem-
perature value c. within the temperature range specified in
Table I for a given sample primarily because T, remains
practically constant (within the error limits) in this tem-
perature range; the result borne out by the "range-of-fit"
analysis. Alternatively, Eqs. (A3) and (A4), without any
loss of generality, can be written with F replaced by c., i.e.,

I, (&)=1(1+@,e '+{tt e ')c. (A6)

where y,ff(e) and I,ff(c) are defined by Eq. (11)of the text

and the relation po(s)=1',ff(E).s ', respectively. The
—y,s{c)

main advantage in using Eqs. (A5) and (A6) instead of
Eqs. (A3) and (A4) for determining )M„{M2, h„b2, I, and

y is that the values for these parameters obtained thereby
are more reliable because Eqs. (A5) and (A6) contain

y,ff(e) and I',ff(e) and hence bring out the total uncertain-

ty (including the uncertainty in T, ) in the values of y, ff

and I,ff at each experimentally set value of e as contrast-
ed with the uncertainty in y, ff and I,ff at a mean reduced
temperature c. of the temperature range covered in a
given fit which is bound to be considerably smaller due to
the averaging involved in the fitting process.
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