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The magnetic critical exponent of the two-dimensional axial next-nearest-neighbor Ising model is

estimated by means of the finite-size scaling of the order parameter. For a finite system without or-
dering field, this magnitude is computed from the two leading eigenvectors of the transfer matrix.
The ferromagnetic-paramagnetic transition temperatures estimated with this method exhibit a small
lattice-size dependence. Moreover, they are in good agreement with those obtained using phenorne-

nological renormalization, and also with analytical approximations. The correlation-length critical
exponent is calculated by means of phenomenological renormalization. The results found with
these numerical techniques indicate that the ferromagnetic-paramagnetic transition of the model
seems to be continuous, in contradiction with a previous result obtained using the persistence-length
criterion, which indicated that the transition is always first order. We found that the phase transi-
tion is first order only when the ratio of the next-nearest-neighbor and nearest-neighbor interactions
equals one-half.

I. INTRODUCTION

Systems with competitive interactions have been exten-
sively studied in recent years. ' The axial next-nearest-
neighbor Ising (ANNNI) model is one of the simplest
realizations of such systems. The physics underlying this
simple model is very rich, including features such as
commensurate-incommensurate phase transitions,
Lifshitz points, multiphase points with infinite ground-
state degeneracy, and disorder lines.

The reduced Hamiltonian of the two-dimensional
ANNNI model is defined as

—P&=KOQS „S +)„+K)gS „S
m, n

+2 X m, n m, n+2 ~

m, n

m, n

K;=J /T, J &0, S~„=Pl,
where P= I/T. The Boltzmann constant is taken to be
unity.

The regime of competing interactions (J&,J2&0) can
be divided into ferromagnetic (small temperature,
X =J2/J& & 0.5), paramagnetic (high temperature), and a
degenerate phase known as (2) (X &0.5, low tempera-
tures); the last phase is characterized by a fourfold degen-
erate ground state which is a periodic arrangement of two
up spins followed by two down spins along the direction
of the competitive couplings.

Figure 1 reproduces the phase diagram of the model,
obtained by means of phenornenological renorrnalization
(PR) and finite-size scaling (FSS) of the order parameter.
In this article we estimate the magnetic and correlation-
length critical exponents, and conclude that the
ferromagnetic-paramagnetic phase transition of the

ANNNI model seems to be continuous. To achieve this
purpose we look at the FSS hypothesis according to
which the magnetization per spin in a d-dimensional
magnetic system of linear dimension N, at the transition
point when N is large enough, is expected to behave as

(y~ —d)m~-N (2)

which in turn implies

a(i/g„)
AT

(4)

where T, is obtained from PR.
The exponent yT may be read off from the slopes of the

curves N/g~(T), N'/g~(T) at their intersection point,
namely, at T =T„

where y& is the magnetic critical exponent. However, in

a finite system whose Hamiltonian is invariant under spin
reversal, the magnetization should vanish identically.

As is well known, this diSculty can be overcome by
considering the two-spin correlation function (sos, ). In
the limit r~ao this quantity approaches the square of
the spontaneous magnetization m.

Takano and Saito used the correlation function of a
finite system to obtain an estimation of m, and computed

yz in the Ising and three-state Potts model in two dimen-
sions by applying the FSS equation (2). As will be ex-
plained in Sec. II, m& can be found from the two leading
eigenvectors of the transfer matrix associated to the sys-
tem.

The critical exponent yr of the correlation length g
was obtained, as usual, from the FSS of g at the transi-
tion temperature T„
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FIG. 1. Phase diagram of the ANNNI model, for Jo ——J&.
Solid lines represent analytical calculations using the Muller-
Hartmann and Zittartz approximation. The circles denote our
estimation of the transition temperatures obtained through the
FSS of the order parameter and PR. The symbols F and (2 & in-

dicate the ordered phases. The paramagnetic (P} region has
some internal structure (dashed line). Size effects are negligible
on the lower transition line and very diScult to estimate along
the second transition line.

B(N I(~ )IBT
ln

B(N'/g~ )IBT r=T
ln(N/N')

where N and N' are two different lattice sizes.

We use an Hermitian (real) representation of the
transfer matrix f'of a lattice of M )&N sites with periodic
boundary conditions. ' Then 1'can be written as

&= vo" VH vi V2 vo"

where the Vs are 2 X 2 matrices given by

VH ——exp 8 err"„

Vi ——exp Ki g rr"„cr"„+i

V2 ——exp E2 g—cr"„o"„+2
n

Vo = (2 coshEo ) ( tanhEo )

o „ is the Pauli spin matrix for the site n in an arbitrary
row, H the reduced magnetic field, N the number of
columns, and JV is the row number operator which writ-
ten in terms of spin raising and lowering operators is sim-

ply

JV= g rr+rJ„
n

This enables us to compute its eigenvectors by means
of the Lanczos scheme. " As is explained in Ref. 10, this
represents a significant saving of computer time.

Following Ref 12, the correlation function for two
spins located on sites (m, n) and (m +P, n') is expressed
as

(s „s„„„,) =
g g &j ~

Vo rr"„Vo '
~
i)(i

~
Vo o" Vo

'
~

j)A, A.
'

Trg M (9)

where the double sum runs over an orthogonal basis in which 1'is diagonal, A, is the eigenvalue corresponding to the

~ j ) eigenstate, and M is the number of rows.
As M —+ oo, Eq. (9) reduces to

(s.„s.„„,):y(q, ~
v,'"~"„v "~t)&i

~
v,'"~"„,v "~q, )

M —+ oo
1

(10)

where
~ g, ) is the eigenvector corresponding to the maximum eigenvalue A,

In the following, we assume there is no external ordering field H applied to the system. Then the Hamiltonian is in-
variant under spin reversal, and the eigenvectors of the transfer matrix can be classified into even and odd, i.e., f'com-
mutes with ( —1) . A further simplification of the asymptotic behavior of the correlation function can now be done.

Since
~ g, ) is an even state and the operator Vo~ o"„Vo ' changes parity, Eq. (10) can be written

P~ oo
1

where
~ g2) denotes the eigenstate corresponding to the second largest eigenvalue A.2 of the transfer matrix. Now con-

sider the thermodynamic limit, i.e., N ~ oo. In that case some care must be taken but Eq. (11) is still true.
As is well known, at a critical point, A, 2 approaches A,

1 implying a divergence of the correlation length,

ln
A2

(12)
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The degeneracy of A, , and A2 for T (T, means that the correlation function given in Eq. (11)yields a finite asymptotic
value,

If x (0.5 (ferromagnetic ground state), the square of the
spontaneous magnetization m is given by

m =(hatt, i

V' O'"V ' if )(f i

V' o" V '
~g, )

(14)

for any election of n and n'.
If X )0.5 ((2) ground state) at low temperatures, the

spontaneous magnetization vanishes identically. Howev-
er, it is possible to look at any of the four sublattices ob-
tained by keeping one every four columns. In this case
the (sublattice} magnetization is nonzero and may be cal-
culated through Eq. (14) by selecting n ' =n +4k
(k =0, 1,2, . . . ).

For a finite system (finite N), the right-hand side of Eq.
(14) may be considered as an estimation of the order pa-
rameter provided N is taken large enough. Moreover,
mz is expected to behave according to Eq. (2), i.e., to
obey FSS.

proved by using T, (N,„)as obtained from PR [see Fig.
2(b)].

A similar result is obtained for the critical exponent of
the correlation length v= 1 lyr, which is estimated
through Eq. (5). This is shown in Fig. 4 where it also can
be been that convergence turns out to be poor for
X g0.3.
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III. RESULTS 0.11 7

In this work we have used lattice sizes up to N,„=12
and studied the case Eo ——K&. This can be achieved in a
relatively fast way using the Lanczos scheme and the
method described in Ref. 10.
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A. X (0.5

Two methods can be used to determine y&. The first
one uses T, as a data, which can be obtained for instance
from PR. Once T, is known, yI, is estimated from the
FSS of m&.

In the second method T, itself is determined from the
FSS of mz. Provided the FSS equation (2}holds for three
different values N&, N2, and N3 at T =T„then T, and yz
can be determined simultaneously from the equation

0.0715

Q0640

0.05 65

Q0490

I—

0.0415

g(T„N„N, )=g (T„N„N, )=d —y„,
where g is the scaling function defined as

ln[m~(T) j,mN. (T)]
1 (Nn/ 'N)

(15)

(16}

Q0340

Q0265

The first equality of Eq. (15}gives T, and the second one
gives yI, ~

Figures 2(a) and 2(b) show the convergence of our es-
timation of d —ys for X =0 (Ising model) and X =0.45,
respectively. It can be seen that convergence is faster for
the first procedure. The convergence is improved in both
methods when smaller values of X are considered.

Figure 3 shows the dependence of d —yI, with X and N.
Convergence is rather poor when X )0.3 and can be im-

1.102 1.107 1.1 1 2

FIG. 2. Scaling function g(T, N, N') vs J&/T for different
values of N and N'. The arrows indicate the points used for the
estimations of both d —y„and T, by means of Eq. 115}. The
dots represent the convergence of the estimation of d —yI, using
T, as data obtained from PR. In (a) we show results for X =0
(Ising model) which exhibit a faster convergence than those for
(b) X =0.45.
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FIG. 3. d —yq as a function of X for different lattice widths.

FIG. 5. Magnetization critical exponent P as a function of X.
The error bars represent the sensitivity of P to small changes
(less than l%%uo) in the transition temperatures.

Convergence could be improved using extrapolation
procedures found in the literature. ' Unfortunately, the
use of such convergence acceleration techniques requires
a reasonable number of terms in the original sequence
[requirement fulfilled in calculations involving transfer
matrix on two-dimensional systems or quantum Hamil-
tonians in (1+ 1) dimension]; moreover, the terms must
be of relatively high numerical precision to avoid round-
off problems.

In our case, numerical accuracy reaches 0.001% but it
seems not to be accurate enough to avoid convergence
unstability. ' We have estimated the magnetization criti-
cal exponent through the hyperscaling equation
P=(d —yi, )v.

Figures 5 and 6 show P and v, respectively, and their
sensitivity to small changes (less than 1%) in the transi-
tion temperatures which is represented by the error bars.
It can be seen that sensitivity is minimum at X =0 (Ising
model) where P and v deviate less than 0.1% from their
exact values.

B. X &0.5

In this case, N is restricted to be 4, 8, 12, . . . , due to
the ground-state structure and periodic boundary condi-
tions. Hence, we have been unable to use the second
method. (N =4 seems to be too small to be considered,
and N = 16 demands a great amount of memory
storage. '

)
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FIG. 4. Critical exponent of the correlation length, v, as a
function of X for different lattice widths.

FIG. 6. Correlation length critical exponent v as a function
of X. The error bars denote the sensitivity of v to small changes
(less than 1%) in the transition temperatures.
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FIG. 7. d —y~ for X )0.5. In this case we were restricted to
using only two lattice widths (N =8 and 12), due to the
ground-state structure. The error bars, denoting the sensitivity
of d —yI, with the transition temperature localization, indicate
that for a more reliable estimation, higher values of N should be
considered.

Figure 7 shows rough estimations of d —yt„obtained
with N =8 and 12. The transition temperature T, was
estimated using PR. The error bars indicate as before the
sensitivity of d —yt, to be small variation (less than 1%)
lnT.

C. Transition temperatures

In contrast with the sensitivity of the critical exponents

P and v with the lattice size, we have found that the tran-
sition temperatures determined with PR and the FSS of
the magnetization exhibit a small lattice-size dependence.
Both procedures give approximately the same numerical
values of T, . However, the agreement with analytical
calculations, such as those which use the Miiller-
Hartmann and Zittartz' approximation, is quite satisfac-
tory. For instance, Hornreich et al. ' give for X &0.5,
the following expression of the ferromagnetic-
paramagnetic transition line:

Figure 1 shows Eqs. (17) and (18) for KD=K, together
with PR and FSS results. The agreement among these
methods is remarkable.

IV. CONCLUSIONS

Results for X &0.5 admit any of the following inter-
pretations.

(i) The model has always an Ising-like behavior, in
which case our results are simply showing an increase of
the size dependence as X~O.5.

(ii) The system is always nonuniversal, but for X &0.2
it is numerically very hard to distinguish this from an
Ising-like behavior. '

(iii) Lastly, it could be that the system is Ising-like for
X~0.2 and nonuniversal for X&0.2. In this case, how-
ever, there should have to be some extra indication of this
behavior in the phase diagram, which is not apparent in
our results.

To summarize, we do not have conclusive evidence on
this subject. Nevertheless, our results are useful to show
that as X~0.5 it is observed that y„~2=d implying a
first-order transition. Note that convergence for d —y„
obtained with the first method described before is accu-
rate enough [see Fig 2(b)] .to consider yt, ~d.

In a previous work' the present authors employing a
criterion associated with the persistance length ' found
that the phase transition seems to be first order for all
X&0, while this work indicates that for X & 0.5 the sys-
tern undergoes a continuous phase transitions.

This contradiction leaves an open problem related to
the application to first-order transitions of criteria well

verified for continuous transitions. %e think, in particu-
lar, that the use of the persistence-length criteria needs
further clarification. Results for X ~ 0.5 are less
relevant, because we were limited by computing con-
siderations to use results for N =8 and N = 12 only. '
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