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Neighborhood notion in the magnetic-properties study of magnetic materials
with a dominant superexchange interaction
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The steplike magnetization observed in a semimagnetic semiconductor in a high magnetic field al-

lows an accurate determination of the exchange interaction of these compounds. Nevertheless, the

results obtained from a generalized cluster model or extended nearest-neighbor pair approximation
for an interaction longer than nearest neighbor do not agree well with experimental measurements

(specific heat, spin-glass study, etc.). From the assumption of a preponderant superexchange, recon-

sidering the hypothesis of an exchange-constant decrease with the direct distance, we analyze the

Zn& „Mn„Te magnetization for different Mn compositions, and we obtain good agreement with ex-

perimental results. We emphasize that to study the magnetic properties of materials in which this

interaction mechanism is preponderant, the neighborhood notion should be reconsidered, taking
into consideration the cation-anion-cation distances and angles.

In recent years a great deal of interest has been shown
in the high-magnetic-field magnetization of semimagnetic
semiconductors (SMSC's) (Ref. 1) with zinc blende or
wurtzite structure. The magnetization versus magnetic
field relationship presents a steplike behavior which al-
lows a direct determination of the exchange constant be-
tween magnetic ions and the study of the distribution of
these ions in the host structure. For the first time,
this behavior was analyzed from a cluster model. The
steps are explained by the magnetization of nearest-
neighbor (NN) magnetic ions pairs. At low field, due to
antiferromagnetic exchange interaction, the pair effective
spin S,z is zero. Increasing the field, the effective spin
changes and becomes S,&——1 for magnetic field B&, and
so on, S,z ——n for magnetic field B„=nB

&
with

1(n (2So (So= —,
' is the Mn spin). The pair magnetiza-

tion proceeds by five steps for Mn spins. Nevertheless,
the cluster model is not sufficient. It appears there are
discrepancies with experimental measurements: (i) the
magnetic position of the second step does not correspond
to twice that of the first step (Bz+2B, ); ' (ii) effective
temperatures are necessary to account phenomenological-
ly for experimental data at low field (To in Ref. 10) and
high field (T,s in Refs. 6, 8, and 9). These temperatures
are related to the molecular field applied on the single
(To) and paired (T,fr) ions. Two main models were used
to explain these discrepancies between theoretical and ex-
perimental data: (i) the generalized cluster model (GCM)
proposed by Larson et al. "on the basis of a cluster mod-
el, and (ii} the extended nearest-neighbor pair approxima-
tion (ENNPA) on the basis of the pair clusters model by
Twardowski et al. ' These two analyses give us the pos-
sibility to calculate the exchange constant between NN
magnetic ions and between magnetic ions more distant
than NN. From the GCM, for Cd& Mn„Te, the next-
nearest-neighbor (NNN) exchange constant J2 is approxi-
mately one-third of the NN exchange constant of J, and,

from the ENNPA, for Zn, „Mn„Se, J2 is approximately
half J, . In all cases, J2 is important relative to the main
exchange interaction. These results do not correspond to
previous determinations deduced from spin-glass phase
studies. For Cd& „Mn„Te, Escorne and Mauger' have
obtained J2-J, /8. From the same kind of study on
several SMSC's, Twardowski et al. ' have determined a
radial dependence of exchange interactions between Mn
ions. They have established a universal law,
J(R)=R ', which gives J2-J, /10. These last equali-
ties confirm the small J2 value with respect to J&, as ex-
pected by Brumage et al. ' for Zn& „Mn„S and suggest-
ed by Danielian and Stevens' for P-MnS (zinc blende
structure). Other measurements are in accordance with
this result. As an example, the value J2/ka = —0.55 K,
reported for Cd, „Mn„Te from specific-heat measure-
ments' and assimilated to the NNN exchange interac-
tion as discussed by Shapira et al. ,

' may be compared to
J, /ks = —6. 1+0.3 K for Cd, „Mn„Te (Ref. 9)
(J2 -=J1 /11). From a study of the exchange mechanism,
we believe that the disagreement between the J2 values
should not be related to the approximations or limits of
the theoretical model (the GCM or the ENNPA) but may
be explained reconsidering the hypothesis of an
exchange-constant decrease with the direct distance.

Recent studies on magnetic properties of SMSC's by
Larson et al. ' (theory) and Spalek et al. ' (susceptibility
measurement} conclude about the predominance of the
antiferromagnetic superexchange in comparison with
other mechanisms. Superexchange involves filled p shells
(valence band) of the anions and the overlap of the d
(Mn++ ions) and p (anions) shells. As a consequence, the
superexchange interaction does not depend on the direct
distance but depends on the chemical bonding length be-
tween the two magnetic ions interacting and on the
cation-anion-cation angle. Assuming a similar depen-
dence on the chemical bonding for more distant neigh-
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FIG. 1. Interaction of the second (a), third (b), and fourth (c)
neighbors of the magnetic ion (open circles) in a zinc blende
structure.

bors, the neighborhood notion to study the SMSC mag-
netic properties should be reconsidered. Figure 1 shows,
for zinc blende structure, the position of the second,
third, and fourth neighbors. One can verify that the ways
traveled through the two anions between these neighbor
positions are the same for the three cases. Nevertheless,
the number of ways is different, and longer ways exist.
The exchange interaction is the sum of couplings travel-
ing through the following: two anions and one cation
(four couplings for J2, two for J3, and one for J4); three
anions and two cations (eight couplings for J2, ten for J3,
and eight for J4 ); four anions and three cations (72 for J2,
60 for J3, 58 for J~), and so on for longer travels. As-
suming for the first time that J2, J3, and J4 are mainly
due to couplings through two anions and one cation, and
neglecting more distant couplings, we may write

J2 ——2J3 ——4J4 .

For simplification, we will indistinctly name J2, J3, and

J4 the NNN interactions in the sense of superexchange.
From a Curie temperature study, ' a variation of the ex-
change constant due to lattice distortion has been ob-
served for high Mn concentration. This distortion has
been evidenced in SMSC's from extended x-ray absorp-
tion fine structure (EXAFS) measurements. 20'i' Never-
theless, the inAuence of this effect on the NNN exchange
constant may be neglected for low Mn concentration.
Equality (1) may be introduced as a possible hypothesis
for SMSC magnetization analysis from the ENNPA or
GCM. The ENNPA (Ref. 12) cannot explain the step
shift (Bz+28i) and the broadening observed for all
SMSC's investigated. Consequently, to account for
high-field magnetization, we use for the pairs a self-
consistent mixed model (a cluster model and molecular
field approximation} similar to the GCM in which the
pairs are treated exactly and where the more long-range
interactions are analyzed in a molecular field approxima-
tion. We call 7 the set of paired ions interacting with an
exchange intensity of F2/4 (=rJ3/2=rJ4) with the
NNN environment, where ~ is the number of couplings
with the environment. The Hamiltonian which describes
a pair of a set 7 can be written as"

Hp ——gpq (S, +S2 )(8 b,}—
where S& and S2 are the paired spin vector components
along the magnetic field and b, is the molecular field ap-
plied on this pair. b, is given by

Mp, ( T,B}
Mo

p 2SO gPB1+exp (8„8+—b, )
o n=l B

(2)

where Mo is the total saturation, P2, is the probability of
having a pair submitted to a molecular field b„and B„ is
directly related to J

&
by the equality

8„=—(2n/gps)J, .

The total pair magnetization is the summation of the
magnetization of all the sets ~:

Mp(T, B)
Mo

max

P2 QP2,
x=0

m ax Mp (TB)
Mo

(3)

where v varies from zero, in the case of totally isolated
pairs, to ~,„couplings when all the NNN cation sites
are occupied by magnetic ions, and P2 is the probability
of finding one ion in a pair. To determine the magnetiza-
tion, we assume the following: (i) a random distribution
of the magnetic ions which has been confirmed for
SMSC's; consequently, the probabilities P&, P2, and

P2, may be determined from the Mn concentration; (ii)
the proportionality of (S, ) with the total magnetization.
Under these conditions, Eq. (3) is determined self-
consistently. This approximation seems correct owing to
the great number of NNN cation sites. In this way, the
relative proportion of clusters (single ions, pairs, etc.} in
the neighborhood of a chosen pair may be considered
identical to those of the whole crystal. This second as-
sumption limits the model to low concentrations due to
the possible existence of a high Mn concentration of
larger clusters in the NNN pair environment. These
clusters have small magnetization per spin and give a
small contribution to the molecular field.

In this paper, Eq. (3), where x =0.054 and r,„=114
for a zinc blende structure, is used to account for
Zn, „Mn„Te magnetization in the high-magnetic-field
range (8 & 10 T). The probability of having pairs belong-
ing to sets with r & 15 is negligible (g,' 0P2, ——0.98 for
x =0.054). Thus, for convenience of calculation the
suinmation in Eq. (3) will be taken over the sets for
~=0—15. In Fig. 2, we compare the high-field magneti-
zation measurement, given in Ref. 8, with the theoretical
magnetization obtained from the sum of Mp(8, T} and
the closed triplet contribution McT(B, T). This last con-
tribution and the value J& /kB ———8.8 K are determined
in Ref. 8. The best fitting of the high-magnetic field mag-
netization is realized for the only adjustable parameter:

Ji /(4k~ ) = —0.38 K .

The agreement observed verifies the Mn random distribu-

b, = —(I/gag)(F2/4)(S, ),
where (S, ) represents the thermodynamical as well as
the spatial average of a localized spin S, of the environ-
ment in the magnetic field direction. From the Hamil-
tonian Hz with the condition 2J& »kBT, the magneti-
zation of the pair belonging to the set ~ is determined as a
sum of Boltzmann functions:
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FIG. 2. Pair and closed triplets magnetization of
Zn&, Mn„Te (x =0.054) as a function of magnetic field at 1.6
K. Crosses are pulsed field magnetization data of Ref. 8. The
solid curve labeled 0 represents the ~=0 contribution to the
magnetization given by Eq. (3j. The solid curve labeled 1 is the
sum of r=0 and v.=1 contributions, and so on for the other
curves. CT is the sum of the calculated pairs magnetization
(curve 15) and the closed triplet magnetization.

FIG. 3. Crosses represent the first step positions in magnetic
field vs Mn concentration of Zn& Mn„Te deduced from Ref. 6
for x =0.029 and x =0.034; from Ref. 9 for x =0.031 and
x =0.040; from Ref. 8 for x =0.054; and from Ref. 22 for
x =0.022. The solid curve is obtained from Eq. (4).

8, /x = ——', So(so+1)g z;J;, (5)

tion, and also that the use of the NNN interactions is
sufticient to account for the observed discrepancy be-
tween experiment and a cluster model. Thus it is not
necessary to use a temperature parameter T,ff as well as a
mean molecular field parameter as in Ref. 8.

The results obtained in Refs. 6, 7, and 9 on high-
magnetic-field magnetization of Zn, „Mn„Te show
different first step positions for different concentrations.
The model used explains the dependence of this position
versus the concentration considering the mean molecular
field b which is a mean value of the molecular fields b, .
The first step position is given by

B,(x)=B,(0)+b (x),
where

Bi(0)= 2Ji/gl a—
and

b(x)= —(1/gps)r, „x(Jz/4)(S, ) .

Figure 3 shows the first step position versus Mn concen-
tration. The solid curve represents the shift deduced
from Eq. (4) using

(S, )=S,(M, /M +P /10),

where M, is the low-field magnetization saturation which
depends, as do P2 and Mo, on concentration.

In these calculations, we have neglected the more
long-range interactions J; (with i ~4). Their importance
may be estimated using Curie temperature data 0, ob-
tained from susceptibi1ity measurements. In the case of a
random Mn ion distribution, the ratio 0, /x is given by

where z; is the number of ith neighbors (z
&

——12,
z2 ——6, . . . ). Using the values J, /ks = —8.8 K and
Jz/4ks ———0.38 K with equalities (1), the value obtained
is 8, /x = —776 K. This result is close to the one deter-
mined by Spalek et al. ' (8, /x = —831+63 K) for a
large concentration range of Zn& „Mn Te, and thus it is
reasonable to neglect the other interactions.

Using Eq. (1), we have also neglected the NNN ex-
change couplings through three anions and two cations
and couplings through longer ways. These additional
couplings reduce the relative difference between J2, J3,
and J4 values. Thus, a more realistic value of J2 should
be between —1.52 and —0.6 [the last value corresponds
to the result obtained from the same calculation in which
the equality J2 ——J3 =J4 replaces Eq. (1)]. We notice the
really good agreement with the result obtained from the
spin-glass studies (J2 ~J, /10).

In this paper, we propose an alternative understanding
of Zn, „Mn Te magnetic properties considering an ex-
change neighborhood, in the sense of superexchange,
different than the crystallographic one. For a zinc blende
structure, this interpretation modifies only the long-range
exchange interaction. The main interaction J, remains
the same. For other crystallographic structures, the
modification due to a superexchange environment would
be more important, particularly when the main interac-
tion is not necessarily between the NN ions. In the case
of (Cd& „Mn„)3As2, for example, the cation-anion-cation
distances are the same for the first, second, and third
neighbors. Consequently, the determination of J„Jz,-
and J3 becomes difficult and the hypothesis of a mono-
tonic decrease of exchange constant with direct distance
should be reconsidered taking into account a prevailing
superexchange.
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