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Fluctuation corrections to symmetry-breaking perturbations are shown to yield nonuniversal ra-

tios for t, /t„h, /h„and M, /M„between the reduced temperature t, magnetic field h, and magneti-
zation M of the underlying XY model at the critical and tricritical points of the three-state Potts
model. When applied to the trigonal-to-pseudotetragonal phase transition in uniaxially stressed
SrTi03 along [1+5, 1+5, 1 —25], 5&&1, we find a non-negligible break to the universality of
5, /5„ in distinction to previous work.

I. INTRODUCTION

There are interesting phase transitions that are known
to be described by the three-state Potts model, ' as the
two-dimensional lattice-gas transition of He and other
atoms on Grafoil; the magnetic transition in a cubic fer-
romagnet with easy axes along the cube axes when placed
in a magnetic field along the [111]diagonal; the trigonal
to pseudotetragonal structural phase transition in
perovskites like SrTi03 subject to stress along the [111]
direction; transitions in He- He mixtures that can be
described by suitable forms of the Blume-Emery-GriIths
model.

Symmetry-breaking perturbations are crucial in deter-
mining the nature of a phase transition. 6 In a recent
work by Blankschtein and Aharony7 on the continuum
version of the three-state Potts model with quadratic
symmetry breaking (QSB} in an external field, given by
the effective Hamiltonian

propriate QSB, the first-order line I-II and the critical
point may disappear leaving a single phase-transition line
to the ordered phase III. A change in sign of the QSB
term may turn the tricritical point into a critical end
point, where the first-order line I-III disappears.

An important issue in critical phenomena is the search
of universal ratios of nonuniversal quantities, and most at-
tention concentrated so far on amplitude ratios of ther-
modynamic properties above and below a critical point. '

Universal amplitude ratios arise whenever relevant per-
turbations of the same form drive a system away from a
critical point to states above and below.

In the limit of a vanishingly small w, i.e., in the neigh-
borhood of the underlying XY model, where the renor-
malization group (RG) in d =4—e dimensions" may be
used, Blankschtein and Aharony (BA-I) found nontrivial
uniuersal amplitude ratios for t, /t„h, /h„and M, /M„

+w(t, —3tit2}+u(t ) —h

where y=Iy, (x),yi(x)I is a two-component field in d-
dimensional space, it was shown that the Landau (mean-
field) theory yields critical and tricritical points in
nonzero field h, .

A typical phase diagram, shown in Fig. 1, has three
phase transitions involving a disordered phase and two
ordered phases. Denoting by p, and p2 the mean-field
solutions that minimize the free energy, in phase I, y,+0
and g2 ——0 but y, ~O as h, ~O; in phase II, g,&0 and

g2 ——0 but pi++0 as h, ~0; in phase III, pi&0 and y2&0.
The first-order line I-II ends at a critical point with a
nonzero magnetization y„, while the first-order line I-III
changes into a second-order line at a "normal" tricritical
point, in the form discussed by Straley and Fisher. The
critical point is associated with the ordering of the "lon-
gitudinal" component y„while the second-order line, in
particular the tricritical point, involves the ordering of
the "transverse" component y2. Eventually, under ap-
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FIG. 1. Typical phase diagram for the three-state Potts mod-

el with symmetry-breaking perturbatians taken from Ref. 19
and similar to one in BA-I. Dimensionless temperature and
field variables, R =(4u&/9w')r and H =(16u&/27w')h& are
used. The solid lines represent first-order transitions ending at a
critical point (CP) or a tricritical point (TCP) and the broken
line indicates a second-order transition.
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between the reduced temperature t, external field h, and
magnetization M of the underlying XY model at the criti-
cal and tricritical points of the Potts model.

If t = ( T —T, ) /T, and t = ( T —T, ) /T, define the re-

duced temperatures of the underlying XY model, T, and

T, being the true critical and tricritical temperatures of
the model, then r, =[T,(w) —T, ]/T, and t, =[T,(w}
—T, ]/T, in which T, (iv) and T, (w) are the true critical
and tricritical temperatures of the Potts model.

One may argue, on general grounds, that ratios of
critical-to-tricritical parameters should not be universal.
It is important to note, however, that the situation may
be different with appropriately chosen parameters, as
those of BA-I. Indeed, based on the existence of a single
perturbation parameter w, that drives the system away
from XY-model behavior either to a critical or to a tri-
critical point, a scaling argument valid in the limit of
small m was shown by BA-I to yield the explicit forms

zero, and the critical and tricritical points for nonzero 5
have, to our knowledge, not yet been found.

The parameters 5, and 5, are, of course, nonuniversal
but their ratio is expected to be universal if that is the
case with the the ratios of critical-to-tricritical parame-
ters in the three-state Potts model, as argued by
Blankschtein and Aharony' (BA-II).

There are two important aspects in which the above ar-
guments are incomplete. The first one is the effect of the
higher-order symmetry-breaking terms that are generated
by fluctuations through the RG procedure whenever
there is a QSB term, even for vanishingly small w. This is
a point that is often omitted in RG calculations.

Specifically, %0 has to be replaced by the effective
Hamiltonian

t, (w)= A,f, (G}tv
+w i [ti —3(tv2/w 1 )0 i'F2]

h, (tv) =8,f„(G)iv (1.2)

+u l('P } + 2u(f t+ Pl%2)

hler

1 l (1.3)

M, (iv) =C,f~ (G)w

for the critical point of the Potts model, and similar ones
for the tricritical point, with the same exponents, particu-
larly the crossover exponent P that rules crossover be-

havior away from the XY model with a ratio w/t
Here, f, (G), fI, (G), and f~ (G) are universal functions

C C C

of the dimensionless QSB parameter G =(4u/9w }g,
while A„B„and C, are nonuniversal coeScients. In ra-
tios of critical-to-tricritical parameters the dependence on
tv would then drop out and one would expect a cancella-
tion of nonuniversalities in the coeScients to take place,
leaving overall universal ratios, a precise analogy with the
usual reasoning that leads one to expect universal ampli-
tude ratios of thermodynamic properties. ' It is this
universality that seems to be confirmed by the RG calcu-
lations of BA-I.

If correct, the universality of ratios of critical-to-
tricritical parameters in the three-state Potts model could
have important implications. Indeed, in further work
Blankschtein and Aharony' suggested that the three-
state Potts inodel with QSB in an external field should de-
scribe the trigonal-to-pseudotetragonal phase transition
of uniaxially stressed SrTi03 with weak oQ diagonal
stress along the [1+5, 1+5, 1 —25] direction.

Mean-field calculations' predict a first-order transition
for rather small values of 5 that either ends at a critical
point or changes over into a continuous transition at a
tricritical point for nonzero 5, and 5„respectively. Ex-
periments on SrTi03 that have alignment problems that,
at present, do not enable one to assert accurately the
values of 5, yield apparently a first-order transition if 5 is

with new couplings w&, w2, u„and u2 where even w&

and u
&

do not follow the same RG equations as m and u

in Eq. (1.1). As it turns out, % is indeed the Hamiltonian
that remains invariant in form under RG transforma-
tions, within a g -y theory. The origin of the new terms
is referred to below.

As will be shown here, the higher-order symmetry-
breaking terms lead to nonuniversal ratios of critical-to-
tricritical parameters in d =4—e dimensions. When
similar calculations are carried out for SrTi03 a non-

negligible break in university for 5, /5, is obtained.
A second important issue that deserves to be studied is

the effect of fluctuations on symmetry-breaking perturba-
tions in d =6—e dimensions, where the full size of the
trilinear terms in m& and w2 come into play. ' Detailed
calculations that were also done for this case are deferred
to a separate publication. '

The outline of the paper is the following. In Sec. II we
present the solutions of the RG equations for the Potts
model that involve the basic temperature, magnetization,
and external-field variables that are the main issue of the
present work. In Sec. III we discuss the results for the
critical and tricritical points of the model and consider
the application to SrTi03 in Sec. IV. We conclude with a
further discussion in Sec. V.

II. RENORMALIZATION-GROUP EQUATIONS

Our starting Hamiltonian, given by Eq. (1.3), arises
when all symmetry-breaking terms up to fourth order are
kept in the Hubbard-Stratonovich transformation' on
the discrete-spin Hamiltonian for the three-state Potts
model with an anisotropic exchange interaction.

In the presence of the external field h, , the magnetiza-
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tion M] ——(y])&0 already in the disordered phase, and
one writes as usual

f1 91+~1& V2 V2 & (2.1)

where y& and q2 are the fluctuating pat ts, with

(@])= (]pz) =0. The efFective Hamiltonian becomes
then

&=&(M])+JdxI —,'[F,f&, +Fzipzz+(Vg) ]

+wl@1 3wzf lf 2+u 1(0 )

+uz(el+'P 1'P 2) ~]f ] 1 (2.2)

Here %(M] ) is the mean-field part that consists of the
spatial and thermal fluctuation-independent terms, and
the new parameters are given by

F, =r]+6W]M]+12(u]+uz)M],

r2 r2 6w2M]+4(u]+ u2 }M]

w] =w] +4(u] +uz)M]

]T]2 ——wz ——', (u, +—,'uz)M»
(2.3)

Q) =Q), Qg=Q2

h ] ——h 1 r, M 1
——3w]M] —4( u]+ u 2 )M],2 3

f) =P+g, fp=l' —g

where M] is to be determined from (y] ) =0.
New RG recursion relations to one-loop order in

d =4—e dimensions were derived in this work, ' in
terms of the rescaling paraineter b =e', assuming that
w; =O(e). The solutions, written in standard way, ' are
given by

F, (I)= T] —6(u, +uz)[1 —F, ln(1+F, }]—2(u, + —,'uz)[1 —Fzln(1+Fz)]

F2
+9w ] ln(1+F])+ +9w 2 ln(1+F2}+

1+7) 1+72

Fz(l) = Tz —6u][1—Fzln(1+Fz)] —2(u]+ zuz)[1 —F]ln(1+F] )]+18N z[F]ln(1+F] )—Fzln(1+Fz)]/(F] —rz),

h ](I}=H] +—', w, [1—F, ln(1+F, ) ]——', wz[1 —Fzln(1+Fz )],

(2.4)

(2.5)

(2.6}

where

T](l)=t]—9w /2u+6w]M]+12(u]+uz)M] (2.7)

where again all I dependence has been suppressed.
The solutions for the symmetric parts, taken from BA-

I, are

Tz(l)=tz —9W /2u —6wzM, +4(u, + —,'uz)M, ,

H] (1)=k] t 1 M] —w]M ] ( u 1+u 2 }M1

(2.8)

(2.9)

t (I)= te "/[Q (I)]'",
w(I)=we + 2 /[Q(I)]

(2.11)

(2.12)

are appropriate temperature and external-Seld variables.
For notational simplicity, the l dependence of every term
on the right-hand sides has been omitted.

To obtain explicit solutions of the RG equations we
separate each coupling into a symmetric and a
symmetry-breaking part in the form

u (I)=ue "/Q (I),
Q(l) =1+(e"—1)u/u ',

M](l}=M]e]] '/2]]

(2.13)

(2.14)

(2.15)

(2.16)

t]=t+g, tz ——t —g,
9w to 3 t

w 1
=w +3g~, wz =w g~—

k. =—g. +(-,'g.
, +g., )—,

u] =u —(g. ,
+-,'g. ,},

Q)+Q2=Q +gg —3gg

3 w 27 m 27 wf]=Pl+ ——g+ g + g„4 Q 8 Q 16 Q

3 t 1 w 9
2 gw + 40 gQ ) +gQ2

(2.10)

(2.17)

Solving exphcitly for the symmetry-breaking parts in
Eqs. (2.10) yields the results

(2.18)
w (1)

g (I)
G (&)—: (2.19)

G

[Q (I)]2/5

G„

[Q(I)]4/5

G„

[Q(I)]'" '

g„(I)
G„(1}—=

u I
(2.20)

g„(I)
G„(1)—: (2.21)

where u'=e/40 is the fixed point for the symmetric
quartic coupling [a factor (8n )

' is absorbed in u].
For later use we introduce the parameter

T (1)= 9 t (1)[u ( I) /w (I)] .
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in which G, 6, 6„,and G„are the initial (1 =0) pa-
1 "2

rameters defined on the left in each equation. Except for
the first one, which follows from BA-I, the others are
new. Within the present work restricted, as in BA-I, to
leading order in the symmetry-breaking perturbations,
they depend only on the symmetric couplings u and u '.

Note that G(l) is diinensionless whether fluctuations
are taken into account or not, whereas T(l), 6 (1),
6„(1),and G„(1)become dimensionless only in the free

1 "2
(mean-field) theory (u =0). Through the RG they ac-
quire various dimensions via the 1 dependence in Q (1).
At u =u',

6 (l)=G exp( —2el/5),

6„(1 ) =G„exp( —4el /5),

and

G„(l)=G„exp( —el/5) .

Compared to the quadratic symmetry-breaking parame-
ter G(l), Eq. (2.18), all these 6's look like irrelevant vari-
ables in the limit 1~~. This is the XY-model limit that
is achieved when the initial trilinear couplings w& and w2

go to zero.
Following BA-I, we take w, (I)=w, e '=0 (e) and

u, (l)=O(e) in d =4—e dimensions, requiring that
w; «O(e'~ ) but finite, in order to have a Potts-model
critical and tricritical point. As will be demonstrated
below, the trilinear and quartic symmetry-breaking pa-
rameters become then dangerous irrelevant variables. 's

III. RESULTS FOR THE POTTS MODEL

We follow BA-I to obtain the reduced Hamiltonians
for the critical and tricritical point. For simplicity, we
denote in all that follows the fields in Eq. (2.2) as qr, and

9'2
The main features of the mean-field phase diagram are

used as a guide in what follows. Thus, if initially F, &F2
with fluctuations that enhance the inequality under RG
iterations, longitudinal ordering should yield to a critical
point in finite field, with a nonzero critical magnetization.
If, inStead, One StartS With r2 (r& a triCritiCal pOint may
appear with nonzero external field and magnetization,
now for transverse ordering.

T2(l*)=1, (3.1)

up to a higher-order part, according to Eq. (2.5). One
may then integrate out the component y2 in the partition
function to obtain the reduced Hamiltonian for the criti-
cal point,

a„=fdxI-,'[r,t'ai+(VV', ) ]+w,eA+u, ~i —h,~,j,
(3.2)

A. The critical point

If initially r
&
(r2 and the RG iterations are carried out

until rz(l' ) =O(1), the transverse component yz becomes

noncritical. This is achieved when

where

ff
—r,tt+ 6u, tt[ 1 —r,itin( 1 + r,e )] (3.5)

that takes fluctuations into account, is now introduced
following the work of Rudnick and Nelson' in d =4—e
dimensions assuming a vanishingly small w, ff. %hen
combined with Eq. (3.3) this yields t,tt= T, (l')+O(w ).

The critical point at which yi orders is that of the orig-
inal Hamiltonian in Eq. (2.2), as discussed above, given
now by the equations

ff W ff A ff 0 (3.6)

Thus, the first equation for the critical point, to leading
order, becomes

T, (l'}=0 . (3.7)

The second relation, w,a=0 in Eq. (3.6), yields now

with Eqs. (2.3),

M, e" ' " =M, (l')

[1+36 (1')+—,'G„(l')
4u (1")

(3.8)

When this is used in Eqs. (2.7) and (2.8} for T, (l) and

T2(1), Eqs. (3.7) and (3.1) become

T(1' )[1+—,', 6„(1
'

) ]+6 (1' ) ——',

——', G„(l')+—",G„(l ) =0, (3.9)

T(l')[1—
—,', 6„(l")]—6 (1')——",

+ —'„' 6„(1') —~4' 6„(1')= 1, (3.10)

respectively, where T(l) is defined in Eq. (2.17). In the
absence of quartic symmetry-breaking terms, Eqs. (3.9)
and (3.10) coincide with those in BA-I. This becomes
more transparent following these authors noting that the
initial value of t(1)=te [Q(1)] ~5 in Eq. (2.11), at 1=0,
is the reduced critical temperature t, of the underlying
XY model at the critical point of the Potts model, when
determined through Eqs. (3.9) and (3.10).

The explicit solution of Eqs. (3.9) and (3.10) yields first

w 2

(3.11)

r,tt T——, (l') —6[u, (l')+u2(1')]

&& I 1 —T, (I' )in[1+ T, (I' ) ] J +98 z(l ' ), (3.3}

while w, tt w——, ( 1
'

) + 9(w },u,e=u, ( I *
) + u z (1' ), and

h, tt f,———(t, 9—w /u)M, —3w, Mi —4(u, +u2)M,

(3.4)

all terms depending on l'. Explicit expressions for these
coeScients were obtained from the RG solutions, Eqs.
(2.10)-(2.21).

A true effective temperature-like variable
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1/$

u
(3.12)

where

to leading (zero-loop) order, the 6's being the amplitudes
on the right-hand sides in Eqs. (2.18}—(2.21). Next, with
u = u *, and eliminating the I* dependence through Eq.
(3.11) we find that

ln2
+9w 2 1+2

1 —r2

(3+hz)
rzln(1+ r2)

1 —r2

+ r21nr2

for the tricritical point, where

r, ff
= T2 —3(2u,ff+9$2}[I —r &in(1+ r2 )]

(3.20)

(3.13)

If it were not for the terms involving G„and 6„,this
1 "2'

would be the crossover exponent 4 =1+ff/10+0(ff ) for
the XYmodel that gives the scaling form for t„Eq. (1.2},
with P =P/2. Note that the apparently irrelevant quar-
tic symmetry-breaking terms have become dangerous in
modifying the exponent of w /u '.

The reason for restricting u to its fixed-point value u ',
in the above and in what follows, is that already in this
case the ratios of critical-to-tricritical parameters become
nonuniversal, as will be seen below.

Turning now to Eq. (3.8), we find for the magnetization
at the critical point,

cff eff

and the first equation requires that, to leading order,

(3.21)

and g, ff
——u, (I «) —9w 22( I ' )/2, while the explicit form for

ff will not be needed here. The iterated external-field
variable, h(l'), can be obtained in standard way from the
equation of state, (q&, ) =0, when use is made of Eq.
(3.18) to fix a new I'. Here, y& denotes the fluctuating
part of the field.

A new effective temperature-like variable t,ff is given
by the same form as in Eq. (3.5), in terms of F,ffr and u, ff.
When combined with Eq. (2.5) this yields t,ff

=T2(l )+O(w ). The Hamiltonian in Eq. (3.19) has
then a tricritical point when

M, = —( 1+36 +—,'6„ T2(I )=0 . (3.22)

where

—1/2 W+ 3 Gu } «~y2f 'e
4u' u

(3.14)
With the tricritical temperature and magnetization, t,

and M„defined now as the amplitudes of t(l') and
M(I') in Eqs. (2.11) and (2.16) that satisfy Eqs. (3.21), we
first obtain from T, ( 1' ) = 1 and T2( 1' ) =0

A,, =-,' ——+(-,'6 +-,'6„+-,'G„)ff+O(ff') . (3.15)
1/P,

1/0, —1 W
r, =—„'(39+106 ——", 6„+", G„)f, —

Without the trilinear and quartic symmetry-breaking
terms, I,, is the ratio of exponents P/P for the XY model
that appears in the scaling form in Eq. (1.2).

Finally, Eq. (3.6) yields

, , (1+276+—", 6„i6u"" 5 Q)

where

and

(3.23)

(3.24)

c
349 6 )f c

3 Q2 c
u

for the field at the critical point, where

(3.16)

Next, we find

(3.25)

(3.17)

with f, defined in Eq. (3.11). Except for the first two
terms, p, is not the ratio b, /P in BA-I. where

A, , —1/2

«1/2 «
u u

(3.26)

T, (1')=1, (3.18)

one may integrate y1 in the partition function to generate
the reduced Hamiltonian

eff JdXI Y(reff9 2+(~%2) )+

jeff%

2+~elf%

2 (3.19)

B. The tricritical point

Assuming now that one starts with r2 & r1 and that the
RG iterations are carried out until

(3.27)

Since both p, +p, and A, ,&A,„due to the quartic symme-

try breaking terms, the dependence on w (which is the
only system-dependent parameter) does not drop out in
taking the ratios t, /t, and I, /Sf, which becomes thus
non universal.

Finally, the tricritical field that follows from the equa-
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tion of state becomes (4.4)

where

Pf
p, —3/2

X
Q

(3.28)

has to be imposed in order to be applicable to the
trigonal-to-pseudotetragonal phase transition in SrTi03.
Then u, becomes the symmetric coupling u.

Knowing that' uo/Uo ————,
' and taking the effective

Hamiltonian of the original pseudocubic phase at the
Heisenberg fixed point with uo-uH, one finds that in the
neighborhood of the bicritical point (Fig. 2),

1 e w /ux. r -0.003 (4.5)

(3.29)

Comparison of this with tu„Eq. (3.17) shows that also the
ratio h, /h, is nonuniversal.

IV. APPLICATION TO STRONTIUM TITANATE

N2
+wi si —3 sisg +ui(si +$2)

N)

+u2($1 $1$2)—h, $1
4 2 2 (4.1)

Although from the nonuniversality of h, /h, together
with the work in BA-II one can infer that the ratio 5, /5,
is nonuniversal, our aim here is to estimate the order of
magnitude of the effect to see if it is detectable experi-
mentally.

A mean-field analysis' shows that the free energy for
the trigonal-to-pseudotetragonal phase transition in
SrTi03 with uniaxial stress of pressure p along the
[1+5, 1+5, 1 —25] direction can be written as

F=T~P($1+SP )+ ig($ i
—sg )

is the appropriate estimate for the parameter w2/u',
u '=u~r, in Eqs (3.16}and (3.28) for the critical and tri-
critical fields.

Next, we impose Eq. (4.4). From Eqs. (2.10) we also
have uz ————', g„, so that uz/u = —2G„ /3 and

G„=—G„ /3, in terms of the amplitudes in Eqs. (2.20)

and (2.21). With the relative quartic symmetry-breaking
parameter uz/u = —2.6X10 G for SrTi03 determined
in a previous work in mean-field theory, ' which is
sufficient for a calculation of the exponents p, and p„
Eqs. (3.17) and (3.29) to 0 (E), we have thus
G„=—1.3)(10 6 and 6„=3.9X10 6, to be used at

the critical and tricritical points where 6, -=0.0298 and

6, =——0. 158, respectively. The mean-field results quoted
here are based on Eq. (4.1) with the quartic symmetry-
breaking term —3u 2s,s 2 that constitutes the final
difference with the three-state Potts model.

The values of G„and G„at the critical and tricritical
1 "2

points can now be used in the coefficients and the ex-
ponents in the expressions for h, and h, given by Eqs.
(3.16},(3.17), (3.28), and (3.29).

The ratio 5, /5, that follows from Eqs. (4.2),

to leading order in the symmetry-breaking parameter 5.
The QSB parameter g and external "field" h, ,

5, /5, =(p, m, /p, m, )h, /h, (4.6)

g = —Cp 5+0 (5 ), h 1
—— Dpm 5— is basically determined, as in BA-II, by the ratio h, /h,

(4.2)

contain parameters C ( &0) and D coupling elastic to
order-parameter degrees of freedom that can be taken
from the literature. The trigonal order parameter

' 1/2

P [ill]

—r)
4(uo+ vo/3)

(4 3)
Tl (P)

depends on the temperature variable r, and on the isotro-
pic (uo } and anisotropic (vo) quartic couplings in the free
energy for the original pseudocubic phase of SrTi03. '

Furthermore, the symmetric part of the trilinear term in
Eq. (4.1) is given by w = —(2&2/3)vom.

There are three aspects in which Eq. (4.1) differs from
the mean-field free energy for the three-state Potts model
with symmetry-breaking perturbations, that follows from
Eq. (1.3). These are (i) in the term —3u2s, s2, (ii) in that
u, is the quartic coupling for diagonal stress, and (iii)
that the external-field term vanishes with the symmetry-
breaking parameter. There is no such connection in the
Potts model. As far as point (ii} is concerned, if one
writes u, =u —(g„+—,'g„) for the Potts model, as in

Eqs. (2.10), the condition

Pseudocubic

FIG. 2. Qualitative shape of the phase diagram in SrTi03 un-

der diagonal stress, taken from Aharony et al. , Ref. 4. A 6rst-
order trigonal-to-pseudotetragonal transition and a second-
order trigonal-to-pseudocubic transition meet at a bicritical
point Tb.
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since p, m, /p, m, =0(1). The nonuniversality of the ra-
tio h, /h, implies thus that fi, /fi, is nonuniversal. Since p
and m are parameters of the original cubic system, there
is no reason to believe that the possible nonuniversality of
the ratio p, m, /p, m, will cancel that in h, /h, to yield a
universal fi, /5, .

Our result may be written as
—O. 003

& /fi =(& /& ) [(—") ' ' (-') "]
~XY

(4.7)

when a=1 (or d =3},where (fi, /fi, )nA is the result of
BA-II which contains a 0.02% universal fluctuation
correction on their mean-field result with QSB. The
terms in square brackets are our universal fluctuation
corrections with quartic symmetry breaking; both togeth-
er give a further 0.3% correction. Finally, making use of
Eq. (4.5), the last factor yields a nonuniversal correction
of about 2%, which follows from the quartic symmetry-
breaking terms in the exponents p, and p„ for the criti-
cal and tricritical fields. Although this correction is 1 or-
der of magnitude beyond present experimental accuracy
it is 2 orders of magnitude larger than the fluctuation
correction to the mean-field result in (fi, /fi, )nA. We con-
clude, therefore, that the ratio fi, /5, for SrTi03 is
nonuniversal (the universality of quantities for the Potts-
model transition in SrTi03 refer to the independence on
the Hamiltonian parameters of the initial cubic systems),
although the nonuniversality will be difficult to detect ex-
perimentally. Nevertheless, the nonuniversality should
be taken seriously since it arises as a fluctuation effect in
the structural phase transition in SrTi03 which has been
found experimentally to have nonclassical (non-Landau-
like) behavior. '

V. SUMMARY AND CONCLUDING REMARKS

In this paper we carried out RG calculations to one-
loop order in d =4—e dimensions, for the three-state
Potts model in an external field with quadratic, very weak
trilinear and full quartic symmetry-breaking perturba-

tions to show that the ratios t, /t„h, /h„and M, /M, be-
tween the reduced temperature t, external field h, and
magnetization M of the underlying XY model at the criti-
cal and tricritical points of the Pot ts model are
non universal, in distinction to earlier work by
Blankschtein and Aharony. The nonuniversality is due
to the trilinear and quartic symmetry-breaking perturba-
tions. The latter is the crucial one for all three ratios; the
former one enters only in the magnetization ratio.

An estimate of the ratio fi, /fi, for SrTi03 was found to
be nonuniversal, due to fluctuation corrections on the
mean-field theory (e=0} result which are 2 orders of
magnitude larger than previous universal fluctuation
corrections due to Blankschtein and Aharony. Since the
parameters for SrTi03 are not known with sufficient ac-
curacy, the nonclassical region for fi, /fi, in which
nonuniversality is expected to appear may be difficult to
reach. This applies even more so to the much smaller
nonclassical region of BA-II. Nevertheless, the consider-
able interest over the past in structural phase transitions
in perovskites calls for the calculation of further prop-
erties once it becomes clear that ratios of critical-to-
tricritical parameters in SrTi03 are nonuniversal.

It should be of interest to look for universal amplitude
ratios above and below the critical or tricritical point for
the three-state Potts model. Indeed, in further work to
be presented elsewhere we found universal amplitude ra-
tios for the susceptibility at the critical point, as well as
specific scaling forms for the equation of state, with ap-
plication to SrTi03. '
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