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Ferromagnetic strip domains in an atomic monolayer
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We determine the range of values of the uniaxial surface anisotropy K, that leads to the forma-
tion of domains in an atomic monolayer of ferromagnetically coupled spins. If the ratio f of It, to
the dipolar energy is larger than a minimum value f;„determined by the ratio of exchange to dipo-
lar energies, and if the easy direction is normal to the layer plane, then a domain pattern is energeti-
cally favorable compared to any uniformly magnetized configuration. The maximum component of
magnetization normal to the layer, M„ increases continuously from zero as f increases from its
threshold f;„and tends to the saturation magnetization value for large f. Above threshold

(f =f,„),the width of the domains is very sensitive to the value of f, increasing very rapidly with f
and reaching the macroscopic value of the order of 1 cm for a value f = 1.4. Contrary to the usual

assumption of thin domain walls determined by the ratio of exchange to anisotropy energy, in
monolayers it is necessary to treat the domain structure as a whole and to include explicitly the di-

polar energy. A variational treatment gives, at the threshold of K„a simple cosine dependence on
distance for the magnetization normal to the layer. The calculation is extended to layers consisting
of a few atomic planes.

I. INTRODUCTION

Recently the magnetic properties of ferromagnetic
monolayers' and of films of a few monolayers have be-
come the subject of interest. If there is no anisotropy en-
ergy, or if the anisotropy favors alignment in the plane,
the dipolar (demagnetizing) field keeps the magnetization
in the plane of the layer. Recent calculations, however,
show that because of the reduced site symmetry in a
monolayer as compared to that of the bulk, the value of
the uniaxial surface anisotropy E, may be substantially
enhanced over the bulk value. Recent determinations of
K, (when converted into anisotropy energy per atom} do
indeed show values an order of magnitude or more larger
than in the bulk. In such a case the magnetization may
break into magnetic domains if the easy axis is normal to
the layer plane. The purpose of this paper is to investi-
gate (a) the range of values of EC, that, for given magni-
tudes of the exchange and dipolar energies, will give rise
to domain formation and (b) the spatial variation of the
magnetization in these domains. We find that a threshold
value I(, ;„exists, and that when E, )I(, ;„a domain
configuration has lower energy than a uniformly magnet-
ized configuration. The effective thickness of the domain
wall depends on the width of the domain; it approaches
the bulk value only when E, is well above threshold.
Near threshold the width of the domain strips is very sen-
sitive to the value of K„ increasing very rapidly with in-
creasing E, . It reaches macroscopic dimensions for a
value of the ratio EC, /K, ;„ofthe order of 1.5 or smaller.

H;=— pj 'J pj &J

3 5
ij

wherer; = ~r; —r
Summing (I) over all sites j&i gives the following

values for the two cases of interest. (a) Mc is normal to
the layer (configuration M„i):

8m
Hi ——Hi ———coc 3

Mo,

i.e., Hj is opposite in direction to Mo. The coeScient
c =1.0782 is specific to the square lattice and reAects its
discreteness. Note that this result is very close to the
value —(8m/3)Mo which is the local field (the sum of the
demagnetizing and Lorentz fields) in a thin film. (b} Mo is
in the plane of the layer (configuration M„~~):

form spin configuration (magnetized state) and then for a
domain configuration. Let p be the atomic magnetic mo-
ment of similar point dipoles, located at the lattice sites
r=(me„+ne~ }ao, where e, and e~ are unit vectors along
the x and y axes and ao is the lattice constant. The satu-
ration magnetization is Mo ——p/ac and the dipolar energy
per unit area for a uniformly magnetized layer is

Ed = —
2 HAVOC™PQO

The local field H&„ is obtained from the general expres-
sion of the dipolar field at point r; exerted by a collection
of point dipoles p at points r '

II. DOMAINS OF A MONOLAYER

Since domain formation is driven by a tendency of the
spin system to reduce its dipolar energy it is natural to
begin by examining the dipolar interaction, first for a uni-

4m.
H~I

——+c Mo .
3

The difference, H~~
—Hj =c4mMO, is essentially the

demagnetizing field in a thin film.
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The zero of the energy scale for all magnetic
configurations (including domains} will be taken to be the
energy of the M„~~ configuration, so that the energy of the

M„~ configuration becomes

Ed j ~Ed j Ed
I
}
=C 2WM Oa p

2 (2)

H, (1)= —(1.011)2M, ,

Hi(2) = —(1.0013)(2M, /4),

H, (n)= (2M, /n —) for n &3 .

(3)

The last equality is good to better than 0.1% for n =3,
and it is exact in the continuum approximation
g„~(1/ao) J dy, which is valid for large n. The long-

range character exhibited by (3}makes it possible for the
weak dipolar interaction to compete with the much
stronger but short-range exchange interaction and to give
rise to domains having walls in which the magnetization
varies slowly on an atomic scale. This slow variation, as
will be verified below, makes it possible to incorporate
the small deviations of the numerical coeificients of H, (1)
and H, (2) from unity into the self-field H and to use the
simple law (3) for all n&0. The self-energy becomes

E„=(g+0.0246)M, ao . (4)

Next, we compare the total energy for the domain and
for the M„~~ and M„~ configurations. Only domains for
which the spin direction is modulated in the x direction
but is independent of position along y will be considered
(straight domains). The spins on a lattice line that is
parallel to the y axis will therefore always be parallel to
one another, and such lines can be considered as elemen-
tary objects which have a self-energy and an energy of
pairwise interaction, both dependent on the direction of
the spins, and in terms of which the total dipolar energy
of a domain configuration can be calculated. Only Bloch
walls, in which the magnetization stays in the yz plane,
will be considered. Calculation has shown that the ener-
gy of interaction between two lines of dipoles is higher in
a Neel-type wall. And finally, the complete calculation
will be done only for the case that the maximum value
Mi of the normal component of magnetization M, (x) is
equal to the saturation value Mo. The case M~=s Mo
with s & 1, which in fact occurs near the threshold of I(.'„
will be discussed at the end of the section. It ca,n easily
be verified that for such homogeneously magnetized lines
of spins, each of the three components of the local mag-
netizations M„, M», and M, produces only dipolar fields
that are, respectively, along the x, y, and z directions.

For the normal component of magnetization M, the
following is true. (a} The field at a lattice site, due to all
the other spins on the same line, is

00

H„=—2M, g, = —2gM, ,
n=1

where g = 1.202 057. (b) The field H, (n) that all the spins
on a line parallel to the y axis and having a magnetization
M, exert at a site that is a distance nao from that line is
found by direct summation. It is given by

E,= —(2g —0. 14586)M ao . (6)

The coefficient in (6) is precisely —c (2n/3), which is the
coefficient in the energy Ed~~ of the M„~~ configurat:ion. To
compare the energy of the domain configuration and
those of the uniform spin configurations, the same zero of
energy must be used in both, i.e., Ez~~ must be subtracted
from the energy. From M =MD —M, the quantity M
can be eliminated and the self-energy of the domain
configuration per unit area becomes

E +++
2=qM, ao, (7)

where q =(3g —0. 12126). The reason small contribu-
tions to q are kept here is that it will be found below that
energy difFerences between doinain and uniform spin
configurations are very small, so that neglect of sroall
quantities here could lead to serious error.

The interaction energy between two lines of spins at
x =nao and x' =n 'ao is

M, (n)M, (n')
Ed;(n, n') =

(n n'}— (8)

It may be possible to do an exact calculation based on (7)
and (8}, but instead we will assuine a simple domain
shape depending on two parameters a and 5 which are
essentially the width of the domain and the ratio of the
wall thickness to the domain width, and we will deter-
mine the values of a and 5 by minimizing the total ener-
gy. The assumed profile of the normal component of
magnetization is shown in Fig. 1: M, (x) is constant and
equal to Mi (Mi ——Mo here} in regions of width d, and it
varies according to cos(nx/w) in regions of width w
where the magnetization turns in the yz plane at the rate
m/w. The half periodicity of the structure is a =d +w
and 5 is defined as 5=w/a. For brevity, a will be re-
ferred to as the domain width, and w =a5 will be called
the domain-wall thickness, although the customary
definition of the thickness is in terms of the slope
dM, /dx at the point where M, =0, and thus corresponds
to (2/n )w The dipolar ene. rgy per unit area can now be
calculated.

The line self-energy (7) is given by the average value of

For the component of magnetization M the following
is true. (a} The field at a lattice site, due to all the other
spins on the same line, is

1H, =4M g =4gM
&

n

(b) The field Hl(n) at a site due to all the spins on a line

parallel to the y axis at a distance nao is

Hii(1) = —0. 1451M

2)= —0.000 76M

and for n ) 3, K1(n) is essentially zero which is the exact
result of the continuum approximation. Again, the small
values of H~~(1) and Hl(2) can be lumped with the self-
energy which, with the help of (4},becomes
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Ia I

and keeping only sums first order in (ap/a), one finally
obtains

( Ed& ) =Mpap g b kap g mb
m m

(14)

FIG. 1. Assumed shape of the domains in an atomic mono-
layei. M, (x) varies as cos(n.x/w) in the wall regions. The
values of a and of 5= (w/a) are determined variationally.

M(x)=Mo g b cos(mnx/a),
m =1,3,

where

(10)

=( —1)' "
2 ~

cos —m5
1 m

ml m '25~ 2

M, (x)2 over the profile of Fig. 1 and this is simply
M2o(1 —5)+—,'Mpi5: The first term is Mp weighted by the
fraction (1—5) of the layer area over which M, (x) is con-
stant, and the second is the average of [Mp cos(n.x/w)]
weighted by the fraction 5 of the area over which the
magnetization varies. Thus

(Ed, ) =q(l —5/2}Moao .

To calculate the average of Ed; the magnetization of Fig.
1 is expanded into a cosine Fourier series with only odd
harmonics:

where k =m. /a. The first sum in (14) can be written down
immediately since, from (10), it is proportional to the
average value (M, (x) }.Thus

m =1,3,

2(M, (x))

0
(15}

The second sum cannot be evaluated in closed form. It
will be denoted by

G(5)=
m =1,3,

mb (5)

This reduces correctly to the energy (2) in the limit 5—+0,
k ~0.

We consider next the anisotropy and exchange ener-
gies. The former is written as E, = ——,'E, cos t9, where 8
is the angle between the magnetization and the normal to
the layer plane. Note that K, differs in magnitude (by a
factor of —,

'
) and in sign from the same quantity defined in

Ref. 5. Only positive K, may lead to domains. The aver-
aged uniaxial anisotropy for the domains of Fig. 1 is

The sum of (9) and (14) gives the total dipolar energy.
Note that the sum q +n/3 is .exactly equal to 2mc, which
is the coefficient in the dipolar energy of the M„~
configuration, Eq. (2}. The result is

(Ed ) =c2mMoap(1 —5/2) —(n /2)Moap(kap)G (5) .

The desired average is «. ) = ——,IC, [1—(5/2}] . (18)

M, (n }M,(n')
&Ea )=—,g X ', , ao

n n'~ll
(12)

is expressed as a sum of cosines of the sum and difference
of the arguments and new coordinates X=(x+x')/2
and u =(x —x') are defined. The lower limit on u that
corresponds to n'=n+1 is u;„=aao, where a=6/n, as
follows from the fact that g„(l/n }=M/6 The in-.
tegration over X gives zero unless m =m' and one ob-
tains

(Ed; ) =Mpap
m=1, 3, . . .

b2 cos(mmu/a)
dm dQ

aaO Q
(13)

This is actually valid for any domain shape if the ap-
propriate coefficients b are used. Integrating by parts

where 2lap is the dimension of the monolayer in the x
direction, the sums over n and n' range from —1 to I and
the limit i~op is taken. Anticipating that a and w will
turn out to be large compared to ao, the continuum ap-
proximation is made and the sums over n and n' are re-
placed by integrals over x =nap and x'=n'ap. The
product

cos(max/a) cos(m'mx'/a)

The local exchange energy per unit area, relative to the

M„ll spin con5guration is

1 A d8
2 ao dxao

where A =(2JS /ap) and 2JS is the interaction energy
between nearest neighbors. Substituting (d8/dx)
=(n/w)=(k/5) over the fractional area 5 occupied by
the domain wall, and (d 8/dx) =0 over the part where the
magnetization is constant, the average of E,„becomes

(E,„)=
25 ao

(19)

The total energy E, is the sum of (17), (18), and (19) and
is to be minimized with respect to k =(n/a) and to 5. .
Let Eo =2mMoap We define t.he dimensionless quantities

3/ao K, ER=, f=, e, =
E, ' 2', ' ' E,

Typically R is quite large (R =25 is close to the value for
gadolinium; for iron, R is of the order of 140) while f
may range from zero to the order of unity. The expres-
sion for e, is
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e, (5,a)=c(1 f—) 1 ————,'(kao)G(5)+ (kao)

(20)

where G (5) is given in (16).
The minimization conditions are

8e,

B(kao) ' 5
= ——,'G(5}+—(kao) =0, (21)c, dG

55
————(1—f)—

4 (kao)
R

25
(kao) =0 .

(22)

Equation (21}gives the domain width a =(n./k) in terms
of 6,

a 4mR

ao 5G(5)
(23)

and substitution of (23) into (22) gives the relation be-
tween 5 and the physical parameters f and R:

G (5)[G(5)+25(dG/d5)]
16cR

This equation cannot be solved for 5 in terms off but ex-
amination of G (5) reveals the properties of this function
which are suScient to characterize the domains. (a)
From (16) and (11) it can easily be seen that G(1)=1 and
(dG/d5)s

&

———1. (b) Numerical evaluation of (16)
shows that as 5 decreases from 1 in the range (1-0), the
function G(5) increases monotonically while (dG/d5)
remains negative and its absolute value increases mono-
tonically and faster than that of G (5). The product
5G(5) decreases uniformly in the same range. (c) The
limiting behavior of G(5) as 5 approaches zero is found
by replacing the summation of the series by an integra-
tion (continuum approximation with m 5~x). The result
1s

with the energy of the M„~~ configuration. As f increases
from f;„the domain configuration becomes the energet-
ically stable one. Note that at 5=1 the shape of the
domain is purely cosine-like, i.e., the fat part of Fig. 1 has
shrunk to zero and, loosely speaking, the whole domain
structure consists of domain walls. This curious behavior
occurs because the strong exchange energy, which de-
pends quadraticaHy on the wave vector k, competes only
with the weak dipolar energy. The exchange energy of
each Fourier component of the magnetization,
b„cos(nkx ), is proportional to n, and hence the
minimum occurs if only the component n =1 is present.

From (23) it follows that as 5 decreases the value of a
increases and the value of f as given by (24) increases.
Physically, this relation between f and a expresses the
fact that an increase in the uniaxial anisotropy tends to
increase the mean square value (M, (x) ) in order to
minimize the total energy, and thus leads to a wider flat
region in Fig. 1. At the same time the increased anisotro-

py makes the wall region narrower and thus decreases the
width w =a5. The quantities a and m, expressed in units
of the lattice constant, have been calculated numerically.
They are shown in Fig. 2 for a range of values off &f;„
and for the corresponding values of 5. It is seen that a
change in 5 by two orders of magnitude corresponds to a
change in f of only 4%. This extreme sensitivity of the
domain pattern to changes in f occurs because in two-
dimensional (2D) systems (as opposed to 3D), domain for-
mation can achieve only a very small reduction in the to-
tal energy on the scale of Eo. When the anisotropy ratio
f is even a little larger than 1, the fiat region of Fig. 1 is
so large on an atomic scale that in spite of its long-range
character, the deviation from Eo of the dipolar energy is
only minimal. Hence minor changes in f produce very
large changes in domain width and therefore in 5. Table
I gives the values of G(5), dG/d5, and f as 5 ranges over
four decades.

lim G(5) = ln —+0.075 67,
8 1 dG 8 1

s-0 ~' 5 d 5
(25)

Equation (25) is accurate to 2 X 10 for 5 (0.1.
These properties of G(5} and dG/d5 determine the

shapes and the energies of domains in monolayers.
(a) From (24) and the properties of G(5) discussed

above, it follows that the minimum value f =f;„ for
which domains will occur corresponds to 5= 1:

F04

1.0
t

0.088
I
I

N
0

0.053
I
I

f;„=1 —( 1/16cR ) . (26)

As 5 decreases from 1, the right-hand side (rhs) of (24) in-
creases uniformly. Note that the deviation of f;„from
unity is very small since the ratio R of exchange to dipo-
lar energy is large. The value R =25 will henceforth be
assumed for numerical purposes, so that f;„=0.9977.
From (23), the corresponding value of the domain width
in terms of the lattice constant is (a/ao)=4mR =10 n.
The total energy of the M„z configuration at f=f;„is
e, (ul)=c(1 —f)=(1/16R) while the total energy (20) of
the domain configuration is zero, and thus degenerate

10
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I I
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ANISOTROPY RATIO, f =KI /2cEp

FIG. 2. Values of the domain width a and of the wall thick-
ness m, expressed in units of the lattice constant, as functions of
the uniaxial anisotropy in atomic monolayers.
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TABLE I. Range of G(5), dG/d5, and f as 5 varies from 1

to 10 . The value of R used in the expression off is R =25.

1.0
10-'
10
10
10-4

G(5)

1.0
2.941 45
4.808 48
6.674 89
8.541 30

dG
d5

—1.0
—8.11823

—81.057 4
—810.574

—8105.74

0.997 6
1.009 0
1.035 5

1.078 2
1.13705

It is of interest to find the value of f for which the
domain size is of macroscopic dimensions, e.g.,
(a/ap)=10 . Equation (23) gives 5-2X10 and corre-
spondingly f,„—1.4. In practice, domains will there-
fore be observable only in the range f;„&f &f,„while
in principle, as will be seen below, the domain
configuration is lowest in energy for arbitrarily large f

(b) The binding energy et of the domain structure is
defined as the difference between the energy of the lowest
uniform spin configuration and that of the domain struc-
ture. Hence

5 G(5)dG/d5eb=—
168

(27)

Since dG/d5 is negative for all 5, eb is positive for all

f & 1. This proves that the domain configura-
tion has lower energy than the uniformly magnetized
configuration for all Ualues K, & E„;„.Figure 3 shows a
plot of eb versus f in units of (10 )2nMoap Because eb.

is so small, the saturation field, even at eb,„ is very
small, of the order (eb /Mpap) 10 Mp about 20
Oe.

The limiting expression for the wall width wi as f~~
is obtained from (24) and (23):

1/2
4nRao 2A /ao

(16cRf)'
(28)

Multiplying by (2/n ) to conform to the usual definition
of the width, (2/n )w, is a factor (2v'2/n. )-0.9 smaller
than the exact value of the width at the center of the
wall. For the value f=f,„ that corresponds to the
macroscopic dimension a =10 ao, w equals 20ao while
the value of (28) for the same f is w&

——12.7ao. Thus, in
practice, the limiting expression for w is not attained in
monolayers, which is not surprising since f „—1.4 is
not a large number.

In the preceding calculation the value of M~ in Fig. 1

has been taken equal to the saturation value Mo. More

eb ———e, (5,a) for f &1,

eb =c(1—f)—e, (5,a) for f & 1 .

For f;„&f & 1, eb is positive and reaches its maximum
value at f= 1, corresponding to 5=0.4663 and
G(5)=1.6799 independently of the value of R. The
binding energy is eb,„——(1/32R)5G(5) =16.45X10
for R =25. For f & 1, the expression for eb is obtained
from (20), (23), and (24):

a
UJ

o "6

O

8—
K

R
Cl 4—

K

0.995 1.000
I I

1.010 1.020
ANISOTROPY RATIO, f =KI /2c Eo

I

0 040

generally M~ may be smaller, M~=sMO, where s &1.
The dipolar, anisotropy, and exchange energies are
modified as follows. (a) Both (7) and (8) are proportional
to M„hence Ez acquires a factor s . (b) The anisotropy
energy E, also acquires a factor s2 since it is proportional
to cos28. (c) E,„ is a little more complicated: In the re-
gion of the wall, 8 depends on distance as

cos8=s cos(mx/w),

so that

'2
s (m/w) sin (nx/w)

1 —s cos (nx/w)
(29)

The exchange energy is obtained by averaging (29) over
the width w and multiplying by 5. The result is

(E,„)= (ka, )'[I —(1—s')'~'] .
25 ao

(30)

Since below the anisotropy threshold the magnetization
lies in the layer plane, it is to be expected that at thresh-
old the value of s will start from zero so as to allow a gra-
dual development of the normal component of the mag-
netization. For s ~0, the bracket in (30) reduces to s /2.
Since Ed and E, are reduced by s, the overall effect of a
small s is to make the exchange appear a factor of 2
smaller, so that R is replaced by R /2. The value of f;„
as s ~0 is, correspondingly,

f;„=1—(1/8cR) . (31)

Since this value is smaller than (26) it is the true thresh-
old for domain formation. As f increases from this
value, s is expected to increase and to approach unity for
"large" f. A variational calculation similar to the
preceding one but depending also on s could be made to
obtain more complete results.

FIG. 3. Domain binding energy per unit area as a function of
the uniaxial anisotropy.
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III. DOMAINS IN THIN FILMS

Ed ——Mpa2

m=1, 3, . . .

—b (5) 1 —exp —2m m—1 2 t
m a

(32)

There has been a considerable amount of work done on
this subject; since it is likely that the current interest in
thin films of only a few atomic planes will lead to studies
of their dynamic as well as static properties, a short list of
representative references ' may be useful. The purpose
of this section is twofold: (1) To verify that the treatment
of domain formation in a monolayer can be obtained as
the limit of a corresponding treatment in thin films, and
(2) to generalize in a simple way the previous calculation
to the case of films a few monolayers thick, but of thick-
ness still small compared to the characteristic length. A
variational treatment of the domain structure, different
from ours, has previously been given by Kaczer et al.
We found it diScult to compare our results with theirs,
partly because they consider mostly thicker films and
specific values of the anisotropy while we emphasize the
dependence of the domain structure on the magnitude of
the anisotropy and on the number (small) of atomic lay-
ers.

To make a comparison with Sec. II possible, we assume
that the anisotropy energy per atom, Lap, is the same in
the film as it is in the monolayer so that K, =Lap. This is
certainly not true in physical systems, and it is expected
that in fact E, &&Lap. As a result, in actual systems the
magnetization will not be uniform in the z direction and
our simple model of a z-independent M, will fail in the
limit of small t. It is with these provisions that our treat-
ment of the small t limit must be understood.

The dipolar energy Ed per unit area of the film is calcu-
lated from the magnetostatic potential f(x,z) of the mo-
ment distribution. f(x,z) is periodic with period 2a in
the x direction and it is odd with respect to z since its
sources are +4nM, (x) at z =+t As in Sec. . II the calcu-
lation is done only for Mj =Mp with the understanding
that the value of M~ will develop gradually from zero as
the anisotropy increases, and that at threshold this can be
taken into account by letting A ~A /2. Following stan-
dard methods' the dipolar energy can be shown to be
given by

For (t/a) «1 the exponential in (32) is expanded to
second order in t/a. The first-order term brings down a
factor m which converts the sum over m into g b, or
(2—5}. The second-order term likewise brings a factor
m, which converts the corresponding sum into G(5).
Defining f =(K/4nMO) and R =(A/aoEO) as before,
we obtain

e, = 1 —— ——,'G (5)kao
5 2t , 2t
2 ap a,

1 ——f + (kao}z
2 a, 25 ' a,

(35}

5 map
e, =(1 f) 1 ——n ———,'G(5) n

I

7Mp

25

'2

(36)

The variational equation (Be, /Ba) =0 gives

a 1 4mR

ao n 5G(5)
(37)

Thus at fixed 5 the half-periodicity a is inversely propor-
tional to the number of atomic layers; This is a conse-
quence of the fact that the long-range part (and only that
part) of the dipolar field at a lattice site in an n-layer film
is proportional to n.

The value of f;„ is found by substituting (37) in the
second variational equation, (Be, /B5)=0. The result for

1s

Note the similarity of (35) to (20}: In the monolayer limit
2t =ao, Eq. (35} reduces exactly to the monolayer result
(20), except that the factor c =1.0782 which reflected the
discreteness of the square lattice is absent. This was to be
expected since we are assuming here a continuous film.
Equation (35} shows that if one is willing to neglect the
small difference between the factor c and unity, the
monolayer case can be obtained as the limit of a thin-film
calculation.

Next we examine the dependence of the domain size a
and of the anisotropy threshold f;„on n, the number of
atomic layers in the film. Substituting (2t/ao)=n and
k = (m /a) in (35) we find

where b (5) is given in (ll). In analogy to (18) and (19)
the anisotropy and exchange energies per unit area are
given by

f =1+ G(5) G(5)+25
16R

(38)

E, = ——,'K[1—(5/2)]2t,

a2

(33)

(34)

which is the same as Eq. (24) except for the factor n . By
the same argument as in Sec. II, the minimum value f;„
occurs for 5=1, and at threshold the magnetization
M, (x) varies as cos(mx/z). f;„is given by

The total energy E, is the sum of Ed, E„and E„and it
depends, for given t, on the same parameters a and 5 as in
Sec. II. The monolayer limit corresponds to the value
2t =ap. To determine a and 5 we define a dimensionless
energy e, =(E, /Eo}, where Eo 2mMoao, and solve ——the
two variational equations (Be, /Ba) =0 and (Be, /B5) =0.

f;„=1 (n /16R—) . (39)

The factor n in (39) can be understood as the combined
effects of (a) the long-range dipolar field at a site being
proportional to n for a fixed domain width a and (b) the
width a being inversely proportional to n as it follows
from (37). Equation (39) states that at threshold the an-
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isotropy constant is the sum of the demagnetizing energy
2trMo and the exchange energy [last term of (36)], plus
the third term of (36) which is the reduction in dipolar
energy due to domain formation.

IV. SUMMARY

A variational treatment of domain formation in mono-
layers and in films of a few monolayers has been given. It
shows that when the surface anisotropy E, is larger than
a threshold value which, for films up to two monolayers
thick, depends only on the ratio of exchange to dipolar
energy, a domain structure with magnetization normal to
the layer plane is energetically favored. (The easy direc-
tion given by K, must of course be normal to the layer
plane. ) Near the threshold of E, the width of the
domains is very sensitive to the value of E, and increases
rapidly with K, . If in the more-than-two-layer case one
assumes an anisotropy energy per atom that is the same
throughout the film, then the result for an n-layer film
scales simply with n to the monolayer case [Eqs. (37}and
(38)]. Much remains to be done in this field, such as the
treatment of a physical model more realistic than that of
point dipoles, an allowance for a variable anisotropy en-

ergy that depends on position of the atomic layer in the

film, and a treatment of the gradual increase of M~ above
threshold.

Note added. After this calculation was completed it
was suggested by J. Villain (private communication) that
checker-board domains may lead to still lower energies.
Dr. J. Villain pointed out to one of us (Y.Y.) that for very
large f one should obtain the Ising limit. Doing a calcu-
lation on a discrete lattice he estimated that in the Ising
limit (infinite K, ) the width of the domain strips in units
of the lattice constant would be of the order exp(4trR).
In the large K, limit our continuum model breaks down
when the wall thickness becomes of the order of the lat-
tice constant ao. From Eqs. (23) and (24} this happens
when f =rr R. The corresponding domain width is
(a/ao)=exp(~ R/2), in agreement with Villain's result
to within a coefficient. Our continuum model thus breaks
down when f ) rr R, which is of the order of 10 .
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