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Constant-stress molecular dynamics: The phase diagram of silver iodide
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The method of constant-stress molecular dynamics using the Parrinello-Rahman Lagrangian is

described, particularly as applied to Coulomb systems. The method is used to simulate the phase
behavior of silver iodide. The P, a, rocksalt, and liquid phases are reproduced and the boundaries
are similar to those observed for real AgI. Evidence is found for the order-disorder transition in the
a phase proposed by Perrott and Fletcher. This is characterized by a heat-capacity anomaly and a
rise in the cation diffusion coefficient. The supercooled a phase and the equilibrium rocksalt phase
both have diffuse fast-ion transitions and the latter cuts the rocksalt-a-phase boundary, causing it
to cusp in to an apparent triple point with the a-phase order-disorder transition.

I. INTRODUCTION

The phase behavior of cyrstalline silver iodide is rich in
variety. In the single material one finds under ambient
conditions, a mixed p+ y phase (wurzite and zinc
blende}, while at elevated pressure a rocksalt phase be-
comes stable and at elevated temperature there occurs
the a phase (bcc) which is a fast-ion conductor, i.e., the
anion sublattice remains localized while the cation sublat-
tice is diffusive. Below room temperature the p+y and
rocksalt phases become separated by an intermediate
phase to which transitions from either side are very slug-
gish. The phase diagram, as determined by Mellander,
Bowling, and Baranowski, ' and Akella, Vaidya, and Ken-
nedy, is shown in Fig. 1. In the past ten years much at-
tention has been focused on the a phase as an archetypi-
cal fast-ion conductor of the kind where additional sites
are available to the highly mobile species, in this case the
cations. There are no less than six equivalent tetrahedral
sites available to each cation. Recently ' it has been
found that the rocksalt phase has a diffuse transition to
fast-ion behavior, the location of which is shown by the
dashed line in the figure. Here, there are no additional
sites so that site hopping is only achieved either by site
sharing or by correlated hopping in closed loops as in
fiuorites. One therefore finds, in a single system, arche-
types for the two modes of fast-ion conduction.

Complex as this phase diagram may be, two additional
features have been proposed that may further enrich the
behavior. Perrott and Fletcher have proposed that an
order-disorder transition takes place in the a phase
driven by distribution of the cations over the equivalent
tetrahedral sites as well as possibly trigonal and then oc-
tahedral sites. In strictly stoichiometric samples they ob-
served a A,-like heat capacity at 430 C, indicating a tran-
sition that ran away to first order. Small departures from
stoichiometry, however, were sufficient to suppress the
effect. Subsequent investigations have proved incon-
clusive and even contradictory. Jost and Allen and La-
zarus found no anomaly in the ionic conductivity of a-
AgI in the vicinity of 430 C, while Jansson and Sjoblom
found a A.-like behavior in the thermal expansion there,

though rather smaller than one would expect from the
heat-capacity data. They also subsequently found
changes in rheological properties there, ' as did Mariotto
et al. " for the Raman depolarization ratio. More re-
cently, Mellander found no heat-capacity anomaly using
differential scanning calorimetry even if the AgI were
precipitated in the same manner as used by Perrott and
Fletcher. The order-disorder transition therefore
remains to be confirmed. Lattice-gas calculations on the
tetrahedral sites under a mean-field approximation by
Szabo' indicate that the disordering is inevitable provid-
ed melting does not occur first, and moreover two further
intermediate states are possible.

The second possible extension of the phase diagram
which interests us here concerns the path taken by the
u-phase-rocksalt boundary as it completes its course to
the crystal-liquid triple point. Talion and Buckley de-
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FIG. 1. The phase diagram of AgI as determined by Mel-
lander et al. (Ref. 1) and Akella et al. (Ref. 2). The dashed line
indicates the diffuse fast-ion transition in the rocksalt phase and
the solid data point indicates the order-disorder transition in-

ferred by Perrott and Fletcher {Ref.6).
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duced from transition entropy data that this boundary
must curve more steeply upward as a consequence of the
fast-ion transition in the rocksalt phase, the slope possi-
bly even changing sign. To enable the boundary to then
swing out again towards the known triple point, the a
phase must exhibit an anomalous rise in entropy which
they proposed derived from the order-disorder transition.
Indeed, because the location of phase boundaries is deter-
mined by a rather fine balance between state free ener-
gies, the shape of this boundary must be a very sensitive
test for the existence of the a-phase order-disorder transi-
tion.

In the present work we report the results of a molecu-
lar dynamics (MD) siinulation of AgI in which the entire
phase diagram is mapped and particularly the shape of
the rocksalt —u-phase boundary. Exploratory work on
the P-a transition at zero pressure has already been
presented by Parrinello, Rahman, and Vashishta' (PRV).
Our goal has not been to develop a set of potentials which
closely reproduce the phase behavior of AgI. Rather, we
have adopted the simple rigid-ion potentials of PRV to
explore the above ideas in the knowledge that they at
least lead to stable a and P phases. We find a stable rock-
salt phase possessing a diffuse fast-ion transition which
indeed distorts the a-phase —rocksalt boundary. More-
over, a subsequent fall in slope of this boundary prior to
the crystal-liquid triple point suggests that the a phase of
our model system does undergo a disordering transition.
This is confirmed by a hump in the heat capacity and
enhanced fluctuations in the a phase at zero external
pressure. A brief account of this work has already been
presented. '

One cannot effectively study these transitions with con-
ventional microcanonical MD computations as the con-
stant volume constraint precludes the attendant changes
in box size and shape. The shear stresses arising from
isochoric transitions would rise to prohibitive levels. The
first step towards dealing with this kind of problem was
made by Andersen' who performed isobaric calculations
by allowing the volume to vary as an additional dynami-
cal variable. Parrinello and Rahman' extended this by
allowing the nine dynamical variables describing both
size and shape of the MD cell to fluctuate so as to main-
tain constant stress. They adopted a generalized set of
3N+9 model Langrangian equations of motion which al-
low a strict conservation of a generalized enthalpy. Con-
trary, however, to conventional MD where volume is
strictly conserved, these are constant-stress calculations
only in the sense that the stress fluctuates about some
prescribed value. It was this method which was em-
ployed by PRV to demonstrate the a-P transition in AgI.
However, as the details of the- technique, particularly as
applied to Coulomb systems, were sketchy, we first de-
vote some space to these. Following that, we report the
results obtained by applying this technique to the PRV
model —AgI system.

in an arbitrary parallelepiped MD cell. The edges of the
box are the vectors 5& 12 and b3 which need be neither

equal in magnitude nor mutually orthogonal. The box is

conveniently described as the matrix 8 = [b„bz,b&) and

the box volume is the determinant of this matrix
Q= detB. The positions of the particles within the cen-
tral MD box are defined by a set of (soft) internal relative
vectors s;, with ——,

' & sI & si2 si3 & 2, such that the absolute
(hard) position vectors r; are given by the transformation

r,, =(s; —s, )'M(s, —sj ),
where the prime denotes the transpose of a vector or ma-
trix and M =B'B is the metric of the transformation.

The Lagrangian introduced by Parrinello and Rah-
man' is as follows:

X=—,
' g m;s';Ms; —g g P(r; )+—,'pTr(B'8) —pQ .

i i j (&i)

(3)

Here, the overdot denotes time derivatives, p is the exter-
nal pressure, and p, which has units of mass, arises from
the kinetic term associated with the fluctuation in B. The
value of p determines the time scale, only, of these fluc-
tuations and not the structure of the particles enclosed.
Its arbitrariness therefore allows one to match the time
scales of box and particle fluctuations. It is important to
stress that the momentum of the particle is defined as
m;Bs; and not m;(Bs;+Bs;).

This Lagrangian is to be understood in a formal sense
as being a convenient means of allowing the particles and
box walls to dynamically interact. As such, since there is
no symmetry constraint on 8, there are 3N+9 degrees of
freedom in the system and these evolve according to the
following Lagrangian equations of motion:

's;=m; ' g X(r; )(s; —sz) —M 'Ms;,. i,j =1, . . . , N
j (/i)

and

8 =p '(II —pI)o .

(4)

Here, X(r)= —r 'dgldr; I is the identity matrix; the
matrix o = (b2Xbi, b&Xbi, b, Xbz} describes the faces of
the MD cell; and H, the internal stress tensor, is the
dyadic generalization of the virial pressure,

QII= pm;v; v;+ g g X(r, )(r,. —r, ) (r; —r,. ) . (5)
i i j (&i)

Following Parrinello, ' we prescribe p by equating the
transit time of a longitudinal wave with the period of iso-
tropic oscillation of the box with the result

r;=Bs; .

Clearly the relative separation, r," of particles i and j is
obtained from

II. EQUATIONS p=(3/4n ) pm; . (6)
A. Parrinello-Rahman Lagrangian

Consider an assembly of N particles [with masses m, ,
i = I, . . . , N, and pair interaction potential P(r)] moving

As observed by Parrinello, ' the Lagrangian X conserves
a generalized enthalpy & given by
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=Et, +E~+pQ+ —,'p TrtB'B I

=H+,'p.T—rI
B'BI,

(7)

which with the exception of the last term coincides with
the usual enthalpy, 0 of the assembly. EI, and E are the
kinetic and potential energies of the particles. The last
term in % is the box kinetic energy which at equilibrium
is —', k~ T, where k& is Boltzmann's constant and T is the
absolute temperature. In contrast, EI, ———,'Nkz T so to or-
der (3/N) the system is an isenthalpic, isobaric ensemble.

B. Verlet algorithm

In the common Verlet' algorithm for stepwise integra-
tion of the equations of motion the current unbalanced
force on a particle is determined by the current positions
only. From this force, new positions at a discrete time
step later are calculated and the current velocity is given
by the displacement from the old to the new position, ig-
noring the current position. Now with a fluctuating box,
the current forces are determined by current positions
and velocities as shown by Eq. (4). The simple Verlet pro-
cess must therefore be rearranged to obtain closure of the
recursion scheme in the form

II+ ,'btM —'M]s;(t+bt)=2s;(t)—II —,'btM —'MIs;(t ht—)+At m;
' g X(r; )[s;(t)—s (t)],

J' (+ij

S, „+,—S, „+s,(t+bt) s, (t) . — (9)

The cancellation of the U's on the right-hand side yields
the soft piecewise linear path S; „ for each original parti-
cle diverging throughout the quasi-infinite system,
whereas the s, gives the paths of each successive image
particle after it enters, and only while it remains in, the
central MD cell. If the box size and shape is allowed to
evolve, one must be careful to use the same prescription
and then transform to the absolute position R; „
=B(t)S;„rather than following the temptation to con-
struct directly,

R, „+,——R, „+B(t+At)s,(t+At) —B(t)s,(t), (10)

which introduces an arbitrary deviation each time a
boundary is traversed.

where ht is the discrete time step. Apart from the factors
in curly brackets this expression is identical to the Verlet
algorithm. In general, these factors are not small pertur-
bations to the identity matrix so the matrix factor on the
left-hand side must be inverted.

Periodic boundaries are incorporated in the usual way
by, for each i, adding or subtracting the value 1 from a
new soft coordinate s, , s;2, or s, 3 should that coordinate
exceed the range [—

—,', + —,']. The same must then be

done for the corresponding current soft coordinate.
Specifically, for each iteration s;(t+bt) is replaced by

s, (t+b, t }—U and s;(t} by s, (t) —U, where U is the in-

tegral component of 2s; ( t +5 t ).
With a fluctuating box, boundary traversal necessitates

great care in the evaluation of mean-square displace-
ments. In conventional MD simulation these are often
calculated by generating the following sequence of parti-
cle positions:

I

tentials but for long-range Coulombic interactions it
necessitates use of the well-known Ewald summation
technique. ' ' Even in the case of short-range potentials,
introduction of fluctuations in the MD cell requires a
recurring redefinition of cutoff lengths while, for the
Coulomb interaction, both computational strategy and
basic equations must be altered.

The Ewald method as applied to conventional MD cal-
culations, is reviewed in detail by Rahman and Vashish-
ta. It may be understood as formally enveloping each
point charge by a spherical charge of opposite sign so
that the local potential falls off sufficiently rapidly with
distance. The total forces and energy from such a system
can be evaluated as a short-range interaction along with
the other short-range potentials and need not concern us
here except to note that this real-space part of the
Coulomb force has a convergence factor exp( artj ). —
The additional energy of the assembly of spherical charge
distributions is evaluated in reciprocal space to be

4„„,=(2m/0) g'
~

s(G)
~

6 exp( —G /4a ),

S(G)= g qj exp(iG rj ), .
J

(12)

and a, the convergence constant, is effectively determined
by the radius of the charge distribution. It is chosen so as
to balance the efficiency of the real and reciprocal space
summations.

The force on a particle, I arising from the reciprocal-
space part of the energy is

where the reciprocal-lattice vectors G span an integral
mesh of reciprocal-lattice vectors excluding, as indicated
by the prime on the summation, G=O. The S(G) are the
structure factors

C. Coulombic systems

The equations in Sec. II A are generally valid whatever
the pair interaction, but in practice concerns of computa-
tional thrift require that the potential be truncated and,
for conventional MD usually at a maximum of —,

' the box
length. This gives no problem with the short-range po-

—BN„,/BrI

XG exp( —G /4a ) . (13)

iG rI —iG r-= —(2'/fl) g' iGqje ' g q, e '+c.c.
G J
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The mesh of reciprocal-space vectors G is a linear in-

tegral combination of the reciprocal-lattice vectors
2mbzXb3/det8, etc. which are orthogonal to the box
edges, viz. ,

G=2m8' 'K, K=(k, l, m), k, l, m =0, 1,2, . . . . (14)

The numerical construction of Eq. (14) is usefully
simplified by this identity and the metric only enters in
evaluating 6,

6 =4~ K'M 'K . (15)

The reciprocal-space contribution to the stress matrix
II„,B@„,/Be, where e is the strain matrix, may be evalu-
ated from Eq. (12) by noting that for G~G —5eG,

5G'=2G'5eG (16)

This orthogonality ensures that the projection of
reciprocal-space vectors on real-space vectors is the same
irrespective of whether the vectors are hard or soft, i.e.,

6 r=K s.

G, = —( 2/R, ) ln A . (20)

Now, to find the maximum value of k, 1, or m in Eq. (18)
which must be spanned in order to obtain all the vectors
G such that 6 (G„we note that this occurs for vectors
parallel to the shortest reciprocal-lattice vector. Thus,
from Eqs. (14) and (20),

But for the factor m. these are the inverses of the
reciprocal-lattice vectors. In anticipation of our require-
ments below we let R,„be the maximum of these nor-
mal halfwidths, corresponding to the rninirnum of the
reciprocal-lattice vectors.

Suppose we wish to evaluate real- and reciprocal-space
contributions to the same accuracy A. The two conver-
gence factors in those contributions then must satisfy

exp( —a R, )= 3 = exp( —6, /4a ) .

The first of these equations determines a while the second
determines the truncation radius, 6, for the sphere of 6
vectors, viz. ,

so that
km, „=—(2/n) in'(Rm, „/R, ) . (21)

Ll„„=(2 /0)g' /S(G)
f

G Ll —2G GG
G

—
—,'G Ga ')

X exp( —G /4a ) . (17)

D. Truncation 1ength

The appropriate real-space cutoff length R, for pair
correlations and interaction potential is the radius of the
largest inscribed sphere in the central MD cell. As the
normal separation between opposite faces is b, .b2Xb3/

( b, xb, ~, etc. ,

R, = —,
' detB[min(

~
b2xb3

~

',
~
b3xb,

~

x (b, xb, (-')j. (18)

The first term arises from BQ/Be and is just the
reciprocal-space part of the Coulomb energy.

The central practical aspect of the Ewald summation is
to balance the convergence of the real-space and
reciprocal-space energy and force sums through ap-
propriate choice of the value of a. For small a the
reciprocal-space summation is rapidly convergent, while
for large a convergence is most rapid with the real-space
sum. By selecting a X (box edge)-5. 6, it is possible to re-
strict the real space sum to the first term only, ' namely
the minimum image interactions for pairs within the cen-
tral MD cell only, thus excluding pairs separated by more
than half the box length. This leaves a manageable nurn-
ber of terms arising from a reasonably small sphere of
soft vectors K=(k, l, m). However, if we are to allow the
box to fluctuate we need to develop some prescription for
reviewing both the value of a and the cutoff radius for
the sphere of vectors K. This also has bearing on the
evaluation of radial-distribution functions and on pres-
sure and energy corrections arising from the finite cutoff.
These features will now be discussed.

In this way a, G„and k,„may be modified as R,
evolves during a simulation and these are, of course,
determined by the current value of R, ~ On the other
hand, pair correlations may only be determined out to
the smallest value of R, encountered during an entire
equilibration otherwise information is lost near the sur-
face of the correlation sphere.

Finally, we must note that since the truncation radius
R, fluctuates and at times exhibits monotonic transient
behavior, corrections to pressure and energy arising from
ions beyond R, will not be constant. For systems
comprising less than 500 ions with dipole or van der
Waals interactions, these corrections are rather
significant and consequently the system will not follow an
isenthalpic trajectory through configuration space unless
truncation corrections are made to the stress tensor given
by Eq. (5). We attempted to do this using the virial ex-
pression for the pressure, fixing the pair-distribution
function g &(r) at the value 1 for all r & R„an approxi-
mation which is best at high temperature where the peaks
in g &(r) are well broadened. These truncation correc-
tions were included in the algorithm for updating the box
matrix; however, the assumption of uniform density
beyond the truncation radius rendered the assembly un-
stable at pressures below about 1 GPa. Instead, we sim-

ply noted the change in enthalpy during what should
have been an isenthalpic transition and corrected mea-
sured enthalpies beyond the transition by subtracting the
observed enthalpy change. The displacement of the tran-
sition point is calculable from this change.

III. MODEL AND METHOD

In studying phase transitions by molecular dynamics,
one ideally requires a large system in order to diminish
the effect of interfacial energies. However, as the inten-
tion was to map an extensive area of the phase diagram,
it was necessary to adopt a compromise of 216 or 256
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ions in the central assembly. The former number was ap-
propriate for commencing calculations in the rocksalt
phase with a cubic box, while the latter was used for
starting in the u phase. This meant that the crystal-
liquid boundary could be mapped along its length using
an approximately cubic box. The smallness of the system
size is a point of concern. This will not greatly aff'ect

equilibrated data points in a single phase state, but is like-

ly to induce hysteresis at transition boundaries due to in-
creased nucleation barriers.

As already noted, the interaction potential adopted is
that due to PRV, namely

(r) =H r +0.36r

P &(r)=H &r
s —0.36r ' —1.1736r

p&&(r) =H&&r as+0. 36r ' —2. 3172r

—6.9371r

(22)

where a refers to silver ions and P to iodine ions and
H & A(o +——o&)n &. Length units are in angstroms
and energy units are given by e /(A) =14.39 eV where e
is the vacuum permittivity. o, ( =0.53 A) and o

& ( =2.2

A) are the ionic radii and n, =11, n & 9, a—n—d n&&
7——

The adequacy of the above interaction has already been
borne out by the results of PRV and has been successfully
applied to compare MD calculations with neutron inelas-
tic scattering. We note further that we found conven-
tional MD calculations along the V=33.25 cm /mol iso-
chore in the rocksalt phase yielded a constant slope
(BP/BT)r =2.7X10 Pa/K. This quantity is identical to
the product aBz where a is the volume coefficient of
thermal expansion and Bz. is the isothermal bulk
modulus. For real AgI the value of this quantity at the
same volume is 2. 8X 10 Pa/K. ~

Various methods may be employed to determine the lo-
cation of phase boundaries. The central problem is that
the nucleation barriers associated with first-order phase
transitions, and the absence of nucleation sites in our
idealized quasi-infinite assembly, make superheating and
supercooling beyond phase boundaries inevitable. One
can perform thermodynamic calculations provided that
reversible thermodynamic paths between the two phases
can be devised. The present technique, however, offers
a more direct and efficient means of locating both boun-
daries and transition parameters, provided that appropri-
ate precautions are taken. Moreover, the kinetics and
mechanism of the transitions may also be studied.
Methods used are as follows.

(i) The Volmer-Weber-Becker-Doring theory of nu-
cleation of phase change has the transition rate propor-
tional to the change in free energy times a Boltzmann fac-
tor (which incorporates the nucleation barrier). The
change in free energy is proportional to the degree of su-

perheating or supercooling whether temperature or pres-
sure is the controlled parameter. Plotting the observed
transition rate as a function of temperature or pressure
allows one to extrapolate back to zero transition rate of
obtain the thermodynamic equilibrium transition point.
This method was used most successfully on the rocksalt-

P—phase boundary where, as the boundary is nearly verti-
cal and hence the enthalpy change is rather small, tem-
perature increments on traversing the boundary are
small.

(ii) These temperature increments on traversing a
boundary may be used to estimate transition parameters.
Two traverses are available: isobaric, where temperature
is incremented at constant pressure, and adiabatic, where
the prescribed pressure only is incremented. We consider
the latter here and the former under (iii).

Consider the adiabatic traverse, illustrated in Fig. 2,
from phase II to phase I across the phase boundary
where the transition nucleates at (p3, T3 ) and proceeds at
constant enthalpy terminating at (p3, T4). An adiabat is

given by

(Bp/dT), —= C /aVT,

so that for infinitesimal increments

T, —T, =(a VT/C~ )»(p, —p, )

and

(23)

(24)

T4 —To (a VT/C—
p ),(p3 —po ), (25)

(Ti —To)/(pi po)=dT /d—p

one obtains

(27)

bS, (C /aV),
T3 —T4 ——To ), +(T4 —To) —1

C II (C& /a V)»
(28)

In the ideal case where (p3, T4) =—(po, To ), this reduces to

FIG. 2. Solid curve: adiabatic traverse of a phase boundary
from phase II to phase I. Nucleation of the final phase com-
mences at (p3, T3 ) and transformation proceeds at constant
pressure and is complete at (p3, T4). The dashed alternative
path is isobaric at p&, isothermal at To, the transformation
occurs at the phase boundary at (po, To ) and finally, is adiabatic
to (p3, T4).

where the subscript I or II refers to one or other of the
two phases. The entropy change along the alternative
path via (p„To) and (po To) being an isobar, followed by
an isoterm, an equilibrium phase transition followed by
an adiabat, is

( Cr /T )rt( To TI ) —(a V)rr(po —p i )+b S, =0 . (26)

Fina11y, as
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32

FIG. 3. Isobaric transition from phases I to II. At large su-

perheating the system transforms at constant enthalpy to T& ly-

ing above the equilibrium transition point T, . At lower su-

perheating the transition rate diminishes and the anal tempera-
ture after transition falls but no lower than T, .

Tz —To ——TOES, /C" . (29)

Thus, provided one knows the heat capacity of the ini-
tial phase, temperature increments following adiabatic
traverses of a phase boundary give a direct measure of
the transition entropy. Moreover, in the absence of
heat-capacity data, C may be estimated from an adiabat-
ic path in the initial phase. In principle, the equilibrium
transition temperature, To may be located by method (i)
above but in practice the nucleation barrier may be
sufficiently large that the minimal adiabatic transition
Tz —+To cannot be achieved. Even so, Eq. (28) may be
used with sufficient accuracy to estimate AS, by neglect-
ing the second term on the right-hand side, which is a
sma11 correction.

(iii) The final and most straightforward method used to
locate transition parameters was under isobaric condi-
tions and is illustrated in Fig. 3. Phase I is superheated
and transforms at constant enthalpy to phase II with final
temperature T, . The process is repeated with a smaller
degree of superheating and as a consequence the nu-
cleation and transformation time increases and the final
temperatures T2, T3, etc. reduce until the limiting value

T, is reached. The fact that all of the transitions investi-
gated proceeded with relatively little superheating, ap-
parently well away from any spinodal instability, is prob-
ably due to the smallness of the system and the fact that
not just local density, but total density was fluctuating.

phase at the diffuse transition provided a large thermo-
dynamic potential driving the system to the P phase.
Diffusion coefficients for the mobile silver ion were mea-
sured from the linear part of diverging mean-square dis-
placements over periods of the order of 5 to 10 ps. These
are plotted in Arrhenius form in Fig. 4 for pressures of 0,
1, and 2 GPa. The data can be consistently separated
into two linear regions at low and high temperatures with
effective activation enthalpies h of 0.087+0.007 eV and
0.22+0.02 eV, respectively. The low-temperature value
is in excellent agreement with the value for real AgI,
h =0.098 eV which is found to be independent of pres-
sure. The fast-ion transitions to normal ionic behavior
are indicated by the plunging arrows.

The fast-ion transition in the rocksalt phase was readi-
ly observable firstly as a Schottky hump in thermal ex-
pansion and heat capacity and more conclusively by the
diffusion coefficient for the silver ions rising up above
zero. This is shown in Fig. 5 for pressures of 2, 3, and 4
GPa. Radial-distribution functions (RDF s) determined
for the system quenched from this region confirmed that
the structure was still that of rocksalt. There was no in-
dication that the quench resulted in a change in struc-
ture, and RDF's obtained in the fast-ion region showed
an occupancy of 6 in the nearest unlike-neighbor shell
and 12 in the nearest like-neighbor shell. There was,
therefore, no suggestion of transition to the bcc structure
for which these numbers are, respectively, 4 and 14. The
complete phase diagram as determined in this work for
the simulated AgI is given in Fig. 6 and the diffuse fast-
ion transition line is shown by the dashed line in the
rocksalt phase. This line is the locus of plateaux in tern-
perature during constant heating rate runs.

Transition from a cube of rocksalt AgI to the ideal
shape for 216 ions of /3-Agl requires an orthorhombic dis-
tortion of &3 along one axis, and 2&2/3 along another.
Figure 7 shows Bzz/B„and B33/B„ for the assembly
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38 35
Across the entire equilibrium extent of the a phase we

found our system to be fast-ion conducting. On super-
cooling beyond the P boundary, however, at (0 GPa, 300
K) or (1 GPa, 420 K) we found a diffuse fast-ion transi-
tion to a normal a phase where the silver ions remain lo-
calized in the tetrahedral positions. Unfortunately, it was
not possible to follow the a phase all the way to the nor-
mal state as the substantial reduction in entropy of that

10/T tK j

FIG. 4. Silver-ion diffusion coefficients for a-AgI determined
from mean-square displacements. Triangles: pressure = 0
GPa. Circles: 1 GPa. Squares: 2 GPa. The downward arrows
indicate diffuse fast-ion transitions occurring at (0 GPa, 300 K)
and {1GPa, 420 K).
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showing a diffuse fast-ion transition along isobars of 2, 3, and 4
GPa.

FIG. 7. The orthorhombic distortions B»/B» and B33/Bti
during transformation from rocksalt to P-Agl. (a) P=O GPa,
(b) P =0.19 GPa.

transforming at 359 K at pressures of 0 and 0.19 GPa.
As discussed above, nucleation time depends on the prox-
imity to the transition point (0.21 GPa), but, following
nucleation, we found that the distortions progressed to
their ideal values, and oscillations about these values

gradually dissipated. RDF's for systems quenched from
these final equilibrated states confirm the wurzite struc-
ture, but sometimes a small amount of zinc-blende struc-
ture was entrapped. Similarly, transitions from the rock-

1400

1200

1000

salt to the a phase displayed the ideal V2 tetragonal dis-
tortion as shown in Fig. 8 and again the final structure
was confirmed by determining RDF's.

The open data points in Fig. 6 indicate equilibrium
transition points determined in the main by method (iii)
discussed in Sec. III. The solid curves are a reasonable
connection of these data points based mainly on the
geometrical constraints of smoothly joining the data, but
guided also by transition slopes dT, /dp determined below
from transition increments in enthalpy and volume. The
slope for the P to u transition is indeed negative as is the
volume change across the transition. The dashed exten-
sion of the rocksalt to a transition rises to the data point
in the liquid region which was determined for superheat-
ed crystal. In this region it was easier to nucleate the
transition to the bcc phase than it was for melting, even
though the melt was the stable phase. Even at 4 GPa,
well away from the stable a phase, melting and freezing
proceeded via a bcc intermediate. One is reminded of the

400
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Vl
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FIG. 6. The phase diagram for simulated AgI using the in-

teraction equation |',22). The triangle in the liquid phase is the
rocksalt to a transition point in rocksalt-AgI superheated above
the melting point. The solid data point in the a phase marks an

anomaly characterized by a sharp rise in heat capacity, a rise in

diffusivity and a small tetragonal distortion.
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FIG. 8. The tetragonal distortion B» /B l l and B33/B» dur-

ing transformation from rocksalt to a-AgI at P=0.5 GPa and
T=589 K.
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work of Alexander and McTague which uses a Landau
expansion to argue for the universal preference of freez-
ing to bcc crystal structure.

The feature of greatest interest is the course of the
rocksalt —a-phase boundary which appears to confirm
earlier predictions. A low-angle glancing view along the
data points reveals that the construction of the cusped
curve is reasonable. The construction is also borne out
by gradients d T, /dp determined from the Clausius-
Clapeyron equation.

Figures 9-12 show enthalpy and volume as a function
of temperature for the isobars 4, 3, 2, and 0 GPa, respec-
tively, in the 216-ion system. Each data point is obtained
from equilibrations of between 2000 and 2500 cycles, i.e.,
for time durations of the order of 20 to 25 psec. The
vertical lines in the figures denote the transition tempera-
tures as determined using method (iii) and the various
phases are annotated on the figures. Entropy changes as-
sociated with the various transitions are listed in Table I.
Unfortunately, truncation of the interaction potential at
the radius of the largest inscribed sphere results in a
2 ' reduction in truncation length on traversing the
rocksalt —a-phase boundary. The distortion is manifested
as an increment in enthalpy which can of course be moni-
tored during the transition which otherwise should be
isenthalpic. In Table I the entropies have been corrected
for the change in truncation length, a correction which
amounts to about 50%%uo of the total entropy change.

Method (ii), that of monitoring temperature increments
during adiabatic traverses of phase boundaries to obtain
transition entropies, is illustrated as follows. An adiabat-
ic run commencing at 4 GPa, 870 K, transformed at
p3 ——0.5 GPa with initial and final temperatures of
T3 —645 K and T4 ——578 K. pp Tp is seen in Fig. 6 to be
07 GPa, 585 K. From the 1 GPa isobar we find
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FIG. 10. Enthalpy and volume along the 3-GPa isobar.

C~—:C„+a(aPr) VT . (30)

Assuming C„=6R we obtain C =6.96R and the transi-
tion entropy is much the same as indicated above. This
method could be useful for obtaining transition entropies
in real experiments in the absence of calorimetric equip-
ment.

The data in Fig. 12 for the zero-pressure isobar is in-
teresting in that while the low-temperature equilibrations

C =6.8R (where R is the gas constant) and using Eq.
(29) as an approximation to Eq. (28) obtain

hS, -(67/585)6. 8R =0.78R,

in good agreement with the transition entropy given in
Table I at 1 GPa. In the absence of enthalpy data which
yielded the above value of C we could still use
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FIG. 9. Enthalpy and molar volume for simulated AgI along
the 4-GPa isobar. The vertical line denotes the equilibrium
melting point.

FIG. 11. Enthalpy and volume along the 2-GPa isobar. The
first vertical line denotes the equilibrium rocksalt to a transition
point.
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FIG. 12. Enthalpy and volume along the zero-pressure iso-
bar. Between 650 and 700 K in the a phase the data fluctuate
due to an anomaly characterized by rising heat capacity and
enhanced silver-ion diffusivity.

were quite stable over the time scale employed, the re-
sults between 650 and 700 K were subject to substantial
fluctuations. In view of the proposed existence of an
order-disorder transition in this region and the apparent
cusp in the rocksalt —a-phase boundary, this warranted
further investigations. Conventional constant volume
MD calculations were performed on the 51 cm /mole iso-
chore to check that this is not an artifact of the constant
stress algorithm. Monitoring temperature and pressure
as a function of time elapsed on a constant heating rate
run revealed an endotherm in the vicinity of 650 K. A
sequence of configurations taken from along this heating
run were equilibrated for 2000 cycles then averaged for

Here y refers to the angle of slope of a phase line and the
subscript and superscript roman numerals refer to initial
and final phases, respectively. Though we have not
shown the anomaly to be a first-order phase transition we
have estimated AS . , from the heat-capacity curve in

Fig. 13 to be bS ~ =0.33R.

-2.9

-3.0—

CY—7 L)
LJ

the following 1600 to 2000 cycles and the results are
presented in Fig. 13. A sigmoidal rise in internal energy
and pressure is evidenced at about 630 K. The constant
volume heat capacity measured from the slope of the
temperature dependence of the internal energy is also
shown in Fig. 13. Below the anomaly this takes the value
6.9R, rather higher than the classical value 6R, then rises
to a maximum of 8. 1R and falls to 6. 1R above the anom-
aly. This is qualitatively the same as observed by Perrott
and Fletcher for real AgI where the heat capacity fell to
the classical value above the anomaly.

The position of the heat-capacity maximum is indicat-
ed on our calculated phase diagram in Fig. 6 by the solid
data point and its location compares remarkably favor-
ably with the order-disorder transition of Perrot and
Fletcher at 700 K. The dashed extension of this data
point in the (p, T) plane shown in the figure is conjectural
but it presumably extends to the cusp in the rocksalt —a-
phase boundary. The breakpoints in the 0- and 1-GPa
sets of diffusion data in Fig. 4 coincide with this dashed
curve. It does, therefore, seem apparent that a phase
anomaly occurs in the simulated a-AgI which is related
to the order-disorder transition observed by Perrott and
Fletcher. The slopes of all three phase lines converging
at the triple point have been drawn in Fig. 6 so as to
satisfy the phase rule for triple points, namely,

tanyru (~err tanyrr+~grrr tanyrrr)y(&err+&grrr)

(31)

P
(GPa) fcc~a a~melt fcc~melt

TABLE I. Transition entropies AS/R for simulated AgI.
Experimental data are shown in parentheses. The experimental
value for hS at 1 GPa was not available, nor would it be useful
for comparison. Rather, we have tabulated the experimental
value at 0.6 GPa lying, at a point comparable to the simulated
system at 1 GPa, just below the rocksalt fast-ion transition.
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V. DISCUSSION

The above results remarkably confirm the efficacy of
the Parrinello-Rahman Lagrangian in simulating changes
of phase, particularly solid-solid transitions which are ac-
companied by shear strain. All the known regions of the
phase diagram for real silver iodide are reproduced with
this technique by the simple rigid-ion central potential
given in Eq. (22). The scale of the investigation had
placed constraints on the degree to which detail could be
thoroughly explored and clearly some of the more impor-
tant results remain somewhat tentative. These will of
course be the subject of further study.

Two important limitations in the procedure adopted in
this work give some cause for circumspection. The first
is that while the various transitions were observed
proceeding in both directions, the rocksalt-to-a transition
and melting were only investigated in careful detail in one
direction only, that of rising temperature. It is possible
therefore that these transition temperatures are overes-
timated, particularly at higher pressures. However, the
relative features, such as the cusp in the rocksalt-o, -

phase boundary, still stand though they may be displaced
in a larger system. Moreover the diffuse fast-ion transi-
tion in the rocksalt phase is not at risk since it has no nu-
cleation barrier. The second limitation is that, apart
from the transition entropies quoted in Table I, cutoff
corrections to energy and pressure have not been made.
Were we to be performing conventional constant volume
simulations this would be no problem, but where shape
and hence cutoff radius alter substantially in a solid-solid
transition the relative enthalpies of the two phases are
modified and hence the phase boundary is spuriously dis-
placed. Again, this will affect the entire phase boundary
in continuous fashion so that the overall shape of the
phase diagram (and the cusped boundary) still is valid.
We found that simple energy and pressure corrections us-
ing the virial expression and assuming structureless far-
field behavior [g &(r)=1, r &R, ] was inadequate to
represent the crystalline corrections. It may be necessary
to extend interactions to the next-nearest image and
maintain a constant cutoff radius to cope with this prob-
lem. We note that this difficulty is barely significant
along the melting boundary as the linear expansion
ranges from only 1.5% at 5 GPa to 3%%uo at zero pressure.
Moreover, the enlarged cutoff sphere probably encloses
much the same number of ions as the smaller did before
melting. On the other hand, with 41% changes in R, the
solid-solid transitions must be affected by cutoff correc-
tions. Nevertheless, it is encouraging to note that the
rocksalt —n-phase boundary cuts the melting line very
close to the cusp at 2.8 GPa which suggests that the
corrections are not very large.

While the systematic errors in the phase diagram may
be quite large (though preserving all the general qualita-
tive features shown in Fig. 6) the random errors are quite
small. Much longer equilibration runs produced barely
significant improvement in precision of the points of
state, while the random errors in the phase boundaries
are of the order of 20 to 30 K, i.e., about the height of the
data points.

It is interesting to note that the supercooled a phase
has a diffuse fast-ion transition shown by the plunging ar-
rows in Fig. 4. This might be explored in real AgI by sta-
bilizing the a phase by preparing microcrystallites, inves-
tigating thin films or by depositing AgI in a microporous
medium such as zeloites. It may be, however, that, under
such conditions, the rocksalt phase becomes the stable
one.

The u-phase diffusion coefficients shown in Fig. 4 con-
vincingly fall into separate low and high temperature re-
gimes. We feel justified in the present construction rather
than that of a single Ahrrenius line through all of the
data for the following reasons. (i) the three sets of high-
temperature data are consistent. (ii) Mellander found
that the activation enthalpy for silver-ion diffusion in a-
AgI was independent of pressure. The present construc-
tion recognizes this, whereas single linear fits for each iso-
bar yield a strongly pressure-dependent activation enthal-
py with h =0.087+0.007 eV at 0 GPa and h
=0.132+0.007 eV at 1 GPa. (iii) the breakpoints in the
two curves coincide with the tentative order-disorder
transition which we have shown by the dashed curve in
Fig. 6. Finally, (iv) Josefson, et al. find similar high-
and low-temperature regimes in Ag+ and Na+ diffusion
in a-Agl with activation enthalpies of (0.14 eV, 0.08 eV)
and (0.17 eV, 0.09 eV), respectively. While they reported
a drop in activation enthalpy from conductivity at high
temperature, their plots were of log&00. versus 10 /T.
Mellander found on replot ting their data as log ]oT
versus 10 /T that the activation enthalpy for ionic con-
ductivity did indeed rise at high temperature.

Contrasting this, in their own experiments, neither
Jost nor Mellander found any rise in activation enthal-
py as indicated in Fig. 6. The conductivity data pro-
gressed free of anomaly from the P-phase boundary to the
melting point. But then Mellander's samples showed no
heat capacity anomaly either. We must assume that, as
Perrott and Fletcher found that the anomaly was
suppressed by compromising stoichiometry, the samples
of Mellander must have been inadequately pure or
stoichiometric. Another interpretation that does not
question the quality of anyone's sample is that crystallite
or grain size may be significant in suppressing the effect.

The nature of the anomaly is unclear. Evidently one
must investigate ionic density distribution, site occupa-
tion, hopping paths, etc. , in order to clarify the behavior.
Associated with the anomaly we did find a spontaneous
small tetragonal distortion of the order of 5%. Even in
the constant volume simulation along the 51 cm /mole
isochore the diagonal elements of the stress tensor be-
came unequal in the vicinity of the anomaly. This may
be due to occupation of alternative equivalent tetrahedral
sites. In a system as small as 216 ions there would be
insufficient defective sites for the diagonal components,
time averaged over only 20 to 40 psec, to equalize.

To say that further work is necessary is perhaps a little
disparaging of the above results. Rather let us say that
encouraged by these results we intend to pursue many of
these ideas both by computer simulations and by exper-
imentation using calorimetry and impedance spectrosco-
py at elevated pressures. The course of the rocksalt —a-
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phase boundary is being studied using an internally heat-
ed piston-cylinder apparatus.
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