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A spin-wave theory is developed for alkali metals having a charge-density-wave (CDW} structure.
For simplicity the spin-dependent part of the many-body interaction between quasiparticles is taken
as a constant, thereby neglecting Landau parameters B„with n & 1. In a CDW state the velocity
distribution is not only anisotropic, but open-orbit motion becomes possible. As a result, the
motion of an electron is significantly modified. Since the known properties of alkali metals indicate
charge-density-wave structure, the interpretation of experimental spin-wave data is reconsidered.
The revised values of the Landau parameter Bo and the fraction of electrons in open orbits g for po-
tassium are found to be Bo———0.252(+0.003) and q=0.048(+0.015) when only the open-orbit
effect is included. Bo ———0.221(+0.002) and g=0.042(+0.013) if Fermi surface distortion is also
included. It is also shown that observed splittings of spin-wave side bands can be explained when

the effects of the CD%' domain structure are recognized.

I. INTRODUCTION

Since conduction-electron spin resonance (CESR) was
first observed in 1952,' extensive work has been done to
yield valuable information on the spin-dependent part of
the many-body interaction. As was first noticed by
Dyson, CESR becomes possible from the fact that an
electron returns many times to the rf skin layer where the
external oscillating magnetic field is applied, before it
diffuses further into the sample. A theory of CESR was
developed by Dyson for a noninteracting electron gas in
a static magnetic field normal to the surface, and later ex-
tended for an arbitrary angle by Lampe and Platzman.
When the many-body interaction is taken into account in
the framework of Landau Fermi-liquid theory, it was
shown by Silin that an interacting Fermi system in a
static magnetic field can have collective excitations with
nonzero wave number analogous to spin waves in fer-
romagnetic materials. A transmission-electron spin reso-
nance (TESR) experiment is one the most powerful tools
in investigating the many-body interaction in a Fermi
system, since the existence of spin waves exclusively de-
pends on the presence of the many-body interaction.
Theories of paramagnetic spin waves have been
developed by Platzman and Wolff (PW) and others. In
those theories, it has been assumed that the electron ener-

gy spectrum is free-electron-like and that the Fermi sur-
face is very close to a perfect sphere. But there is a large
amount of experimental data which cannot be explained
by free-electron-like theories. TESR data in particular
show several anomalous features which have not been in-
terpreted by conventional theories. The main CESR
sometimes shows a splitting of about 0.5 G. This
phenomenon was explained quantitatively as the result of
an anisotropic g factor in the CDW state by Overhauser
and de Graaf. ' Spin-wave side bands sometimes show
splittings into two or more components. "

In this study, an extension of the PW theory has been
made to incorporate several charge-density-wave (CDW)

effects: distortion of the Fermi surface, the presence of
open-orbit motion, and domain structure. It is also
shown that several anomalous experimental observations
can be explained using this theory. In Sec. II relevant as-
pects of the CDW theory are reviewed. In Sec. III essen-
tials of the Landau Fermi-liquid theory are recalled. In
Sec. IV a simplified model is developed to incorporate
CDW efFects, and transmission of rf signals through a
finite slab is obtained. In Secs. V the P}atzman-Wolff
theory, its CDW modifications, and experimental data for
potassium are compared. In Sec. VI our results are sum-
marized.

U =G cos(Q.r), (2. l)

where Q is the CDW wave vector and G is the periodic
part of the exchange and correlation interaction. This
periodic potential is sustained self-consistently by the re-
sulting modulation of electron charge density p(r):

II. BRIEF REVIEW
OF CHARGE-DENSITY-WAVE THEORY

It has been shown by Overhauser' that an interacting
electron gas always suffers a spin-density-wave (SDW) or
a charge-density-wave instability in the Hartree-Fock ap-
proximation, and that when correlation effects are taken
into account the CDW instability is enhanced while the
SDW instability is reduced. Alkali metals have very
weak elastic stiffness' ' and very small Born-Mayer
ion-ion repulsion they are expected to suffer (CDW) in-
stabilities. Many otherwise anomalous data have been
successfully explained by CDW theory. Recently neu-
tron diffraction satellites were observed, ' so the direction
and magnitude of Q are directly determined for potassi-
um.

CDW structure can be described by including an extra
sinusoidally varying potential with wave vector Q in ad-
dition to the usual crystal potential:
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p(r)=p0[1 —p cos(Q r')], (2.2)

where p is the fractional amplitude of the CDW. The
Hartree potential of the electron charge density is neu-
tralized by deformation of the positive-ion background.
The one-electron Schrodinger equation can be approxi-
mated by

0 M [ 2+ 2+ ( +g )
/ ]

2m 4

%1,——cos1t11,e ""'—sin/1, e "'"—Q",
mG

&=
„2Q2

(2.11)

(2.12)

(2.13}

+G cos(Q r)
2m

(2.3)

(Ir+Q
i

U ik) =6/2 . (2.4)

When k, = —Q/2, the mixing of
~

k) and
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k —Q) can
be treated using nondegenerate perturbation theory, but
the energy difference between these two states is so large
that the mixing can be neglected. However, the energy
difference between

~

It) and
~
k+Q) is a very small, so

the mixing between these must be treated using degen-
erate perturbation theory. This leads, of course, to an en-
ergy gap at k, = —Q/2. In the following analysis, only
those states below the gap need be considered.

The secular equation for Eq. (2.3) becomes

st+ Q sk
=0, (2.5)

Self-consistency between the CDW potential and the
charge modulation requires one to solve an integral equa-
tion for 6(k).' Since this is a very complicated problem,
6 will be assumed to be constant throughout our
analysis. Although an analytical solution of the above
Schrodinger equation is not available, a suSciently accu-
rate solution can be found in the following way. The
CDW potential has off-diagonal matrix elements

The Fermi-surface velocity in the z direction along Q is
given by

1

fi Bk,
fiQ w

2(w +g )'
(2.14)

When w =0, i.e., near k, -=+Q/2, the electron velocity
nearly vanishes. An approximate shape of the Fermi sur-
face can be obtained by requiring critical contact between
the Fermi surface and two CDW gaps (of magnitude 6).'
It follows from this assumption that

iri (Q/2) 6
Kg=Kp =

2m 2

K=(u 2+v )1/2=[(w2+(2)l/2 —g —w2]1/2

(2.15)

(2.16)

The Fermi surface is then distorted into the shape of a
lemon, as shown in Fig. 1.

When the crystal potential is also included, the
Schrodinger equation becomes

2

+G cosg r+ VcosG r 0
2m

(2.17)

Solution of the above Schrodinger equation leads to ener-
gy gaps at the Brillouin-zone faces perpendicular to 6 as
well as the main CDW gaps. In addition, there are new
gaps corresponding to K „=m g+ n G with —~ & m

& ~ and —~ (n & ~. Among these only the following
three groups of lower-order gaps are important. Since

where e$=1)i k /2m, the energy of a free electron with
wave vector k. The energy for a state below the energy
gap is found from the forgoing secular equation:

st= l(sf+ ef+Q) —
l [(sk—s&+Q)'+6']'"

The corresponding eigenfunction is

1I1
1,
——cosp„e ""'—sing„e "'"+Q"

(2.6)

(2.7)

where costi, ——6/[G +4(ef—e1, ) ]' . These solutions
will reduce to those found using nondegenerate perturba-
tion theory when k, is far away from —Q/2.

A similar solution can be found for k, -=Q/2;

e0 1
( sf+ E$ )

1 [(e$ Ef )2+62]1/2

1I1
1,
——costi,e'"' —sin/1, e '"

If dimensionless quantities u, v, and w are defined

(2.8)

(2.9}

k,
u=k„/Q, U=k /Q, w=k, /Q ——

2 /k, /

(2.10)

the above two solutions for k, 50 can be put in a very
simple form:

FIG. 1. Lemon-shaped Fermi surface for G/EF ——0.5. The
dashed curve is that of a free-electron Fermi sphere, of radius
kF, having the same volume as the lemon-shaped surface. The
dashed curve is drawn —,% larger than actual.
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particle, and they obey Fermi statistics.
Since the energy of a particle depends on the states of

the surrounding particles, the total energy of the system
becomes a functional of the distribution function f(p),
which is envisioned as a statistical matrix with respect to
spin. It is assumed that the distribution f(p) character-
izes the system completely. For an infinitesimal change
in the distribution function 5f(p) the change in the total
energy is expanded to second order in 5f(p). We shall
take the volume of the system to be unity.

5E=TrfEo(p)5f(p) dp
(2W)'

+ —,'Tr Tr' fF(p, p')5f (p)5f (p') dp dp
(2M) (2M}
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=Tr f s(p)5f(p)
(2mB)

where

dE(p)=so(p)+Tr' fF(p, p')5f(p')
(2M)

(3.1)

(3.2)

FIG. 2. Fermi surface, energy gaps, and open orbits (for H
perpendicular to the plane shown).

Q'—:G —Q is very small, the size of the gaps falls off rap-
idly with increasing n. ' The three groups of lower-order
gaps are (a) first-zone minigaps; K„+&

„(n+ 1——)Q
nG, —(b) second-zone minigaps; K „„+, (n +——1)G

—nQ, and (c) heterodyne gaps; K „„=n(G—Q), where
n = 1,2,3,. . . . Minigaps and heterodyne gaps truncate the
Fermi surface so that open orbits become possible. Five
possible open orbits (depending on magnetic breakdown)
are depicted in Fig. 2.

Since the optimum direction of Q does not coincide
with a symmetry axis, there are 24 equivalent directions
in a single crystal. ' In general, a macroscopic sample
will be divided into Q domains, and this plays a very im-

portant role in explaining spin-wave data. In the analysis
that follows, only consequences of distortion of the Fermi
surface, the presence of open orbits, and domain struc-
ture will be considered.

s(p) is the functional derivative of the total energy E
with respect to 5f(p) and corresponds to a change in the
energy of the system upon the addition of a single quasi-
particle with momentum p; s(p) is the energy of the
quasiparticle and so(p) is the energy in the equilibrium
distribution. F(p, p ) is the second-order functional
derivative of the total energy with respect to the distribu-
tion function, and can be considered as the interaction
function between quasiparticles.

Since there is a one-to-one correspondence between a
state in the interacting system and the corresponding
state in the noninteracting system, the entropy of the in-
teracting system can be obtained in the same way as in
the noninteracting system.

5E=T5S+p,5N, (3.4)

one can get the distribution function for the quasiparti-
cles, where N is the number of quasiparticles and p is the
chemical potential,

S= —Tr ln + 1 — ln 1 — . 3.3
(2n.h')

Using the thermodynamic law

III. BRIEF REVIE%'
OF LANDAU FERMI-LIQUID THEORY 1

[E(P)—P]/kTf( )=
+

(3.5)

Landau Fermi-liquid theory ' ' is based on the as-
sumption that energy levels of an interacting Fermi sys-
tem can be classified in the same way as the correspond-
ing noninteracting system. That is, a state in the nonin-
teracting system characterized by momentum p is as-
sumed to evolve in some way to a corresponding state in
the interacting system as the interaction is gradually
turned on, and to remain characterized by the same
momentum p. A state in the interacting system is called
a quasiparticle or an elementary excitation, and can be
considered as a single particle surrounded by a self-
consistent distribution of other particles. A quasiparticle
has the same charge as the corresponding noninteracting

where p is the chemical potential and is equal to Fermi
energy s~ =s(p~) at zero temperature. The assignment
of a definite momentum to each quasiparticle is possible
only when the uncertainty in the momentum due to the
finite mean free path is small compared with the momen-
tum and the width of the "transition zone" of the distri-
bution. This leads to the following condition.

kT &&KF . (3.6)

Nonequilibrium states of a Fermi liquid are described
by a distribution function f(p, r, t} which depends on
both position r and momentum p, which gives the distri-
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PF
or Aq &(pF . (3.7)

Since the frequency ~ of the inhomogeneity is of order
vFq, the above criterion is equivalent to

%CO gg EF (3.8)

Therefore Landau theory is applicable only to macro-
scopic disturbances. Now the change in the total energy
becomes

5E =Trf f eo(p)5f (p, r, t ) dr
2M}

+ —,'Tr Tr' f fF(p, r, p', r')5f (p, r, t )

X5f(p', r', t) drdr'dp dp
(2M) (2M)

=Tr c. p, r, t p, r, t r,dp
(2M)

(3.9)

where

bution in a unit volume centered at r. This description is
valid as long as the quasiparticle de Broglie wavelength
A/pF is small compared to the wavelength of the inhomo-
geneity A, ,

In Landau theory, E(p, r, t) is considered as the Hamil-
tonian function of the quasiparticle.

The distribution function satisfies a transport equation

=I[f], (3.17}

where I[f] is the collision integral, giving the rate of
change in the distribution due to collisions. The explicit
time dependence of f contributes a term df/dt. The
dependence on the coordinates and momenta gives terms

df dr Bf dp df BE df Be

Br dt Bp dt Br Bp Bp Br

where Hamilton's equations have been used and PB
stands for Poisson bracket. Finally, the time variation of
the function as an operator with respect to the spin vari-
ables is given by (t/A')[e, f] =(tlfi)[ef —fs]. Collecting
all the terms, one gets the Landau-Silin equation,

interaction F(p, r, p', r') is short ranged and can be de-
scribed by the above procedure. The local quasiparticle
energy becomes

I

E(p, r, t)=so(p)+Tr' fF(p, p')5f(p', r, t)
(2M)

(3.16)

and

e(p, r, t ) =eo(p)+5e(p, r, t ), (3.10)

&,
+If e],",,+ &le f]=I[f]. (3.18)

I

5 (ep, r, t)=Tr'f F(p, r, p', r')5f(p', r, t) dr' .
(2M)

(3.11)

F(p, r, p', r')=F(p, p', r —r') .

When the interaction is of short range,

(3.12)

When the system is assumed to be invariant under spa-
tial translation, the interaction function can only depend
on (r —r'):

f=n, +r n2,

E =F]+7 'E2 .

(3.19)

(3.20}

By inserting Eqs. (3.19) and (3.20) into Eq. (3.18) and tak-
ing a trace, one gets

n&

, +In' eiI,",,+[nl ail,",,=I[ni] (3.21)

The distribution function and quasiparticle energy can
be decomposed into spin-dependent and spin-independent
parts using the Pauli matrices r:

I

5e(p, r, t)=Tr fF(p, p')5f(p', r, t)
(2M)

(3.13) By inserting Eqs. (3.19) and (3.20) into Eq. (3.18), multi-
plying by ~, and taking a trace, one gets

F(p, p')= fF(p, r, p', r')dr' . (3.14) )n, el, p+ (n2, st], p
—

~ a2Xn2 ——I[no] (3.22)

V.E (r, t)=4me Trf 5f(p, r, t) dp
p S

(2vrh')
(3.15)

This field can be regarded as an additional applied field.
As a result, each excited quasiparticle is surrounded by a
polarization cloud of other quasiparticles. The residual

This procedure is not directly applicable to an electron
system in a metal, since the Coulomb interaction is a
long-range interaction. As shown by Silin, this
difficulty can be removed if one includes dynamic screen-
ing of the particle motion self-consistently. The electro-
static interaction between the average charge distribution
of an excited quasiparticle can be described by a space-
charge electrostatic field E (r, t }given by

In the presence of external fields, the conjugate
momentum p is different from the usual momentum k:

p=k+ —A,
C

(3.23)

where one can take the gauge, /=0, without loss of gen-
erality; i.e.,

1 BAB=VX A, E= ——
c Bt

(3.24)

It is more convenient to express the transport equations
in terms of k, which has physical meaning in the absence
of external fields. ' The effect of the vector potential A is
to shift the origin in p space by an amount e A/c. p is
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measured from this shifted origin, and the distribution
function f(p, r, t ) is the same as the distribution f(k, r, t )

measured from the true origin k=0. If the Hamiltonian
is expressed in terms of k and r, it has the same form as
when A =0 and p =k. Now express everything in terms
ofk and r; F(k, k') =g(k, k')+ r r'g(k, k') . (3.30}

When the system is invariant under translation and
there is no spin-orbit coupling, the interaction function
F(k, k') can be decomposed into spin-independent and
spin-dependent parts in terms of Pauli spin matrices, ' '

k=p ——A .
c

For operators M and N which depend on p and r,
s, =sk+

3 rt(k, k' }n, ( k', r, t),o 2dk'

(2M)
(3.31)

Under the presence of a static field Ho and an rf field h,
(3.25)

(3.26) s, = — H+ f g(k, k')n~(k', r, t)
ro& 2dk'

(2M)
=62+582,0

(3.32)

(3.33)

The transport equations become

Bn )
+(n& s&l, k+t "2 sz],k

pB j j pB

(3.27)
where

oa~= — Ho,
2

(3.34)

1 t3s, Bn, dna Bs~z
+e E+— XB ~ +— X B=I[n,],c Bk Bk c Bk

(3.28)

r =ro~roB

ro=&+&oB

(3.35)

(3.36)

where the summation over repeated indices is assumed;

np PB PB+ [n2'sl], k+ [ 1 s2],k g s2Xn2

1 ~si e ~n&
+e E+— XB .Vknq —— XB =I[n2] .

c Bk c Bk

(3.29)

(3.37)

and yo is the gyromagnetic ratio of an electron. In terms
of these quantities, one can linearize the transport equa-
tion for spin polarizations m (a=+, —,0), where

m+ ——(m„+cm~ )/&2 and ma m, . The lin—e—arized
Landau-Silin equation is

Bm e+—vk X Ho.
dt c

Bm

Bk

Bnk ~5&P
+vk V m —

o 5s2 —aaQO m — 5e2 ——I[m ],
as'k &k as'k Be'k

(3.38)

where

and

Qo ———yHo,

IV. SIMPLIFIED MODEL
FOR CHARGE-DENSITY-WAVE EFFECTS

5e2 = — h + f 3g( , kk)m (k', r, t) .
ro& 2dk'

(2mB}

(3.39)

(3.40)

it is believed that G»o is usually perpendicular to the sur-
face of a thin sample.

The above three effects will be analyzed using the fol-
lowing simplified model, shown in Fig. 3. The Fermi sur-
face can be thought of as being composed of two parts: a
lemon-shaped surface and a cylindrical surface. The
lemon-shaped surface describes the motion of electrons in
closed orbits and the cylindrical surface describes the
motion of electrons in open orbits. The axis of the cylin-

In the following analysis, several CDW effects will be
incorporated into the theory of spin waves in alkali met-
als; mainly, the anisotropic velocity distribution caused
by the distortion of the Fermi surface, the open-orbit
motion resulting from truncation of the Fermi surface by
the extra energy gaps, and CDW Q-domain structure.
Among many possible open orbits, the ones due to the
heterodyne gaps are believed to be most important, since
its direction has the largest angle with respect to Q. Also FIG. 3. Simplified model of the Fermi surface.
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drical surface is taken parallel to Q'=G, lo
—Q.

In the following analysis, B„with n ) 1 will be neglect-
ed since they are believed to be quite small compared to
Bo." Instead, we wiH introduce g, the fraction of elec-
trons in the cylindrical part, as a new parameter. It
should be emphasized that 6, the CDW energy gap, and

Q, the CDW wave vector, are not parameters to be used
in fitting the spin-wave data. They are determined from
other experiments. So we have Bo and q as fitting pa-
rameters instead of Bo and B, as in conventional
theories. If g were to become known from another exper-
iment, we could include Bl as an adjustable parameter.
We emphasize that B, and g play compensatory roles.
Determinations of B, from spin-wave data have
significance only if a CDW structure is not present.

H

zo, n, q

A. Closed orbits

For the closed-orbit part, the energy of an electron is
given by

A

Xo

1 2 $ A
(4.1)

where (x,y, z ) refers to the c-coordinate system defined in
Fig. 4 with z parallel to Q, the superscript c stands for
closed orbit, m is the band mass ( m = 1.211m o), and

FIG. 4. Definitions of coordinate systems and angles.

( W) =W~+ j —(M 2+ (2)1/2

k,
w = + —,'sgn(k, ),

(4.2)

(4.3)

Fermi surface with the CDW gap. ) The coordinate sys-
tems used and angles are defined in Fig. 4, where Q is
parallel to z. Since m' in Eq. (3.38) is proportional to
Bni,' /Bei;, it is convenient to define

=0.0035 25 .
$2Q2

(4.4) m'=—Bn'
c

g coga '
Eg'

(4.5)

(This value of j falls a little short of critical contact of the The Landau-Silin equation becomes

—ceF) ~ga f)og~—+ (g —&g & )+ g, +&v &g' +i—vXHo 5(el, '—sF)g'=0, (4.6)

@OR
(4.7)

5g' =f g(k, k')5(el,"—sF)g'(k') .
2dk'

(2M)' (4.8)

where ( ) denotes the average over the Fermi surface, ~here vF is the density of states at the Fermi energy.
It will be assumed that all fields and spin polarization

depend on the coordinate zo= —x sin8'+z cos8', where
zo is perpendicular to the surface of the sample. By in-
tegrating Eq. (4.6) over k, after multiplying by 1, U„, v,
and v„we obtain four coupled equations for go, gl

C C
g lay~ an g laz

We will look for a solution of the form

Cga gOa+gla V (4.9)
cogo + aco + go —L(U ) giT Bx

which is the simplest function with a term linear in the
velocity. The rf magnetization A, is obtained by in-
tegrating m' over k:

+~(U, )' g;,=0, (4.11)
ay

(co'+ano)&v„'&'g', „—uo, A;&v,')'g', ,
~c f 2dk ~O c ~O c c" (2W)' (4.10) +~~,A,'&U,')'g'. ..=iso(U„'&' g,'. ,x g Oa (4.12)
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ceo, A; ( u„' ) 'g ', „+( co '+ aQ, ) ( u„' & 'g ', ,
—ceo, A'„( v, ) 'g;, =0, (4.1 3)

2
77l BV m BV,c 2 C c 2 C

y ~k g & + y ~k g & y
Z Z

+(co'+aQ )(u,')'g;, =cy (u,')' g'', (4.14)
Bz

where

A'„= sinb, cos8'cosP' —cosh, cos8',
A' = —sinb sing',

A; =sinb, sin8'c os/'+cosh, cos8',

(4.1 8}

where 6 is the angle between Hp and zp (perpendicular to
the surface of the sample), and 8' and P' are the polar and
azimuthal angle of Q relative to the coordinate syst™
(XpiXp&Zp )~

Various averages in the above equations can be evalu-
ated to first order in g;

r o&
goa goa g a

2/0

T= T2 /ro

and

(4.1 5)

(4.16)

( u„' ) '= ( u,
' ) '= -,

' uFi ( 1 —2g ),

( u, )'=—'vF 1 —2g 3 tan ' —2

= -,
'

uF [ 1 —( 3n.+ —,
' )g] .

(4.19)

co =co + i /'T ~ (4.17)
A solution can be found for g p by solving Eqs. (4.1 1 )—
(4.14):

The A"s specify the direction of Ho in the c-coordinate
system:

cog p + (aco +c/T ypP'Vp)g p =0

where

(4.20)

P'= ( v„)'[sin 8'[(co '+aQ ) —@co,( A'„) ]+A, cos 8'[(co '+aQ )i—coi(A; )2]

+sin8'cos8'[(A +p)co, A„'A; —c(A, —p)co, A„'(co '+aQp)] I /[(co '+aQp)[(ILc sin b, '+cos 5')co, —(co '+aQp) ]j,
(4.2 1)

By using Eqs. (4.10) and (4.20), one obtains a modified
Bloch equation,

coJK', + ( aco, +c / T yp p' Vp )(JK~
—Xh ) =0, (4—.22a)

y OA
aQO h

C
goa = a 2co +aco, +c / T+y p p'q

(4.24)

or equivalently

BM M —Meq
ypM X H +D Vp(M M q) (4 22b)

which was first obtained by Platzman and Wolff. The
Bloch equation in this limit is

%co,
' + ( a+coc/T ypP'Vp)W' =a—co,Xh, (4.25a)

where M,q
=XH =X(Hp+ h ), M =M,~ +JK', D ' =y pP'/c,

and X=Xp/yp is the susceptibility of an interacting elec-
tron gas. Equation (4.22), originally suggested by
Torrey, was first obtained by %alker. %hen fields and

tgZ 0spin polarizations are assumed to be proportiona1 to e
Eq. (4.20) is reduced to

goa =
no

yp& c p'q '
a + T +

co +aco, + c /T + y p P'q
(4.23}

By neglecting terms of the order 1/Qo T && 1 and
p q /Qp (( 1 in the small-q limit, one gets

or equivalently

aM M —Mo

at
=yoM XH- +D 'VOM (4.25b)

where Mp=XHp and M=Mp+At'. Equation (4.22) is
more accurate than Eq. (4.25) in the sense that no specific
spatial dependence of fields and polarizations is assumed�.
It has the nice property that the magnetization relaxes to
the local equilibrium value XH, and it is valid for all a.
But Eq. (4.25), originally suggested by Kaplan, 6 would
be equally satisfactory for our purpose, since only smal 1-q

excitations are of interest and only the a = —1 com-
ponent is resonant. Equation (4.22a) can be put in a
slightly different form in terms of Af ':
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coJK' +(aco, +a/T —yap'Vo)JN, ' =—

where

JK' =At' Xh—

N +Ra

(4.26)

(4.27)

If
~
Bocor/(I+Bo)

~
&&1, P approaches a pure (real)

nu~ber and go exhibits a branch of singularities along
the curve co —co, +pq =0 in m —q space. When Bo~0,
P approaches a pure imaginary number and there are no
singularities. Therefore paramagnetic spin waves exist
only when the interaction between elections is strong
enough.

Since e =a„one can see that the Platzman-Wolff solu-

tion for M is valid without the small-q approximation if
the rf magnetization in Eq. (4.25) is interpreted as the de-

viation from a local equilibrium value Ph and h is re-

placed by (co/co, )h ( —=h ).
When /=0, i.e., for a spherical Fermi surface, Eq.

(4.21) reduces to that of the PW theory:

p'"=p q,'= ,",'q-~(m' n—,)

B. Open orbits

2m
(4.29)

Similar procedures to those just described can be fol-
io~ed for the cylindrical Fermi-energy surface defined by

sin 5 cos 5
ro, —(co ' —Qu) (co '—Qo)

(4.28)

where the superscript o stands for open orbit. The coor-
dinate systems and angles used are defined in Fig. 4,
where Q' is parallel to z.

The Landau-Silin equation becomes

5(s„'—e ) g' —Qog '+ (g ' —(g ', ) )+ g ', —v Vg ' +s—vXH . 5(s„'—s )g '=0,
op 2

(4.30)

where electrons in open orbits are assumed to have a
different momentum relaxation time from that of elec-
trons in closed orbits. We look for a solution having the
form

cogu +(aco +L/T —7 OgVu)go =0,
2 —o sin 8'p'= , uF(v ' -n,),—

~' —(a' —n, )' '
P

(4.36)

(4.37)

o o o
g a gOa +Sj,a'V (4.31) where

as before. The rf magnetization A is obtained by in-

tegrating m' over k;
co& =co,cos(Q' Hu)

and

(4.38)

o ~O o ovFgo. (4.32) N =QP + l /'rap (4.39)

~goa+(a~s+«T)go+ ~'(ux ~ g &ax =0 (4.33)

(co'+ano)(u„')'g', „—uo, A;(u,')'g',

It will be assumed that all fields and the spin polariza-
tion depend on the coordinate zo= —xsin8'+zcos8'.
(x,y, z) refers to the c-coordinate system defined in Fig. 4
with z parallel to Q '.

By integrating Eq. (4.30), after multiplying by l,u„,u~,
We Obtain three COuPled equatiOnS in g Oa7g ]az 7g /ay

By using Eqs. (4.32) and (4.36), one gets Bloch equations
corresponding to Eqs. (4.22) and (4.25).

The main difference between the solution here and the
one in Sec. IV A is the following: The factor 3 or 2 corre-
sponds to the dimensional freedom of the motion; an
average of one component of v is reduced from —,'Uz to
—,'UFsin O'. The electrons on the cylindrical part of the
Fermi surface cannot move perpendicular to Q', and can
only move in open orbits if Ho is perpendicular to Q'. m,',
the effeetive cyclotron frequency, becomes 0 in that ease.

=—,
'
cyo ( u„)' go, (4.34)

ice, A;(u, )'g', „+(co'+ano)(u~ )'g& ~
——0, (4.35)

where co'=co+ale, . The A"s, defined by equations
similar to (4.18), specify the direction of Ho in the o-
coordinate system and 8' and P' are the polar and azimu-
thal angle of Q

' relative to the coordinate system
(xo yo zo ). A solution can be found for go by using Eqs.
(4.33)—(4.35):

C. Mixed orbits

When we consider both Fermi surfaces at the same
time, the cross relaxation of quasiparticles from one sur-
face to another becomes important. When a quasiparticle
is destroyed at a point on the Fermi surface, it can end up
at a point on either surface with equal probability per
unit Fermi-surface area. The collision integral becomes
the following:
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Bg

a

Bg

o11

—C C —0 0

+(1—rl)
7 ™2 TO

(4.40}

+(1—rl)
op 2 T Vpp

(4.41)

&g'. =&g'. =Bo[(1 n—)g o. +Rg 0.] (4.43)

The rf magnetization At is obtained by integrating m

over k:

in explaining the splittings of spin-wave side bands as will
be shown later. In addition to the coupling through Eqs.
(4.40) and (4.41), g' and g' get coupled through the in-
teraction between electrons:

7
OP

1 8UF=—+
3D

(4.42)

where D is the Q-domain size. g and D play crucial roles

where g is the fraction of electrons on the open-orbit Fer-
mi surface and ~, is their momentum relaxation time. It
has been shown that v, is shorter than r on account of
Q-domain boundaries:~

At = vF([(1—g)go +ggo ] . (4.44)

Now we will have seven coupled equations, similar to
Eqs. (4.11)—(4.13) and (4.33)—(4.35) with modified col-
lision terms (4.40) and (4.41), and modified interaction
terms Eq. (4.43), after multiplying by appropriate factors
and taking averages over the Fermi surface. Solving
these seven equations for go and go one gets the follow-

ing two coupled equations:

ci)gp + [1+(1—rl)Bp] aQp+ +i&
2

1+(1—rl)Bo (1—g)Bp

OP

C

goa

O'V o [ [ I —+ (1 n»o—lg o~ +rIBog o. I + 18o «o+
2

nBo—l, 'g
7

1+gBo

OP

go ——0, (4.45)

L gBo
togo + ( I+rIBo) aQo+ —c(1—rl)

T2 7

1+gBo

OP

go O'Vo[(—I+nBo)go +(1 n}Bog—o. ]

+ (1—rl}Bo a&o
T2

1+(1 qBo) (1——rl)Bo—~(1 —rl )
7OP

go =o (4.46)

where

—coy%'/2
aco+ alod + i, /T+ yoPq

(4.47)

P=yo [(1 n)P'+ n&'1— (4.48)

and T= Tz lyo. By using Eqs. (4.44} and (4.47), one gets
Bloch equations corresponding to Eqs. (4.22) and (4.25}:

r~lK +(ace, +i, /T iD'Vo)(At Xh ) =0, —(4.49a)

Unfortunately the solution for gp =(1—rl)go +'/gal
cannot be found in a closed form and one has to resort to
the approximation that fields and spin polarizations are
proportional to e ' with small q. The solutions for go
and go, correct to first order in q, can be found by
neglecting terms of the order of rl(Pq /co);

go '=(1 7))go +—'r)go

All the modifications caused by CDW eftects incor-
porated in this work, i.e., the anisotropic velocity distri-
bution, the presence of open orbits, and the CDW Q-
domain structure, are contained in Eq. (4.48). P' depends
on the Q-domain size D through Eqs. (4.39) and (4.42).

D. Transmitted signals

A standard way of finding a transmitted signal through
a finite slab is to utilize the Bloch equation (4.49) with an
appropriate boundary condition. From Eq. (4.49), one
can see that the magnetization current J~ is given by
—Vo(M —M,~ ), or equivalently —Vo(AI —Xh ). The
subscript a is dropped since only the a = —1 component
is resonant. The appropriate boundary condition in the
absence of surface spin relaxation is

or equivalently n.J~=n Vp(At —Xh ) =0 . (4.50)

aM M —M,=y MXH — +D'Vo(M —M, ), (4.49b) A simpler way is to solve the Bloch equation with the
above boundary condition for A, ',

where M, =XH=X(Ho+h), M=M, ~+At, D'=y P/o~,
and X=Xo/yp is the susceptibility of an interacting elec-
tron gas.

coAt'+( —co, +i/T iDVo)At'= —coXh .

The boundary condition (4.50) becomes

(4.51)
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n V~'=0 . (4.52)

When fields and magnetization are assumed to depend
only on zo, Eq. (4.51}becomes and

~(co —co, )T 1—
k =

D'T (4.54)

2d W' k2&'= ~+ h, (4.53}
dzP z =+ L/2

=0. (4.55)

where The solution for At can be readily found to be

Ng 1 LJK=Xh+, cos k z ——
eD ksin W f dz'cos k —+z' h (z')

—L/2 2

L+cos k z+—
2

L/2 Ldz'cos k ——z' h (z')
z 2

(4.56)

C 28'
[(co co, )T2+ c—) sin2 W

(4.58)

which was first obtained by Platzman and Wolff using a
Green's-function technique.

where W =kL /2. Equation (4.56) was obtained by Walk-
er, and the second term describes the spin-wave excita-
tion. The transmitted signal can be found to be propor-
tional to the magnetization just inside the surface at
z =L/2 5, &8

H(L+ /2) =cZOM(L /2), (4.57)

where Zp is the surface impedance for spinless electrons.
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V. COMPARISON WITH THE PLATZMAN-WOLFF
THEORY AND EXPERIMENTAL DATA

Although the Wilson-Fredkin theory was shown to ex-
plain experimental data better than the Platzman-Wolff
theory, the two theories are equally satisfactory" if one
neglects B„and n )2 and anomalous experimental
features reproduced in Fig. 7. Hence we will compare
CI3W theory only with Platzman-Wolff theory for potas-
sium, for which the direction and magnitude of Q were
recently determined. ' In Fig. 5, comparisons are made
for two different geometries with only open-orbit effects
included, assuming that the direction of G&&p is perpen-
dicular to the surface of the sample (which is indicated by
optical experiments ), that the azimuthal angle of Ho
about Q

' is zero, defined in Fig. 4 with Q
' parallel to z,

and that the CDW domain size is 0.001 cm. Q is
(0.995,0.975,0.015} in units of 2~/a and the angle be-
tween Q and G»0 is 0.85'. Q'=(0.005,0.025, —0.015) in
units of 2m. /a and the angle between Q' and G»o is
44. 18'. All modifications caused by CD% effects are con-
tained in the effective diffusion constant D in Eq. (4.49),
or equivalently P in Eq. (4.48) through Eqs. (4.37), (4.39),
and (4.42). Since the inclusion of distortion effects does
not change the following results qualitatively, all compar-
isons with experimental data will be made with only
open-orbit effects included. The positions of the side
bands agree very well, while the different signal ampli-
tudes and widths can be made to agree with experiment
by adjusting the relaxation times ~ and T2. T2 deter-
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FIG. 5. Comparison between the CDW theory and P%'
theory: the dotted curve for the CDW theory with only open-
orbit effects included; the solid curve for the P%' theory. No at-
tempt was made to make the amplitudes and widths agree with
experimental data, by readjusting v and T2 (for the CDW case).
(a) For the field-perpendicular geometry. (b) For the field-
parallel geometry.
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mines the decay rate of the amplitudes of the side band
peaks, and ~ determines their widths. Our theory does
not explain the variation of the width of the main CESR
peak versus 5, and ~ and T2 would be adjusted following
the procedure taken by Mace, Dunifer, and Sambles. "
For the PW theory, Bo= —0.292 and B,= —0.073 were
used, " whereas for the CDW theory it was found that
Bo= —0.252+0.003 and g=0.048+0.015 with the open-
orbit effect included and Bo———0.221+0.002 and
g=0.042+0.013 with both the open-orbit effect and the
distortion effect included. "+" indicates the upper and
lower bounds for the range of azimuthal angle of Ho
about Q, defined in Fig. 4 with Q parallel to q. The vari-
ation of the fitting parameters Bo and g over the azimu-
thal angle is shown in Fig. 6. When the Q-domain size is
larger than 0.002 cm, Bo and q vary much more rapidly
and spin-wave side bands show splittings into two or
more components as will be discussed later. This varia-
tion can be attributed to the fact that the magnetic field
along Q' vanishes for some azimuthal angles and the
effective diffusion constant near those angles changes rap-
idly. One can see that the magnitude of Bo depends criti-
cally on the various CDW effects, and that there will be a
systematic change in the positions of side band peaks as
the azimuthal angle is changed for samples having large
CDW domain size.

Although extreme care was taken in preparing sam-

0.0

~ ~c
Cl

CI

I

(a)

ples, it was reported" that even the best samples
displayed some imperfections: a faint milky appearance,
numerous small bubbles at the surface, and microscopic
protrusions due to shallow scratches on the quartz win-
dows. When samples showed splitting of either the main
CESR or side bands, they were simply thought unaccept-
able and discarded. It was reported that there were extra
features having the characteristic of spin-wave signals in
the vicinity of the first two spin waves, reproduced in Fig.
7(a) from Fig. 14(a) of Ref. 11, and side bands sometimes
split into two or more components, reproduced in Fig.
7(b) from Fig. 13(a) of Ref. 11. Figure 7(a) was obtained
in Na and Fig. 7(b) was obtained in K, but these features
were observed in both Na and K. The anomalous
features in Fig. 7(a) were left unexplained and the split-
tings in Fig. 7(b) were attributed in the report to different
thickness within the sample, although the variation in
thickness was typically less than 1%. But we believe that
unless there is a systematic, much larger difference in
thickness, splitting of a side band cannot occur, since
what is measured is the transmitted microwave from the
whole surface of the sample. Also it was reported that
the main CESR peak sometimes splits into two or more
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FIG. 6. Variation of fitting parameters as a function of the
azimuthal angle between Q and Ho for domain size D=0.001
cm. The solid curve obtains when only open-orbit effects are in-
cluded, and the dashed curve applies when the Fermi surface
distortion is also included.
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FIG. 7. Anomalous experimental data. (a) Extra feature be-
tween the main CESR and the first spin wave in Na. (b) Split-
ting of side band peaks in K.
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FIG. 8. Theoretical splitting of spin-wave signals for the
field-parallel geometry. r=2.6)& 10 ' sec', T2 ——5.7)& 10 ' sec;
0' '"=44. 18'; domain size D=0.001 cm for the solid curve and
D=0.01 cm for the dotted curve.

peaks. This was attributed to inhomogeneity of the static
magnetic field, since the signal changes when the inhomo-
geneity is adjusted. But it is not clear how a small inho-
mogeneity of 0.6 6, possible in a superconducting mag-
net, can cause the CESR signal to split into two or more
peaks. This phenomena was explained by Overhauser
and de Graaf' using CDW theory. It is natural for the
CESR signal to change with field inhomogeneity since
different CDW domains have different locations in the
solenoid, and the change does not necessarily indicate
that the splitting is due to the field inhomogeneity.

For the field-parallel geometry, 6=90', the domain
structure is assumed to be such that any azimuthal angle
of the open-orbit direction Q' about the normal to the
surface, defined in Fig. 4 with Q

' parallel to z, is equally
probable and the average of the transmitted signal H, is
taken over the azimuthal angle. In Fig. 8, the splitting of
side bands appears naturally for samples with large Q-
domain size whereas the splitting does not appear for
samples with small domain size. For the field-
perpendicular geometry, 5=0', different orientations of
CDW wave vector Q which are crystallographically
equivalent are included. Other possible open-orbit direc-
tions are 17.02', 61.44', 76. 17, 103.83' (equivalent to
76. 17'), and 118.56 (equivalent to 61.44'). The direc-
tions 61.44' and 76. 17 were chosen since they result in
larger splittings, and were included to obtain Fig. 9. In
Fig. 9, the splitting of side bands appears naturally for
samples with large domain size. These splittings are due
to extra spin waves from different CDW domains. Posi-
tions of these extra signals depend crucially on the CDW
wave vector Q, and the extra features observed for Na in
Fig. 7(a) could be interpreted as extra spin-wave signals
from different CDW domains, similar to Fig. 9(a). These
anomalous features will become less prominent as the
temperature of the samples is raised, as observed, since
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FIG. 9. Theoretical splitting of spin-wave signals for the
field-perpendicular geometry. ~=5.2 X 10 ' sec, T2 ——5.7
&& 10 ' sec, D=0.02 cm. {a) 0;~'"=44.18, 02~'"=61.44'
(0.5 + 0.5). (b) 0; '"=44.18, 0' '"=76.17 (0.5 + 0.5). (c)
0;P'"=44. 18', 0;l""=61.44', 0;l""=76.17'(0.2+ 0.5+ 0.3).
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individual components will become broader (as the
momentum relaxation time decreases) and will eventually
merge into smooth peaks. Lattice imperfections men-
tioned above are expected to contribute to the formation
of CDW domains having Q tilted with respect to the nor-
mal to the sample surface. Hence elimination of small
pockets of argon gas between the metal and quartz win-
dow will tend to eliminate such splitting, as observed.
Also the adjustments on the homogeneity control (of the
static magnetic field) could make anomalous features
weaker, since different domains would then be probed
with magnetic fields of different strengths.

CDW domain structure is rather sensitive to the past
history of a sample and similarly prepared samples can
have different CDW domain structure. This explains
why spin-wave signals were split for some samples and
not for others and why no systematic behavior of the
above-mentioned anomalous features was observed for
different samples with different thicknesses. As discussed
above, the observed anomalous data can be interpreted
without recourse to field inhomogeneity or variation in
the sample thickness. We suggest that splitting of spin-
wave signals results from CDW Q-domain structure.

VI. CONCLUSION

We have shown that the occurrence of open orbits and
distortion of the Fermi surface (caused by a CDW state)
modify significantly an electron's motion and inhuence
thereby paramagnetic spin-wave signals. The revised
values of the Landau parameter 80 and the fraction of
electrons in open orbits g for potassium, with CDW-
domain size D =0.001 cm, are found to be
Bo ———0.252(+0.008) and rl=0.048(+0.015) when only
open-orbit effects are included. Bo= —0.221(+0.002) and
ri=0.042(+0.013) when Fermi-surface distortion effects
are also included. We also observed that the splitting of
spin-wave signals into two or more components can be
naturally explained within the framework of CDW
theory.
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