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The dielectric breakdown of solids is a problem of great practical and theoretical interest. It is

the electrical analog of the fracture of solids under applied loads. In the case of fracture, the reign-

ing theory for linear elastic materials is linear elastic fracture mechanics. This paper develops the
analogous theory, linear dielectric-breakdown electrostatics, based on a Griffith-like energy-balance
calculation applied to a single conducting crack in an isotropic dielectric medium. Results include
the development of the critical field-intensity factor, K„and the introduction of a contour-
independent line integral, J, which is analogous to the J integral of linear and nonlinear elastic
fracture mechanics. Some discussion of the relation between these results and recent lattice models
of dielectric breakdown is given.

I. INTRODUCTION

A dielectric solid fails electrically under a large applied
field when a conducting pathway is burnt through the
material, turning the dielectric medium into a conductor.
This phenomenon, known as dielectric breakdown, is the
electrical equivalent of fracture in an elastic solid. Ap-
plied electric fields cause dielectric breakdown', applied
mechanical loads cause elastic fracture. Both phenomena
are of great practical and scientific interest.

The concept of intrinsic or theoretical strength is com-
mon to both dielectric breakdown and elastic fracture.
In each case, the intrinsic or theoretical strength is
defined to be that value of the applied stress (electric or
elastic) that causes breakdown or fracture to occur when
the material is free from defects of any kind. This
strength, however, can be achieved only with great
difficulty, under the most stringent sample preparation
and testing conditions. ' In the vast majority of materi-
als, both the dielectric breakdown strength and fracture
stress are two or more orders of magnitude smaller than
the intrinsic or theoretical strength. This difference is at-
tributed to the presence of defects (such as voids, cracks,
or inclusions) in a material.

In the case of elastic fracture, there is a well-developed
theory called linear elastic fracture mechanics (LEFM)
for fracture caused by the propagation of existing crack-
like defects. LEFM is based on the pioneering analysis of
Griffith of an ideal stress-free crack embedded in an iso-
tropic elastic continuum subjected to a uniform tensile
stress.

Griffith worked out the difference in elastic energy be-
tween a cracked and uncracked body (using Inglis stress
analysis ). By defining I as the energy consumed in
creating a unit area of new crack surface, he was able to
show that there was a critical value of the applied stress
at which the elastic energy released in an incremental
crack extension is just able to balance the energy con-
sumed in creating the new crack surfaces. In the problem
Griffith considered, uniform tensile stress in an infinite
sheet, the state of equilibrium is unstable, thereby giving

a prediction for the applied stress at which the crack will
freely propagate, implying fracture will spontaneously
occur. This critical stress is a function of the elastic
moduli, the crack length, and the fracture surface energy
r. '

Although Griffith published his results in 1921, his
work did not generate wide interest until after World
War II, when scientific interest in crack propagation and
fracture was stimulated by the many cracks that ap-
peared in the Liberty ships that were manufactured in
such large numbers by the United States (see Gordon's
book in Ref. 5 for a fuller historical account). At about
this time, Irwin took Griffith's theory and reformulated
it in terms of the parameter K„which is the critical value
of the amplitude of the stress singularity at the crack tip.
This formulation was mathematically more convenient
for solving more complicated problems. It also was phys-
ically appealing, as it coupled the criterion for crack ex-
tension to a parameter K„which in some sense quantifies
the actual conditions at the crack tip where fracture
occurs.

It is not well known that the same type of energy-
balance calculation can be done for the case of dielectric
breakdown via a conducting crack embedded in an iso-
tropic, linear dielectric medium subjected to a uniform
electric field. In fact, this calculation was done in the
1920's by Horowitz shortly after Griffith published his
elastic work. I have found only one reference to this
work in later literature. The calculation, similar to
Griffith's, results in an expression for the critical applied
electric field that is a function of the crack length, the
dielectric constant, and a new surface energy I', which is
called the breakdown surface energy and is equal to the
energy consumed in creating a unit area of conducting-
crack surface via dielectric breakdown.

In this paper, I rederive Horowitz's result and put it
into a form I call linear dielectric-breakdown electrostat-
ics (LDBE), in analogy with LEFM and strikingly similar
in many ways. In addition, I prove the existence of a
contour-independent line integral J, similar to the well-
known J integral' in LEFM, which can be used to put
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LDBE in the same mathematically elegant form as
LEFM. Finally, in the discussion, I speculate on the
physical meaning of I" and on whether some of the
methods that were inspired by LEFM and used to im-

prove the fracture strength of materials have counter-
parts in dielectric media that can be used to improve
their dielectric-breakdown strength. Also, I compare the
results of LDBE with recent lattice models of dielectric
breakdown.

II. HOROWITZ ENERGY-BALANCE CALCULATION

The electrostatic problem that must be solved first is
the case of an elliptical inclusion with dielectric constant
e' placed in an isotropic linear dielectric medium with
dielectric constant e. The applied field is initially uni-
form and is parallel to the semimajor axis of the in-
clusion. Such an arrangement is shown in Fig. 1, with
the inclusion and applied field Eo aligned in the x direc-
tion and the inclusion centered at the origin. The equa-
tion to be solved is Laplace's equation V V=0, subject to
the following boundary conditions: the electric field

E~EO far from the inclusion, and the normal component
of the displacernent D continuous at the inclusion bound-
ary. It should be noted that the latter boundary condi-
tion, in the limit e'~ 00 for e fixed, becomes V=O at the
inclusion boundary, which is the correct boundary condi-
tion for a conducting inclusion. This is actually the case
of interest for dielectric breakdown; however, I will keep
e' finite for now.

The solution for this problem is readily obtained using
elliptical cylindrical coordinates (u, 8,z), where the z axis
is taken normal to the plane of Fig. 1. All quantities in
this problem are assumed to be uniform in the z direc-
tion. The transformation between (x,y) and (u, 8) is
given by

x =c coshu cos6,

y =c sinhu sin6,

0(8&2m, 0(u & ~ .

1

o

The surface of the inclusion is defined by
u =p=constant. In the limit when p~O, the inclusion
degenerates into a crack of length 2c, with crack tips at
x=kc. The solution for u &p is constructed" with a
term that gives the correct uniform field far away from
the inclusion plus a term that gets the boundary condi-
tion right at u =p. The result is

V(u, 8)= —cE, coshu cos8

+ ,'(e' ——e) sinh(2p) e~ "cEO (cos8)/A

for u &P, and

V(u, 8)= —eE,c(coshP+sinhP) coshu cos8/A

for u &P, where

A: (e co—shP+e' sinhP) .

The field components are given by

E„=—~ '8 V/Bu

and

E,= r 'aV/—a8-,

where

7 =c(sinh u +sin 8}'

(2)

(3)

(4)

E„(p,O)/Eo ——I+ (e —e)a /( ea+e'b), (6)

where a =c coshp and b =c sinhp are the semimajor and
semiminor axes, respectively, of the inclusion. In the
conducting limit, e'~oo for fixed e, Eq. (6) becomes
I +a /b.

Using the above results, the Horowitz energy-balance
calculation can now be completed. The question to be
answered is the following. %hat is the difference in elec-
trostatic energy between the medium with the inclusion
and the medium without the inclusion? This question is
answered nicely in Jackson's book, ' for the case where
the sources of the applied field are fixed. That is the case
considered here, since one of the boundary conditions is
that E~EO far from the inclusion. For E=Eo initially,
and the geometry considered here, this energy difference
is given by 5U= —2p„Eo, where p is the dipole moment
of the inclusion. The dipole moment is easily found using
Eqs. (4) and (5), with the result that

If we define the geld multiplication factor at the tip of the
inclusion as the ratio

E„(p, 0) /Eo E„(p,0) /E——o,
then this factor is

FIG. 1. An elliptical inclusion with dielectric constant e ern-

bedded in an isotropic linear dielectric medium with dielectric
constant e. Far from the inclusion, the electric field is uniform
in the x direction, with magnitude Eo.

p„=2nc eEO(e —e)(coshp+sinhp) sinh( —,'p)/A .

The energy difference 5U then becomes

5U= ——,'p Eo

nc eEO(e' —e)—(coshP+sinhP)sinh( —,'P)/A . (8)

In the limit of a conducting (e'~00 for fixed e} crack
(P~O), the energy difference is
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5U= ——,'mac Eo .2 2 (9)

Note that 5U is negative, indicating that the introduction
of a conducting crack has lowered the energy of the sys-
tem. If one were to do the same calculation for a fixed
potential, which is the more usual experimental condi-
tion, 5U would have the same magnitude but opposite
sign. However, in this case, one also has to consider the
loss in potential energy of the external battery required to
fix the potential, which loses 25U of energy in this situa-
tion, ' thereby making the net change in the electrostatic
energy the same in both cases. The Appendix explicitly
works out both cases for the example of a large capacitor
containing the cracked dielectric medium. One should
also note in (9) that the limit e'~ ~ must be taken first to
obtain a nonzero result.

We now define I ' to be the breakdown energy required
to create a unit area of conducting crack (per unit length
in the z direction). The surface energy of the crack is
then 4I'c &0. The total energy difference between a
cracked and uncracked medium becomes

5U = —ATE'EOC +4I (10)

For small c, the linear term in (10) dominates, so that
5U &0, implying that it would be energetically unfavor-
able for a crack to exist or propagate. For large enough
c, the quadratic term will make 5U&0 and decreasing
with increasing c, indicating that crack propagation is en-
ergetically favorable. To find the equilibrium point, set
d(5U)/dc =0 with the result that the critical value of the
applied field, EO=Eo is

Eo =(4I' /Tee)1/2

Equation (11) agrees with Horowitz's result. By check-
ing the second derivative of 5U with respect to c at Eo,
one can see that this is a point of unstable equilibrium, so
that for an applied field Eo&EO, breakdown will spon-
taneously occur.

FIG. 2. The x =c crack tip with new coordinates r and 4.
The origin is taken to be at the crack tip. The vertical width of
the crack has been exaggerated for visibility.

A particularly useful constant to define is K'—:(nc )'~ Eo,
called the electric field inten-sity factor or field-intensity
factor. The electric field and the potential near the crack
tip then become

E„=K'cos(—,'4)/(2m. r )'~

E+ ———K'sin( —,'4)/(2mr )'~

V= K'—(2r/m)'~ .cos( —,'4) .

(14)

I( ' is seen to be essentially the amplitude of the r
electric field singularity at the crack tip. This definition
of K' is exactly analogous to that in LEFM, with stress
replaced by electric field amplitude. One can define the
electrostatic energy release rate G' to be

G'=d( ,'iree Eo—}/dc=neE&c (15)

in analogy with LEFM. G'dc is the amount of electro-
static energy released when the crack extends by dc. In
terms of K', G'=eK' In LEFM. , G =K /E, where E is
Young's modulus. The critical value of 6' is defined via
Eq. (10},so that G,'=4I'. The critical value of K' is then
K;=2(I"/e)'~, so that Eq. (11)becomes

Eo ——K;/(ac )'

III. FIELD-INTENSITY FACTOR

E,=Eo(c/2r)' cos( —,'4),

E~ = Eo(c/2r )' sin( —,'@—) .
(12)

In addition, in this limit the potential becomes

V= Eo(2cr )' cos—( —,'@) . (13)

The region around the tip of the conducting crack is of
particular interest, as this is where the most intense fields
are found and is the region where actual breakdown
would occur. One can take Eqs. (4) and (5) and expand
them in the limit (u, e)~0 in order to focus on the crack
tip. We will work only in the e'~co, P~O limit from
now on. For definiteness, focus on the x =c crack tip.
Figure 2 shows the crack-tip region with the origin at the
crack tip. The new coordinates are r, the radial distance
from the crack tip, and 4, the angle from the x axis. In
terms of these variables, the limiting form of the electric
field is

IV. CONTOUR-INDEPENDENT J' INTEGRAL

In LEFM, Rice' has developed a line integral called
the J integral that is contour independent. The useful-
ness of this integral comes about when the contour en-
closes the crack tip. Evaluating the J integral then gives
6, the elastic energy release rate. The J integral, since it
is defined for nonlinear as well as linear elasticity, is often
used in elastic-plastic materials, where plastic deforma-
tion is approximately treated as nonlinear elastic dis-
placement. An analogous integral for LOBE, denoted J',
will be developed in the following.

The J' integral is most easily developed by starting
with the J integral from LEFM and transforming it ac-
cording to a mapping between the two problems. This
mapping is displayed in Table I. The elastic J integral is

J= J [ —(o n}.(Bu/Bx)ds+ Wdy], (17)
C

where o is the stress tensor, n is the unit normal to the
contour, u is the displacement vector, and 8'is the elastic
energy density. Using Table I, one can immediately write
the form for J'
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TABLE I. This table displays the mapping between the phys-

ical quantities and boundary conditions of LEFM and LDBE.

LEFM LDBE

Stress o.

Strain e
Displacement u
Moduli C„

Fixed displacement
Fixed load

Physical quantities
Displacement field D
Field E
Potential V
Dielectric constant e

Boundary conditions
Fixed charge (field sources)
Fixed potential

FIG. 3. Showing C& and Cz, the contours used for evaluating
the J' integral in Sec. IV. The marked points are the initial and
final points for each contour.

J'—= f [—(D n)E„ds+ W'dy], (18)
C

where W' is the electrostatic energy density.
To show that J' is contour independent, one first

shows that J' is zero for a region that has no field singu-
larities. By applying Gauss's theorem' to the first term
in (18) and Stoke's theorem' to the second term, one can
write (for a singularity-free region):

J'= f da[ D(VE„—)+BW'/Bx], (19)

where the integration is now over the area enclosed in the
contour and V D=O was used. By expanding BW'/Bx
one can easily show that J' is identically zero.

Note that this result holds even for a nonlinear depen-
dence of D on E. Now consider the two contours C& and

C2 enclosing the crack tip in Fig. 3. Define a third con-
tour C3 that starts at point 1, follows C2 counterclock-
wise to point 2, goes along the crack until it meets C, at
point 4, and then follows C, clockwise to point 3, and
'finally runs along the crack back to point 1 again. This
contour avoids the crack-tip singularity, so that J' evalu-
ated along C3 is zero. The two pieces of C3 that follow
the crack surface make no contribution to the integral, as
D„and dy are both zero along the crack surface (away
from the crack tip). Therefore, J'(C&)=J'(C2) when
both are transversed in the same sense. C& and C2 are ar-
bitrary, thus proving the contour independence of J'.

To show that the value of J, is just equal to 6', the
electrostatic energy release rate, when the contour does
enclose the crack tip, take contour C& in Fig. 3 to be a
circle of radius r centered at the crack tip, with r & c
small enough so that Eqs. (12) apply. Inserting (12) for
the fields in the definition of J in Eq. (18), and taking
ds = rd 4, dy =r cosN d 4, it is easy to see that

The factor of —,
' comes about because that is the energy

release rate for one end of the crack. The full 6 =~EEoc
includes both ends of the crack. Since contour C, en-
closed only one crack tip, we only get one half of the full
electrostatic energy release rate.

It should be noted at this point that in LEFM other
contour-independent line integrals similar to J have been
developed by Knowles and Sternberg utilizing Noether's
theorem. ' Similarly, it is possible that J' is not the only
such integral for LDBE.

V. DISCUSSION

The two quantities that characterize the dielectric-
breakdown strength of a material are, under LDBE, the
critical field-intensity factor K,'=2(1 '/e)', and e, the
length of the largest conducting cracklike flaw.

E,' is determined by the breakdown surface energy and
the bulk dielectric constant. Clearly I' must be related
to the first ionization energy of the atoms or molecules
making up the material, and also to the density, as I' is
defined per unit area. This would be the ideal surface en-
ergy, analogous to the thermodynamic surface energy I T
in a solid. In LEFM, however, it is known that in almost
every case the surface energy that appears in the elastic
E, is always larger than I T, even in "ideally brittle"
solids like Si02 glass. In some materials, like metals, the
fracture surface energy includes crack-localized plastic
deformation energy, making the effective I three or four
orders of magnitude larger than I T. It is interesting to
speculate what sorts of analogous mechanisms could exist
in a dielectric. Perhaps localized Joule heating could be
incorporated into an effective I'. In the field of elastic
fracture, artificially toughened ceramics can be made that
incorporate metastable zirconia inclusions. These in-
clusions undergo a stress-induced phase transition to a
larger-volume structure. When a propagating crack en-
counters such an inclusion, the transition is triggered by
the high crack-tip stress fields and energy is absorbed, in-
creasing I and thereby K, . ' Perhaps the similarities be-
tween LEFM and LDBE can fruitfully be exploited to
suggest analogous ways to make dielectric materials with
higher breakdown strengths.

The existence and size of cracklike conducting flaws is
an important question to be resolved in order for LDBE
to have application to real materials. Whitehead men-
tions that the original Horowitz calculation, while suc-
cessfully explaining experimental strengths and the ex-
istence of a discrete breakdown path, was not further ap-
plied because "no experimental evidence has been ad-
duced as to the existence and influence of these cracks
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upon electrical breakdown. . . ." That was the situation
as of 1951; perhaps a different verdict could be given to-
day. Certainly in the elastic case, the existence of cracks
of the appropriate size to explain experimental strengths
is now well established (after initial doubts). If such a
crack were to be filled with ionized air or water vapor, for
example, it would seem to be able to act as a flaw of the
right kind for LDBE to apply.

A simple experiment to perform to check the validity
of LDBE would be to incorporate metallic inclusions into
some kind of resin in a manner similar to that done to in-
vestigate the application of LEFM to elastic fracture. '

Of course, one would have to duplicate the two-
dimensional geometry used in the derivation of LDBE.
Utilizing the usual experimental precautions to avoid
electrode-induced breakdown, ' one could then study the
breakdown field Eo as a function of conducting crack
length c. A linear fit (if appropriate) of Eo versus
(nc) '~. would give the value of K;, which, along with a
dielectric constant measurement, could be used to deter-
mine I'. One could then use the measured K,' and care-
ful microscopy or other techniques to analyze the break-
down strengths of materials with naturally occurring
flaws. If the measured values of I' were much larger
than a reasonable estimate of its ideal value, one would
have to analyze the difference in terms of other energy-
consuming processes in the crack-tip region. There are
other problems in dielectric breakdown that might be
studied with LDBE, in ways analogous to LEFM. Dielec-
tric aging' is the phenomenon by which breakdown can
occur when a material is exposed to a subcritical field for
a long period of time, or to a cyclically varying field with
subcritical amplitude. The analogous phenomena in elas-
tic fracture, static and dynamic fatigue, have been suc-
cessfully studied via LEFM. In addition, LDBE might
also be applied to the study of treeing, ' where the break-
down path bifurcates into a treelike structure, in a
manner similar to the application of LEFM to under-
stand crack branching.

In elastic fracture, it is possible to load a cracked speci-
men in such a way that crack growth occurs stably, ena-
bling the experimentalist to follow the crack with a mi-
croscope, an arrangement that can lead to new under-
standing. ' An example is the double-cantilever beam ar-
rangement. One might speculate on the possibility of
producing the same effect in a dielectric medium. To
achieve this effect, one must have an arrangement of field
plus crack such that G', the electrostatic energy release
rate, is a decreasing function of the crack length c, or at
most a constant independent of c.

The results of this paper can be applied to recent work
on lattice models of dielectric breakdown, ' to give a
lower bound on the lattice-size dependence of the dielec-
tric breakdown strength. In Appendix C of Ref. 18, a
bond-percolation network model is considered where a
fraction p &p, of the bonds are conductors and a fraction
(1—p) are insulators. The insulating bonds have a criti-
cal voltage V at which they break down and become con-
ductors, which makes this network a model for dielectric
breakdown. For values of p such that the linear dimen-
sion of the network, L, is much bigger than the percola-

tion correlation length, Duxbury and co-workers found
that the average dielectric breakdown field strength scales
with L as

E, -[a+b(lnL) ] (20)

where a=a, for initial breakdown and a=ab for final
breakdown, and —,

' &ab &a, &1 in two dimensions. The
quantity lnL is the length of the largest critical defect,
found by using a Lifshitz-type' argument, and a and b
are size-independent constants. Equation (20) was
developed using a continuum analysis to get the field con-
centration at the end of a long, elliptical crack, so it is not
unreasonable to apply the results of the continuum
analysis of this paper to the same network problem.
Equation (11) states that for a single conducting crack of
length c, the critical breakdown field is proportional to
c '~ . In the network analysis, ' c -(lnL ), implying that
the average breakdown field, at least in the dilute limit,
should scale with L as

E, -(lnL ) (21)

This result would imply that a, =ab ———,', since in the case
considered here the Horowitz energy balance is at a point
of unstable equilibrium, so that breakdown is spontane-
ous at the critical applied electric field. However, in elas-
tic fracture, it is possible for crack propagation to change
from unstable to stable for crack lengths larger than some
critical value, especi. ally in a finite system when the
crack length is an appreciable fraction of the system size.
If this same effect exists in dielectric breakdown, it might
result in apparent differences between a& and ab found in
finite-size computer simulations. However, recent corn-
puter simulations ' of a similar model found that the ap-
plied voltage for breakdown initiation was almost identi-
cal over many configurations to the applied voltage re-
quired for breakdown completion for one value of the
system size L. The result a&

——ab ———,
' is, of course, a

lower bound for a& and ab since the LDBE analysis does
not consider the case of a two-crack flaw. More recent
results by Duxbury and co-workers confirm that
a, =ab ——1 when two-crack flaws are considered.

Further work in regard to the lattice model that would
be interesting would be to treat e and I in effective-
mediurn theory as a function ofp, compute c numerically,
and then apply Eq. (11) to computer simulation results.
Also, a similar energy-balance-type calculation could
probably be done for the main problem considered in
Ref. 18, that of current burnout of fuses, although the
calculation would be somewhat trickier to carry out,
since one has to take into account Joule heating in the
current plane as well as energy stored in magnetic fields
out of the current plane.

Note added in proof. After this paper was submitted,
D. R. Clarke brought a paper by Hoenig to my atten-
tiop, in which Hoenig derived what are essentially the J'
integral and the electric field intensity factor K'. There
are some errors in his derivation and interpretation of theJ' integral, however, which I will address in a subsequent
paper that gives a more rigorous treatment of this in-
tegral.
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V, the change in energy of the capacitor now becomes

5U, =—,'(C+dC)V ——,'CV = —,
' V dC . (A2)

The change in potential energy of the external battery is
5Us = VdQ, where dQ is the amount of charge transport-
ed in order to keep the potential constant. The value of
dQ is found from

APPENDIX
d V=0=(dQ/C) —(Q/C )dC (A3)

5U, =—,'Q /(C+dC) —
—,'Q /C= ——,'(Q/C) dC . (A 1)

Note that if the dielectric constant of the inclusion is
larger than that of the medium, dC &0 and so 5U, ~0.
This was the case covered in Sec. II. For fixed potential

Assume a dielectric medium with an inclusion of
different material is contained in a capacitor whose ca-
pacitance without the inclusion present is C. The pres-
ence of the inclusion causes C~C+dC. For fixed
charge Q on the capacitor, the change in energy is

or

dQ =(Q/C) dC= VdC .

Therefore, 5U=5U, +5Utt becomes

5U= —,
' V dC —V dC= ——,

' V dC= —
—,'(Q/C) dC,

which agrees with (Al).

(A4)

(A5)

'Address after Nov. 1, 1988: National Bureau of Standards,
Building Materials Division, Gaithersburg, MD 20899.

'Engineering Dielectrics Volume IIA: Electrical Properties of
Solid Insulating Materials, edited by R. Bartnikas and R. M.
Eichhorn (ASTM, Philadelphia, 1983).

A. Kelly and N. H. Macmillan, Strong Solids, 3rd ed. (Claren-
don, Oxford, 1986).

A. A. GriSth, Philos. Trans. R. Soc. A 221, 163 (1921).
4C. E. Inglis, Trans. Inst. Naval Archit. 55, 219 (1913); I. N.

Sneddon and M. Lowengrub, Crack Problems in the Classical
Theory of Elasticity (Wiley, New York, 1969).

5There are by now many textbooks on fracture mechanics and
the strength of materials. Several I have used are B.R. Lawn
and T. R. Wilshaw, Fracture ofBrittle Solids (Cambridge Uni-
versity Press, Cambridge, 1975); A. G. Atkins and Y. W. Mai,
Elastic and Plastic Fracture (Ellis Horwood Ltd. , Chichester,
England, 1985); David Broek, Elementary Engineering Frac-
ture Mechanics (Noordhoff, Leyden, 1974); R. W. Davidge,
Mechanical Behauior of Ceramics (Cambridge University
Press, Cambridge, 1979); J. E. Gordon, The ¹wScience of
Strong Materials, 2nd ed. (Princeton University Press, Prince-
ton, 1976).

G. R. Irwin, J. Appl. Mech. 24, 361 (1957).
~The actual separation process in a solid at the crack tip is a

subject of continuing debate. See references contained in the
books listed in Ref. 5.

8G. E. Horowitz, Arch. Elecktrotech. Berlin 18, 555 (1927) (in
German).

9S. Whitehead, Dielectric Breakdown of Solids (Clarendon, Ox-

ford, 1951).
J. R. Rice, J. Appl. Mech. 35, 379 (1968); in Fracture, edited

by H. Liebowitz (Academic, New York, 1968), Vol. 2.
"See, for example, P. M. Morse and H. Feshbach, Methods of

Theoretical Physics (McGraw-Hill, New York, 1953), Vol. II,
p. 1199.
J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New

York, 1975), Sec. 4.7.
&3G. Arfken, Mathematical Methods for Physicists, 2nd ed.

(Academic, New York, 1970), pp. 48-53.
' J. K. Knowles and E. Sternberg, Arch. Ration. Mech. Anal.

44, 187 (1972).
~5Fracture in Ceramic Materials: Toughening Mechanisms,

Machining Damage, Shock, edited by A. G. Evans (Noyes,
Park Ridge, N.J., 1984).

' B.E. Nelson and D. T. Turner, J. Polym. Sci. 11, 1949 (1973).
'7B. R. Lawn (private communication).

P. M. Duxbury, P. L. Leath, and Paul D. Scale, Phys. Rev. B
36, 367 (1987).

' I. M. Lifshitz, Adv. Phys. 13, 483 (1964).
J. P. Berry, J. Mech. Phys. Solids 8, 194 (1960).
S. S. Manna and B. K. Chakrabarti, Phys. Rev. B 36, 4078
(1987).
Y. S. Li and P. M. Duxbury, Phys. Rev. B 36, 5411 (1987);
Paul D. Beale and P. M. Duxbury, ibid. 37, 2785 (1988).
Alan Hoenig, Int. J. Eng. Sci. 22, 87 (1984).

24E. J. Garboczi (unpublished).


