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First-order unbinding transition of an interface in two dimensions
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A two-dimensional model describing the unbinding of an interface from an attracting substrate,
induced by a defect line in the bulk, is proposed. It contains Abraham s model as a special case.
Although only short-range interactions are present, a sharp first-order unbinding transition is

shown to take place. The model is formulated in terms of both the solid-on-solid model and Ising
spins. Thermodynamic properties are evaluated exactly in both cases. The average interface dis-

tance from the substrate and the full magnetization profile are calculated in the solid-on-solid ver-

sion. The first-order transition is discussed in light of Cahn s wetting criterion.

I. INTRODUCTION

The behavior of an interface in the presence of an at-
tracting substrate is a subject of considerable interest. '

One of the most extensively studied phenomena in this
field is wetting. Most of the analytic studies of wetting
transitions (interface unbinding) are based on models
with power-law long-range forces. This is motivated by
the fact that systems with experimentally observed first-
order wetting transition involve some kind of long-range
forces. The exactly solvable two-dimensional (2D) model
of Abraham (model A ), which contains only short-range
forces, leads to a continuous wetting transition.

In the present work we introduce and solve exactly a
2D model (model AB), with short-range forces, which ex-
hibits a sharp Grst-order unbinding transition. Exact
solutions for first-order transitions, as opposed to
second-order transitions are scarce. Furthermore,
finite-size scaling theory for first-order phase transitions
has not been tested in exactly solvable models, except for
the mean-field theory. Our new model AB will be solved
analytically for finite-size effects.

We will formulate the new model both in terms of Ising
spins and the restricted solid-on-solid (RSOS) model.
The 2D Ising version of the model is depicted in Fig. 1.
The substrate is represented by the boundary with nega-
tive spins. The contact interaction attracting the inter-
face to the substrate is modeled by a line of weak bonds
J, =a,J (0 & a, & 1), where J denotes the bulk ferromag-
netic interaction. The boundary conditions far from the
substrate, in the Nth 1ayer select positive spins. At a dis-
tance L from the substrate a second line of attracting
bonds Jz ——a2J (0&a2&1) is introduced. With a2 ——1,
i.e., in the absence of the second defect line, the system is
known as the Abraham's model (model A }. It undergoes
a continuous wetting transition at a temperature T„
below the critical temperature (T, ) of the 2D Ising model.
At the wetting transition the average distance of the in-
terface (separating the predominantly + and —phases)
from the substrate diverges smoothly to infinity. The
profile of the magnetization, m (z), measured from the
substrate at z =0, changes sign at zo(T). As the transi-

tion temperature is approached from below, zo diverges
continuously.

The introduction of the second line of weak (defect}
bonds, Jz, at a distance L from the substrate changes
drastically the above picture. In the limit L ~ 00

(L «N}, and provided a2&a&, the interface unbinds
discontinuously from the substrate and becomes localized
at the second defect line. This first-order transition takes
place at T& &T . At T& the distance of the interface
from the substrate, represented by zo, jumps from a finite
value to infinity. For finite but large L the transition is
rounded. Since we are able to perform an explicit calcu-
lation for finite L, we can verify the predictions of the
finite-size scaling theory.

Finally, in our terminology the case with a&
——1 and

with a defect line in the bulk corresponds to model 8, dis-
cussed in Refs. 3 and 6. Since this model does not exhibit

N

FIG. 1. 2D Ising model with nearest-neighbor ferromagnetic
couplings J (solid lines) and two seams of defects: one with cou-
plings J& ——a&J (double-solid lines) positioned next to the sub-
strate ( —edge) and the other with couplings J~=a2J (solid-
dashed lines) at a distance L from the substrate. Both a &,a2 & 1.
Case a& &a& & 1 corresponds to model AB; a, & 1, a2 ——1 to
model A; and a, = 1, a& & 1 to model B.
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a wetting transition, it is of no immediate interest to us.
This paper is organized as follows. In Sec. II, we

present the formalism for calculating the free energy of
model AB in the Ising language. In Sec. III we consider
the particular case of a2 ——1, model A. Section IV de-
scribes the results for a& ~a2 & 1 in the limit L ~~,
while in Sec. V we study the effects of finite L. In Sec.
VI, the RSOS version of model AB is described and its
free energy is calculated. In Secs. VII and VIII, respec-
tively, we obtain analytic results for the average interface
displacement and magnetization profile of the RSOS
model. We conclude (Sec. IX) with a summary and a dis-
cussion of the results, including the connection of our
first-order unbinding transition with Cahn s wetting cri-
terion.

II. EXACT RESULTS FOR THE 2D ISING
MODEL WITH BULK

AND SURFACE DEFECT LINES

To calculate the interfacial properties of the Ising mod-
el depicted in Fig. 1 we use the transfer matrix method.
Denote, by

~
+ ) and

~

—), the column states with all
spins up or down, respectively. Then the partition func-
tion of model AB can be expressed as

Z+ —&+
i

V"-'IV V'-'W]
i

—) . (2 1)

P=-, ([+&(+[ +
~

—&& —[), (2.3)

(2.4)

~

—v) is a state with all spins reversed relative to
~

v).
The advantage of introducing P and Q is that these
operators have a convenient form in the Jordan-Wigner
representation, which we are going to use.

As is well known Vcan be represented ' as

V=(2s)~~2V](K) Vz(K), (2.5}

where

Here V, 8'„and 8'2 are the transfer matrices of the 2D
Ising model with interactions J, J&, and J2, respectively.
[We take the horizontal size of the system to be N+2,
which explains the exponents in (2.1). This will not
matter in the N ~ ao limit. ] In order to cast (2.1) in form
of a trace, customary in transfer matrix calculations, we
introduce a complete set of column states

~

v) and write

Z+ = g (v
i

V 'W]QPV Wz
~

v) . (2.2)

The above is the trace of a product of operators with

unity), /r" and 0' are the appropriate Pauli matrices, " and
s in (2.5) denotes sinh2K. In terms of these matrices

W] 2=(2s) V, (K, 2)V2(K),
M

P= —,
' g (I+0/0/, ])= llm e " V2(R),

k=1 g ~ oo

(2.8}

(2.9)

k=1
(2.10)

+ — ++' + — ++ (2.14)

Here Z++ ——Z+++Z++ is the partition function of a
system similar to the one in Fig. 1, but with all the
boundary spins up (or down, since Z++ ——Z ). With
this notation, the free energy of the system depicted in
Fig. 1 is obtained as

——=lnZ++ +ln 1—F ++

++
(2.15)

The surface free energy per spin (or surface tension) is ex-
pressed as

Z++
lim ln 1—

T M ~ M Z +
(2.16)

Here Z+'+ are evaluated in the N~ 00 limit. The calcu-
lation of Z+'+ proceeds along the lines of Ref. 9, with the
result

We apply the Jordan-Wigner transformation in the form

r]"=2CtC —1, —e'=( —1}"(C/+C ), (2.11)

where n =g; C; C;. Here the operators C satisfy fer-
mionic commutation relations. In terms of the C 's we
have

Q =( —1)", (2.12)

with n'=gk ]CkC„being the total number operator of
ferrnions in the system.

The evaluation of the trace in (2.2) can be done in the
representation in which V is diagonal. The diagonaliza-
tion of V proceeds in the standard way and is described in
detail in Ref. 9, the notation of which we are using here.
This procedure has to be performed separately for n'
even (e) and odd (0). Then we have

Z Z +Z + 0 (2.13)

In the even subspace Q can be replaced by +1, whereas
in the odd subspace Q = —1. It follows that

M

V, (K)=exp K g o" (2.6)
j=1

transfers from column to column (our transfer matrix
propagates in the direction perpendicular to the sub-
strate) and

++—21n
++ M M

E (o —1) E(2o —1—)

2K
(cr 1)—

can=1
M

V2(K)=exp K g o,'cr/+] (2.7)
j=1

transfers within a column. (We use periodic boundary
conditions in the M direction and M is taken to be even. )

In the above, K =J/T (the Boltzmann constant is set to

with

/c (2o —1)—
M

coshE(q) =cc'+cosq,

(2.17)

(2.18a)
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e"' '=(1+cosq cosa~+c*sinq sina~)[(c, +s, cosa )(c2+s2cosa )+e ~~+''i'z, z sin2a ]

+sina [cosq sina +sinq(s' —c'cosa )][s,(c2+s2cosa +e ~q~zz(el @icosa }] (2.18b}

where a is defined by

sinhE (q)sina~ =s sinq,

sinhE(q)cosa =c'+c cosq .

(2.18c)

(2.18d)

circle. Let us denote the appropriate
~

z
~

& 1 singulari-
ties by a and p, respectively, for E(z) and «(z). (There
are also singularities at a ' and p ' outside the unit cir-
cle). For large m, we have

In the above expressions c*=cosh2K*, s'=sinh2E',
c, z

——cosh2(K', z
—K'), and s],p =sinh2(Ki, —K'); K'

is the dual of K defined by e =tanhE.
Both E(q) and «(q} are even functions of q and there-

fore can be expanded in the Fourier series,

e a
em —1

b P
b m —1

Finally, in terms of a and P,

~&~M b ~P~M

(3.3)

(3.4}

E (q) = g e cosmq,
m=0

«(q)= g b cosmq .
m =0

(2.19)

Let us first determine the singularity of E(z) nearest to
the unit circle. From (2.18)

E(z)=ln cc'+ —(z+z ')
2

Evaluating the two sums in (2.17), we get
0Z++

ln = g (ek~+bkM),M Z' (2.20}

irn ln(1 —e M~a
1
a

I
+b I PIf . 1

T M ~ M

where k in (2.20) runs over odd integers. It will be shown
»««ha«kM —

~

& ~, b/M —
~ p~ with

~

& ~, ~ p~
& 1, therefore the k = 1 term in the above sum dominates

in the M —+~ limit. Given a and p, the free energy in
(2.16) can be written as

'2 1/2 '

Z +Z+ CC +
2

—1 (3.&)

~

a
~

=cc' —1 —[(cc'—1) —1]'

with a real and negative. By (2.18),

cc' —1 =coshE(n ),
and using the definition of c and c*,

(3.6)

(3.7)

E(z) has a branch cut singularity at the point where the
square root in (3.5}vanishes. We obtain

=ln max(
f

a /, /
p

/
), (2.21) E(m ) =2(K K') . — (3.8)

where a and b are some constants. Applications of the
above formalism will be presented in the next sections.

Recall that the above expressions are considered here for
K ~ K' (below T, ). Using (3.7) and (3.8) in (3.6), we get

e E(1r)— (3.9)
III. THERMODYNAMICS OF WETTING

FOR A SINGLE DEFECT LINE NEAR A WALL

In this section we mostly reproduce results of Ref. 3.
In the special case of Jz ——J the expression for «(q) given
in (2.18) simplifies considerably

Let us now determine the appropriate singularity of
«g (q) given by (3.1); «„(q) has logarithmic singularities
when the right-hand side (rhs) of (3.1) vanishes. With the
notation

a&(q)
e =c, (1+cosq cosa, }+s,(cosa +cosq)

+(c,c*+sis')sinq sina~ .

aq5=tan, w =tan+,2' 2'
(3.1) the zeroes of the rhs of (3.1) are determined from

(3.10)

According to (2.20) and (2.21) we need the Fourier
coefficients e and b of E(q) given by (2.18) and «(q)
given by (3.1). The Fourier series (2.19}can be written in
terms of z =e'q as

c, (1+w 5 )+s, (1—w 5 )+2w5cosh2K, * =0 . (3.11)

We need the solution of (3.11) nearest to the unit circle in
the z =e'q plane. The relation between 5, w, and z is

E(z)= —,
' pe (z +z™},

«~(z)= —,
' gb (z +z™). (3.2)

—w z +
2z

6 sw

1 —5 (c'+c)+(c' —c)w

(3.12)

(3.13)

The functions E(z) and «(z) are analytic near
~

z
~

=1.
We are interested in their singularities nearest to the unit

These equations are easily derived by using the definitions
(3.10) of w and 5, and (2.18). In terms of z, (3.11) is a
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fourth-order equation. It is easy to solve (3.11) for the
variable y =5w. The appropriate solution for y is

c(e+1)+s(s —1)
c(c+1)—s(s —1)

(3.17)

y = —exp(4K I
—2K '

) .

By employing (3.12)—(3.13) we obtain

(3.14) At T the interface depins from the substrate. This be-
havior was first obtained by Abraham.

sy +y(e*+c)
s+y(c —c') (3.15)

With (3.15), z is finally determined by (3.12). For T & T,
we have w &0 in (3.15). The solution z =P closest to the
unit circle is then given by

1 —w 2

1+m

2
1 —u
1+m

1/2

(3.16)

The free energy of model A is obtained from (2.21) using
(3.9) and (3.15). At the temperature defined by a
a(T )=P(T ) the second temperature derivative of the
free energy has a jump. For T&T, ~P~ & ~a ~. For
T & T,

~

a
) & ) p ~, and f=2(K K'), w—hich is just

the Onsager surface tension. These results are illustrat-
ed in Fig. 2. The equation a=P for T reduces to

IV. TWO-DEFECT MODEL IN THE L ~ 00 LIMIT

e =e (e2+s~cosa ) . (4.1)

In order to determine the free energy of model AB we
have to locate the

~

z
~

&1 singularity of trAII nearest to
the unit circle in the z =e plane. Such a singularity for
~„has been found in the preceding section. Additional
singularity is obtained by solving

c2+s2cosaq 0 (4.2)

expressed in terms of z =e'q. The solutions of this equa-
tion can be obtained in analogy with the ones considered
in Sec. III. Denoting the appropriate solution by y, we
obtain

For a2&1 we have to consider the full expression for
t~(q) given by (2.18). However, in the L ~ ae limit we ob-
tain

1.2—
~ ~

1.0—

L =14
where

CC
~ —C ($2$4+ 1)I/2

2 2s2s —1

(4.3)

(4.4)

and y is real and negative. By (2.21), the interfacial free
energy, fAII, of model AB can be written as

0.8

0.6

fAB
T

=ln Inax( a /, / P [, / y /
) .

Let us introduce

(4.5)

0.4
T =ln)a/

=ln[P/

(4.6a)

(4.6b)

0.2 =ln/y
/

(4.6c)

0.0
1.0 'l.5 2.0

Then

fAII= m(tfnfoA, ftt) . (4.7)

FIG. 2. Interfacial free energies per spin {surface tensions).
The Onsager surface tension, of the 2D Ising model without de-
fects is shown by the dashed line. The interfacial free energy of
model AB, with L = ~, is the solid line with a kink at
T, ( = 1.62). Model B corresponds to dotted (T & 7, )-solid
(T& Tl) line, while model A corresponds to solid (T & T, )-
dotted (T & Ti) line; a l and a2 values for this figure are a, =0.5,
a2 ——0.6. The inset shows magnification around the kink
(1.61& T&1.63; 0.829&f&0.849), for finite L =14. Two
branches of f„e correspond to the top and bottom dashed lines,
see (5.4) et seq. %'hen L ~~, the branches coincide to form a
kink in f„tt (solid line in the inset).

As mentioned in Sec. III fo is the surface tension of the
homogeneous 2D Ising model (tt I

=a 2
——1). Using

(4.3)—(4.4), it is easy to show that below T„fo & ftt. At
T„ fo=ftt. According to the results of Sec. III, for
T & T, fo &f„and for T & T & T„fo &f„(see Fig. 2).
The first-order unbinding transition takes place at T&

determined by

y(TI)=P(TI) . (4.8)

This corresponds to f„=ftt. Using the analytic expres-
sions for P and y given by (3.15)—(3.16) and (4.3)—(4.4),
relation (4.8) leads to
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xi cs(1 —xi ) —(c+sxi )
'2 2 2

cs(1—xi ) —(s+cxi )
(4.9)

where x,. =tanh(a; J/T) (i = 1,2). In the limit a2 ——1 (4.9)
reduces to

z+ = —,'[(p+y)+
I p —y I

]=max(p, y } .

For the L = 00 free energy we have

fAE = 2[(fA+fE }—
I fA fE—I

]=min(f A, fs)

(5.6)

(5.7)

s(s —1)
c(c+1) (4.10)

which is equivalent to (3.17). All the above results are de-
picted in Fig. 2 (the inset will be discussed in Sec. V). For
fAE we finally have

fAB

f„, T&T, ,

fE, Ti &T&T~
(4.11)

At T„fAE has a kink; its first derivative with respect to
T is discontinuous. The magnitude of this discontinuity
determines the latent heat associated with the first-order
transition.

The first-order transition at T1 corresponds to a sud-
den jump of the interface (localized at the substrate at
T =0}to the defect line at L ( ~ ao }. The detailed study
of this jump will be carried out in Sec. VII, whereas the
shape of the magnetization profile will be discussed in
Sec. VIII.

V. FINITE-SIZE EFFECTS
FOR THE TWO-DEFECT MODEL

Expression (2.18) for x allows us to study the effect of
finite L on the first-order transition. By doing so we can
verify the predictions of the general finite size scaling
theory. We will be interested in the asymptotic behavior
(for model AB) close to T, , with L large but finite. In
this limit the condition for vanishing of e" in (2.18) can be
expressed as

e "(c,+s2cosq )=Poe
q 0

Here the coefBcient of e

Po ——s2sina& [sinaq (s i +c i cosq )

+sinq(sinh2I(. i
—cosh2Ki cosq)],

(5.1)

(5.2)

as well as E (q), are defined in (2.18) and are evaluated at
T = T, . In order to study the form of the rounded singu-
larity (kink) of fAE at T, , we employ the method of Ref.
10. For T= T, and large L, (5.1) reduces to

(z —P}(z—y) =Pe

where P ~ P0. From this we obtain the two roots

z &

I (p+y )+[(p y )2+4P —21E]ij2I

(5.3)

(5.4)

LE—
Away from T, , in the strict L ~ Oo limit,

(5.5)

These resolutions correspond to the two branches of the
free energy shown in the inset in Fig. 2 (solid-dashed
lines). The true finite L free energy of model AB corre-
sponds to the branch z+ in (5.4). The gap between the
two branches at T, behaves according to

The "mixing" of the two free-energy branches as a mech-
anism of a finite-size rounding, given by (5.4), is similar to
that predicted phenomenologically for bulk Ising models
in cylindrical geometries. '

Some remarks concerning the crossover length scale
E ' in (5.5) are due. This length is not one of the obvi-
ous bulk quantities like the correlation length or the in-
verse surface tension. (The latter length scale enters bulk
first-order transition scaling for Ising strips. ) Indeed,
E (z) as given by (2.18) is the Onsager function, however,
it is evaluated at T =T, and z =e'e=p=y. (It reduces
to the Onsager surface tension for z =a.) Solid-on-solid
model calculations yield a more transparent interpreta-
tion of this length (see Sec. VII and VIII).

VI. THE SOLID-ON-SOLID MODEL
FORMULATION. INTERFACIAL FREE ENERGY

The solid-on-solid (SOS) approximation has been intro-
duced to model the low-temperature properties of Ising
models. " It has been used' to describe the wetting tran-
sition in d =2. As will be demonstrated below, the quali-
tative features of the results of the rather complicated
calculations in Sec. II-V can be obtained with less effort
if the RSOS formulation of the Ising model is used. The
relative simplification of the calculations in the RSOS
model will enable us to obtain closed form expressions for
the average distance of the interface from the substrate as
well as for the magnetization profile. The calculation of
these quantities for the Ising model has been carried out
for model A only, by employing sophisticated
mathematical techniques. The limitation of the SOS or
RSOS models is that for example the high- and low-
temperature properties cannot be studied simultaneously.
(The high-temperature phase does not exist in the SOS
formulation. ) T, of the Ising model formally corresponds
to T= 00 in the SOS models. However, when typically
low-T phenomena like wetting are to be studied, the
essential physics can be grasped in the simplified formula-
tion.

In this section we rederive the free energy of model AS
in the RSOS formulation, both for finite L and the
infinite-L limit. The SOS and RSOS models for the prob-
lern studied in this work have the following Hamiltonian:

M —1 M M
H=J X I hi —h;+i I

—ii g fih„o —u X 5i,
, L~ J &0 .

i=1 i=1 i=1
(6.1)

Here the variables h,. assume non-negative integer values,
h; =0, 1,2, . . .. The attractive substrate favors the
configuration with h;=0 (i =1,2, . . . , M), by reducing
the energy by u &0 for every hk ——0. The third term in
(6.1), with u &0, is minimal if all the h; s are equal to L.
As illustrated in Fig. 3, an SOS configuration ( h; j corre-
sponds to an Ising configuration with all the spins be-
tween the substrate and the interface being —,while all
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&=0 1 2 5 4 5 6 7
-3 — — — — + + ++

4 — — —— — + + +
+++

+ + + +
+ + + + +
+++++

substrate interface

FIG. 3. Illustration of the correspondence between the states
of the Ising spins (+1), without overhangs and bubbles, and

RSOS configurations of the interface separating —and + re-

gions. The distance of the interface from the substrate is mea-

sured by the variables h. Neighboring h values can differ by at
most one step in the RSOS model. Configurations of the inter-
face are uniquely specified by the set of i h; i.

A, =1+2t cosh@ . (6.6)

The homogeneous system of equations (6.5) has a non-
trivial solution for A and 8 if the determinant of the sys-
tem vanishes. In the L~ ~ limit this condition is
equivalent to

(y +yte " A—)(2w. te "+w —A, ) =0 . (6.7)

ink, , =ln[y(1+te ')], t ( ti,

lnkb —ln[w(1+2te ")], t & t, .
(6.8)

We seek solutions of the system (6.6)—(6.7) for
p(t;w, y),A(t;w, y), satisfying p&0. It is easy to show
that any eigenvalue of V which corresponds to the con-
tinuous part of the spectrum' is smaller then any solu-
tion A, of (6.6)-(6.7) (provided it exists). The free energy
of the system is then given by the larger of the two solu-
tions for l(,. For fixed y and w we have

At t =t, and p=p' given by

y(1+t, e i' )= (wl+2t, e " )=1+2ticoshp", (6.9)

the remaining spins being + . Thus, the SOS approxima-
tion eliminates Ising configurations with overhangs and
bubbles which are believed to be irrelevant for wetting. If
the difference of neighboring h, 's is allowed to have the
values 0, +1 only, then (6.1) defines the RSOS model. If
this difference is not restricted, (6.1) represents the SOS
model. Since the actual calculations are simpler in the
RSOS model while the qualitative properties are identi-
cal, we use the RSOS version in the following. We ana-
lyze model (6.1) by using the transfer matrix method. "'i
The transfer matrix is labeled by the h values and a stan-
dard nonsymmetric choice for the RSOS model is

y t Ih —h'I ha hLhh= y 'W (6.2)

h
Ce "" h &L. (6.3)

Continuity at h =L requires

A+B =C . (6.4)

Substituting gi, in gi, , TI,s.fi, . A,gi„we obtain t——he con-
sistency conditions at h =L and h =0, respectively,

A,(A +Be " )=y[A +Be

+t(Ae "~Br "' ")], (6.5a)

A( A +B)=w [t ( Ae" +Be ")+(A +B)(1+te ")],
(6.5b)

while the eigenvalue equation for h&0, L leads to

where t=exp( J/T), y =—exp(tt/T), and w=exp(U/T).
The discrete spectrum of V consists of zero, one or two
ejgenvalues which can be determined as follows. The
right eigenfunctions of the discrete spectrum must be of
the form'

fAa has a kink. [The second equation in (6.9) is obtained

by using (6.6).] The first equation in (6.9) can be solved
for p*,

y —w =e " &1.
ti(2w —y)

(6.10)

By substituting in the second equation in (6.9), ti can be

expressed in terms ofy and w as

[w (y —w)(y —1)]'"
t1=

2w —y
(6.11)

Thus (6.10) implies that the first-order transition in the
RSOS model exists provided

1( (3y
w

(6.12)

The borderline case, y =w is equivalent to a, =a&, in this

case T, =O. For y/w =—', (i.e., e " =1) we have t, =l,
T1 —00

If the first expression on the rhs of (6.8) is continued to
the region with 1)t & t„ then —T ink, , determines the

free energy of a model with w =1, U =0. This is the
RSOS version of model A. There is a continuous wetting
transition in this case, at p =0 (the bound state reaches
the edge of the continuous spectrum); t is then obtained

by equating the first and third expressions in (6.9) at

p =0~

1+2t
1+t (6.13)

For t = 1 (i.e., T = ~ ), y =—,'.
If the second expression on the rhs of (6.8) is continued

into the region 0(t (t, , then —Tink, ~ determines the
free energy of the symmetric RSOS model. ' This is an
RSOS model B, in which the values of the integer vari-
ables h; are not restricted, and the Hamiltonian is
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H=Jy lh, h—, „l—uyfi„ (6.14)

(A, —A,, )(A, —Ab ) =I'e

Here A,„k.b are given by (6.8) and

(6.15)

In the symmetric RSOS model there is a continuous wet-
ting transition only for t =1, T =~, w =1. (The Ising
equivalent of the model B has the free energy drawn by a
dotted line for T& T) and by a full line for T& T, in Fig.
2.)

The effect of finite L on the first-order unbinding tran-
sition can be studied analogously to that described in Sec.
V. The condition for the vanishing of the determinant of
the system of equations (6.5) for t close to ti and large
(but finite) L can be written as

In terms of fu, the eigenfunction of V„

(h ) =($0
l
S 'hS

l $0), (7.5}

N

( 0(h} ' ' )/2 (7.7)

e" +1 e "" h&L,

l $0) can be easily calculated once
l
1i") is known, see

(6.3}, with the constants A, 8, C determined by (6.4),
(6.5), and by the normalization condition. Omitting the
details of these straightforward but lengthy calculations,
we only quote some results. First, consider (h ) at t =t,
for large finite L. We have

$0(h) =pe" ebpa(h), (7.6)
' 1/2

L+ 2p (L—h) ——p h

P=4myt&cosh p' . (6.16)

From here on the discussion of the finite-L effects is iden-
tical to the one given in Sec. V and will not be repeated.
The finite length scale analogous to E ' in (5.3} is now
()u') '. The interpretation of this length scale will be
clarified by further RSOS calculations in Secs. VII and
VIII.

VII. AVERAGE INTERFACE DISPLACEMENT

y(h0 l

V"g V +' —"
l h~)

&h, )=
2&ho l

V "lhbt&
(7.1)

Here
l h, ) is the state vector of the ith layer. The state

of the zeroth layer is fixed (typically at h0 ——0) and the
summations in (7.1) are carried out over all the possible
states of the Mth layer. Using the spectral representation
of V in the thermodynainic limit (M ~ ~) (7.1}becomes

(h &=&q'l tl y" & . (7.2)

In (7.2),
l
P") and (P l

stand for the right and left
eigenstates of the nonsymmetric matrix V, corresponding
to the largest eigenvalue. In the "h" representation
[when

l
g" ) is given by (6.3)] the effect of the operator f

on the rhs of (7.2) is multiplication by an integer number
h. V can be symmetrized by a similarity transformation

The average distance of the interface from the sub-
strate will be calculated using the RSOS formulation of
model AB. As discussed in Sec. VI the position of the in-
terface separating the + and —phases of the SOS model
in the nonwet regime is determined once the values of all
the integer variables h, are specified (see Fig. 3}. The
average distance of the interface from the substrate is
therefore given by

where

w(e )' —1}
2(e " —1)+y +2w

' 1/2

(7.8)

(h ) —1/p' . (7.10)

Relation (7.10) then suggests an interpretation of the
finite-size length scale ()M') ' in the RSOS model, and
possibly (E) ' in the Ising model.

If (h ) is evaluated with u=0 (the RSOS analog of
model A), it is found to diverge continuously at t, the
temperature of the wetting transition. As discussion ear-
lier, tu=O at t . For t ~t, (h ) —I/p, . [By (7.10), the
crossover from the first-order to second-order transition
can, in principle, be investigated by taking the limit
u ~0, w ~1 of the SOS results. Indeed, from (6.10) and
(6.11) one obtains that in this limit t, =t =(y —1)/(2
—y) and p'=0.]

VIII. MAGNETIZATION PROFILE
FOR THE RSOS MODEL

With the above results, (7.5) can be evaluated, with the
leading order result

(7.9)

This shows that at the first-order transition the interface
becomes pinned to the defect line. The average distance
of the interface measured from the wall diverges, the in-
terface unbinds from the substrate, but it does not become
delocalized

At t = t i, L ~ ~ the value of ( h ) is expected to jump
from a finite value to infinity. This finite can be evaluated
by repeating the calculation for t ~t I but with I.= 00.
One obtains

V=SV,S

where S is diagonal with Spi, ——eg5pg, and

y', h=0,
1/2

1, otherwise.

(7.3)

(7.4)

As discussed in Sec. VI there is a one-to-one correspon-
dence between the configurations of the RSOS and the Is-
ing model without overhangs and bubbles (see Fig. 3}.
This correspondence allows the calculation of the average
magnetization of a column of spins in Figs. 1 and 3 as a
function of the distance from the substrate within the
RSOS formulation. For the Ising case this profile has



38 FIRST-ORDER UNBINDING TRANSITION OF AN INTERFACE. . . 9003

been calculated in Ref. 3 using a rather complicated ap-
proach (for model A only). In this section we first derive
the result for the RSOS profile of model A (compare Ref.
3) and then calculate it for model AB. Because of the
analogy between the RSOS and Ising models it is easy to
see that the average value of the magnetization in the lth
column (see Fig. 3) can be obtained from

(8.1)

ln2

2p
(8.8)

The calculation of the profile for model AB is now
straightforward. Only $0 and S are changed compared to
(8.4) and (8.5). Their appropriate forms are given by
(7.4), (7.6), and (7.7). First we consider the limit of L
large but finite, at t=t, , p=p'. Denoting l =aL, we ob-
tain for a & 1 (L » 1)

by differentiation with respect to the applied fieldlike
variable H which enters the matrix elements of a diagonal
matrix Q defined by Ql, t, . rih5h——l, with

e, A(l,
9h

e H h&l. (8.2)

This follows from the above mentioned correspondence
between the SOS and Ising configurations. A column
vector with h =3 for example corresponds to a layer of
+, —spins as

m=, —(1—e" e " )mI = e" —1 w

e
—2p*L(1—a) (8.9)

The equation mt ——0 has no solution for a, so mt &0 in
this limit. A similar calculation with a & 1 (L »1) yields

mt ——
z

—1+—(e " —1)
P'

e'*—1 w y

0 +2 2e
—2I L(a—1) (8.10)

0
h3 ——

1
~s~ ——

i. «

(8.3)
Solving for m&

——0, we get

a'=1+ —1+ ln 1+ +—(e " —1)
1 2

2w w

(8.11)

Po(h)=~1, —+1 1

e"—1

1/2

e "" (U =0), (8.4)

with

The matrix Q appropriately weighs the + and —spins
in the layer st, . The matrix element in (8.1) can be easily
evaluated using the results of Sec. VII. For U =0 the nor-
malized ground-state eigenfunction $0 of the symmetric
transfer matrix is l' —1 JM' . (8.12)

At the sharp L:—~ first-order transition, l* jumps from
a finite value proportional to (p«) ' to infinity. This
gives another interpretation of the finite length scale

«) —1

The quantity l ' =a'L at which m, , changes sign plays a

role similar to (h ). At t, , I' diverges ~ L. On the other
hand, the calculation with L —= ~, while t ~t, , yields

(1/y)'i, h =0,
1, h&0.

(8.5)
IX. CONCLUSIONS

[The matrix S in (7.3) has diagonal elements Zt, .] In the

thermodynamic limit we finally obtain, analogously to
(7.5),

2ye
m, =(s, ) =1-

1+e "(y —1)
(8.6)

Here mi is the magnetization of a layer at a distance l
from the substrate; p in (8.6) is a solution of

y (1+te ")=1+t(e"+e ") (8.7)

[see discussion following Eq. (6.12)]. For model A, a con-
tinuous wetting transition takes place at t [given by
(6.13) or (8.7) with p=0]. Indeed, with @=0, (8.6) yields
mI ———1 for all l. On the other hand for finite p&0
(t &t ), mi-=1 for I »1/p. Clearly IM

' characterizes
the size of the —layer. Below the transition, mi changes
sign at I' which can be obtained from (8.6),

%e have presented a model of interface unbinding.
This unbinding transition becomes sharp first-order in
the limit L ~~. Thermodynamic properties of this tran-
sition have been calculated exactly by using the Ising or
the RSOS formulation of the model. Finite-L effects have
been analyzed and predictions of finite-size scaling theory
at first-order transitions verified.

As long as L is finite, the phase transition is not sharp.
[In fact, for L & ao there is an unbinding transition from
the two defect structure as a whole, at a higher tempera-
ture, at T, O(L '), see Ref. —6 for details. ] In the "con-
tact angle" or droplet shape interpretation of wetting,
due to Cahn (see Ref. 14), the presence of the second de-
fect at L, will manifest itself in a rapid variation of the
droplet form at height L, as T is varied near T1. The
L~eo limit, however, does not "commute" with the
fixed average coverage constraint needed for the droplet-
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shape interpretation of wetting. ' Indeed, for 5xed cover-
ages, model A will be recovered in the strict L ~ Oo limit.
Thus, the first-order unbinding transition described in
this work has no appropriate Young's equation associat-
ed with it. In summary, a consequence of our analysis is
that defects or imperfections far from the substrate can
produce a practically sharp first-order unbinding transi-
tion.
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