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Static critical behavior of the two-dimensional Ising spin glass Rbzcn, „Co„F4
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The temperature and 6eld depend ences of the nonlinear susceptibility are examined in

Rb2Cul „Co„F4 with x =0.218, which is an experimental realization of the two-dimensional
Edwards-Anderson Ising spin glass with random nearest-neighbor bonds. From the divergence of
the nonlinear terms in the expansion of the magnetization in the field as well as from static scaling,
the spin-glass transition is shown to occur at zero temperature, which implies the lower critical
dimensionality for Ising spin glasses to exceed 2. The critical exponents y=4. 5+0.2 and
P=0.O+0. 1 agree with recent theoretical estimates for the kJ Ising spin glass in two dimensions.

I. INTRODUCTION

In the last few years, major progress has been made in
elucidating whether the peculiar characteristics of spin
glasses' (SG) indicate an equilibrium phase transition.
In particular, experiments on the singular behavior of the
nonlinear susceptibility have played a decisive role in pro-
viding evidence for a transition at a finite critical temper-
ature T, . In the framework of the mean-field theory, the
nonlinear susceptibility had earlier been shown to scale
with the SG order-parameter susceptibility, ' and there-
fore to diverge according to a power law. Such a critical
behavior has at present been established in a variety of
SG compounds, all of which are three-dimensional
(d =3). In the case of d =2 systems, by contrast,
theoretical arguments inclusive of extensive numerical
simulations have inferred that T, =0, despite a freezing
at a finite temperature. ' ' Experimental verification of
this important result however, is lacking.

In this paper, we investigate the temperature and field
dependences of the nonlinear susceptibility in the short-
range d =2 Ising SG R12Cuo 7s2Cop 2|sF4 with the pri-
mary aim to determine whether T, is zero or finite from
the static critical behavior. The results evidence a
power-law divergence of the leading nonlinear terms in
an expansion of the susceptibility at zero temperature,
culminating in an excellent static T, =0 scaling of the to-
tal nonlinear susceptibility. This implies that the lower
critical dimensionality exceeds 2. The critical exponents
y and P further appear to compare to theoretical esti-
mates.

II. MAGNETIC PROPERTIES OF RbzCu& Co F4

In this section, we discuss the magnetic properties of
RbzCu, „Co F4 in relation to the d =2 Ising Edwards-
Anderson model for short-range SG. ' The crystal struc-
ture of RbzCu& „Co„F4 is, as that of the pure end
members, of the KzNiF4 type. The magnetic ions are sit-
uated on a simple square lattice within widely separated
Cu& Co Fz layers. The intralayer exchange is at least 3
orders of magnitude stronger than the interlayer ex-
change. RbzCoF4 is an archetypal d =2 Ising antifer-
romagnet, with the spins ordering along the tetragonal

axis below a Neel temperature T& ——103.0 K.
RbzCuF4 is a d =2 ferromagnet with predominant
Heisenberg exchange and small (-1%) XY anisotropy
leaving the spins within the plane. The Curie tempera-
ture is T, =6.05+0.09 K. The magnetic interactions in
RbzCu& „Co„F4, primarily originating from exchange,
are to a high degree between nearest neighbors only, with
next-nearest-neighbor interactions down to —1%.

Randomizing Co and Cu spins over the square lattice
results in a distribution of interactions that simulates
bond randomness. In Cu compounds of the KzNiF4
structure, the Cu + d 2 ~ and d, , ground-state orbit-
als are arranged such that they alternate along the crys-
tallographic [100] and [010] axes, leading to a ferromag-
netic Cu-Cu exchange. As illustrated in Fig. 1(a), sub-
stitution of Co for Cu results in two distinct Cu-Co in-
teractions, dependent on the orientation of the Cu + or-
bital relative to the Cu-Co bond. The exchange is antifer-
romagnetic in case the d-orbital lobe points towards the
Co + ion, and ferromagnetic otherwise. In
R12Cu, „Co„F4, we thus have two ferromagnetic, (Cu-
Cu and Cu-Co) and two antiferromagnetic interactions
(Cu-Co and Co-Co). Both Cu and Co have, the latter
effectively, a spin value S =—,'. The nearest-neighbor
bond strength thus is the only random variable of
relevance, making RbzCu, „Co„F4 an almost ideal
representative of a d =2 random-bond magnetic system.
The huge uniaxial crystalline anisotropy of the Co + ion
further makes the Co-Co and the two Cu-Co interactions
strongly Ising-like in character. As it turns out, SG
freezing is achieved for 0. 18(x &0.40. Summing up,
therefore, RbzCu, „Co„F4 constitutes an ideal realiza-
tion of the d =2 Ising Edwards-Anderson model, except
for minor details in the bond distribution.

In more detail, the explicit form of the bond probabili-
ty P(J) is, on the assumption of site randomness, given
by

P (J)=x ~5(J —Jc, c, )+x (1—x)5(J —Jc„"c,)

+x(1—x)5(J —Jc„c )

+(1—x) 5(J —Jc„c„),
where Jz & is the exchange constant between A and B,
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about zero. An additional argument in favor of the +J
model is provided by the nonvanishing number of spins in
Rb2Cu, „Co„F4 that can be flipped without any energy
cost because of completely balancing exchange fields.
Such spins are indeed abundant in the +J model, but vir-
tually absent in the Gaussian model. Although in the
case of d =2 both models have T, =O, the critical ex-
ponents differ. The models thus seem to represent
different universality classes, ' ' presumably because the
Gaussian model has a nondegenerate ground state for
T, =O, whereas the +J model has a finite ground-state
entropy.

The typical spread of the distribution of J in
Rb2Cu1 Co„F4, defined by the second moment

4
' 1/2

bJ= g P(J;)(J;—J) (3)
i=1
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FIG. 1. (a) Representative distribution of ferromagnetic (F)
Cu-Cu and Cu-Co and antiferromagnetic (AF) Co-Co and Cu-
Co exchange interactions in Rb2Cu& „Co„F4for x =0.22. Also
indicated are the in-layer d-orbital lobes of Cu +. (b) Schematic
bond probability function P (J) according to Eq. (1) for
Rb2Cu& „Co„F4with x =0.29.

is, together with J, shown versus x in Fig. 2. It is seen
that b J is as large as 30—40 K in the SG regime. The
fact that SG freezing is only observed near 3 K
(=O. 1 bJ) thus is in itself already indicative of a zero
critical temperature for the present d =2 SG model com-
pound. In the mean-field theory of SG, a SG phase is
found for

~

J
~

&b,J, whereas for J & hJ the system or-
ders ferromagnetically, and similarly antiferromagneti-
cally for J & —hJ. From the inset of Fig. 2, which shows
the ratio hJ l

~

J
~

as calculated from Eqs. (2) and (3), it is
seen that the boundaries of the SG regime actually found
in Rb2Cu, „Co F4, x =0.18+0.02 and 0.40+0.01, cor-
respond to hJ/

~

J
~

=3.

I I I I I I I I

and the superscripts AF and F distinguish between the
antiferromagnetic and ferromagnetic Cu-Co bonds, re-
spectively. We have Jc,c,———90.8 K, as derived from
T~ in Rb2CoF4 with Onsager's rigorous result for the
d =2 Ising system, and JC„C„=22.0 K, as estimated
from Jc„c„in K2CuF4 (Ref. 26) scaled with the Curie
temperatures of the Rb and K compounds. To assess the
Co-Cu interactions, we make the reasonable assumption
that at the midpoint of the SG range of concentrations,
i.e., x =0.29, the average bond strength J=0. By use of
Eq. (1) and

4J= g P(J;)J;, (2)

with i =1,2, 3, and 4 indexing the four bonds, it then fol-
lows that JcUcp+Jcgcp —17 K. From this in relation
to Jcp-cp and Jcu-cU~ we estimate Jcu-cp ——20+10 K and
Jc„"c,———37+10 K. The resultant bond distribution is
sketched in Fig. 1(b). Its discrete nature indicates that
Rb2Cu, Co F4 compares to the +J Edwards-Anderson
SG model, which has

P (J')= —,'5( J' —J)+—,'5(J'+J),
better than to the Gaussian counterpart, which is charac-
terized by a continuous distribution of J, symmetric
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FIG. 2. Average bond strength J and the spread b J vs the
concentration x for Rb2Cu, Co F4. Inset shows b,J/

~

J
~
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III. EXPERIMENTAL DETAILS AND RESULTS

The experiments were performed on a good-quality
Czochralski-grown single crystal of Rb2Cu

&
„Co F4

with x =0.218+0.004, as determined with inductively
coupled plasma spectroscopy. The sample was shaped
roughly to the form of an ellipsoid with dimensions
7.0/3. 9X1.3 mm. Magnetic moments were measured
by use of a vibrating-sample magnetometer with a sensi-
tivity of 10 emu. External fields ranging from 1.0 G to
12.5 kG were applied along the c axis, and the earth mag-
netic field was compensated. All fields and susceptibili-
ties were corrected for demagnetization. The sample was
immersed in liquid helium, the temperature of which was
stabilized to within 0.01 K by controlled pumping. All
data of the magnetization M(T, H) were collected under
field-cooling conditions, i.e., the field H was switched on
at a high temperature (=30 K), and kept constant during
subsequent slow cooling (typically at a rate of S mK/s) to
the temperature of interest.

The results for the static susceptibility X=M /H versus
the temperature are plotted in Fig. 3 for a selection of
fields between 1.0 G and 10 kG. It is seen that the sus-
ceptibility rises continuously with decreasing temperature
through the freezing temperature, which at the time scale

14

typical of the present experiment (-10 s) amounts to
Tf =2.97 K. Generally for a d =2 SG, the susceptibili-
ty, when observed at a finite time scale, is anticipated to
reach a plateau below Tf (cf. results of Monte Carlo
simulations" ), despite the fact that the equilibrium linear
susceptibility keeps rising with decreasing temperature.
That such a plateau does not occur in RbzCu& „Co„F4is
plausible on the grounds that, even in a frozen domain
structure, the thermal decrements of the magnetizations
residing at individual ions, in particular those of the
abundant Cu ions, have already become significant at
temperatures as low as a few Kelvin. Nonequilibrium of
the system below approximately Tf is manifest from a
cooling-rate dependence of the susceptibility in this tem-
perature range. The susceptibility is observed to be quite
large, as expected for a concentrated SG at these low

temperatures. The susceptibility is further enhanced by
residual short-range ferromagnetic correlations, which
are apparent from data taken at higher temperatures. In
fact, up to about 20 K the susceptibility follows an
effective Curie-Weiss law, i.e., X(T)=C/(T —8), with
8=5.1+0.2 K.28

The prominent feature contained in the data of Fig. 3
is that the magnetization becomes increasingly nonlinear
with the field upon lowering the temperature. In order to
examine this in detail, we have measured M ( T,H) at a set
of discrete temperatures for as many as 35 fields ranging
from 1.0 G to 12.5 kG. From these data, M(H) iso-
therrns were deduced.

IV. NONLINEAR-SUSCEPTIBILITY ANALYSIS

30 G In the presentation of the M(H) isotherms, we elimi-
nate the linear part 10 of the susceptibility in order to
find the dimensionless nonlinear part

I„,( T,H)—:1—I
x (4)

~~

14-
l/l

100 G

300 G

3 7
H H H HM=a ——a — +a — —a — +

Here, Xo, the susceptibility in the linear regime, is insert-
ed as deduced from the experiments in small fields. The
results for X„~(H), given in Fig. 4 for a selection of tem-
peratures, clearly man&fest a dramatic increase of the
nonlinearity with decreasing temperature. To
parametrize this, we start from the common T p T, ex-
pansion of the magnetization in odd powers of the field, -

1C' kG, ".- -. -

2

Temperature (K)

FIG. 3. Static. susceptibility M/H vs the temperature for a
selection of external magnetic fields. Solid lines are guides to
the eye.

defined such that for a paramagnet the coefficients
a, ,a3, . . . are constants. In the case of a SG, however,
a3, a5, . . . are related to the SG order-parameter suscep-
tibility, which exhibits conventional critical behavior at
T, . ' Note that the linear part of the susceptibility
a

&
/T, remains nonsingular at T, . From expansion of the

free energy, ' it appears that a2„+, diverges according to
(T —T, )

"' +~'+~ for n & 1, i.e.,
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a3 cc(T —T, )

( T T )
—(2y+ti)

(6a)

(6b)

M =XoH —a&(XoH) +as(XoH) —a7(XoH) +
or, equivalently,

X„& a3(XoH——} a5(XoH—} +a7(XQH)

(7)

It has recently been argued on the basis of an effective-
mean-field model that this approach, although not en-
tirely rigorous in the case of SG, yields the dominant
correction.

An examination of the temperature dependences of
a 3,a ~, . . . thus allows to determine T, as well as the crit-
ical exponents y and P.

Prior to carrying out this analysis, we have to deal, in
one way or another, with the problem that in a real SG
the interactions do not perfectly average out to zero, as
opposed to Eq. (5), where Xo is assumed to obey the sim-

ple Curie law Xo ~ I /T appropriate to a symmetric distri-
bution of exchange interactions. As is commonly done,
we resort to the intuitive procedure, introduced by Omari
et al. , of expanding M in powers of XoH in place of
H/T. Equation (5) then becomes

Equation (7)-, cut off after the first three terms, has been
fitted to the M(H) isotherms with Xo, a&, and a5 as ad-
justable parameters. The fitting has been restricted to the
range of fields where a7(XoH) is still negligible. Fits of
good quality (X = I) are then found, as is apparent from
the solid lines in Fig. 4, which represent Eq. (8) with the
resultant fitting parameters inserted. The output values
for Xo and a3 further appear to coincide within errors
with the results from the fits of Eq. (7) limited to the first
two terms. As regards the result for go, its temperature
dependence essentially equals that of M/H given in Fig.
3 for the fields up to 10 G. The resultant temperature
dependences of a3 and a& are presented in Fig. 5. The
rapid increase of both these coefficients is seen to level off
at a point somewhat below Tf, obviously because the
slow but finite cooling rate inhibits their equilibrium
values to be attained.

Above approximately Tf, the results for a3 and a5 are
both well accounted for by a power law "series" diverg-
ing at T, =O K (solid lines in Fig. 5). This, in fact,
comprises a major conclusion of this work. The ex-
ponents obtained from fitting of Eqs. (6) are y =4.5+0.2
and 2y+P=9. 0+0.5. Combination of these results in
turn yields P=O.O+0. 7. In Sec. VI, we will compare the
exponents with various theoretical estimates. We note
that additional data above 4.25 K (not presented here),

h

h

V

U va
Q) ' o
C

~~
0 0.1

0 7
I I I I I I I I I I I 1 I i I I I I I

~ 1.67 K

h2. 30 K V

0.6 —+2.75 K h

o 3.05 K
~ 3.35 K

05 &3.65 K
~ 3.95 K h

o4. 25 K
h

04J3 0
~~ h

CL h

O h

0.$
V)

&k/

0.0
i)

I I I I I I I I I I I I I I I I I I I
%/ ~

0 50 100 150

Magnetic Field (G)

FIG. 4. Nonlinear susceptibility X„~——I —M /XOH vs the
internal field for a selection of temperatures. Solid lines are ac-
cording to Eq. (8).

FIG. 5. Nonlinear susceptibility coefficients a3 and a& (in
emu) vs the temperature. Solid lines denote power-law diver-
gences towards T, =0 K, Eqs. (6).
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Aourished in the field of SG. ' Within the scaling
picture, all critical physical quantities are determined by
the correlation length g. The underlying ansatz is that in
the critical regime the dependences of g on H and T can
be cast into a scaling form, the relevant argument being
0 scaled to some power of the temperature. That is, for
T, =O,

g=T "f H —via'I H'"
with f and 1'scaling functions, and v and b, =1+—,'(y+P)
critical exponents. Note that this scaling relation implies
g~ T for H =0, and g~H 'i for T =0.

Similarly to Eq. (9), the scalin relation for the non-
linear susceptibility reads X„I——T g(H/T ). ' In order
to account for deviations of 70 from strictly Curie behav-
ior, we replace, as in Sec. IV, H/T by XpH, to arrive at

XgI T 9
T

(10)

In the limit x-+0 the scaling function P(x) is given by
cpx, while for x ~ ~ 9'(x)=1—c„x ', with cp and
c„constants.

In Fig. 7, the nonlinear susceptibility of
Rb2Cup7s2Cop2isF4 scaled according to Eq. (10), i.e.,

X„IT ~ versus XpH/T ', is shown for the entire range

FIG. 6. Results for Xi, y, and 2y+P vs T„obtained from
fitting Eqs. (6) with a finite T, inserted. Solid lines are guides to
the eye.

10P I IIIII I I I I IIIII I I I I llflf I I l I ftll
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which suffer from increased scatter, are consistent with
the power-law dependences found for a3 and a5.

In order to establish more firmly that the divergence of
the nonlinear susceptibility conforms to T, =O, it is ex-
pedient to show that a finite T, of order Tf is not recon-
cilable with the experimental findings. To this end, we
have additionally adjusted Eqs. (6) to the results for as
and a5 above Tf, but with T, fixed at values ranging
from 0 to Tf. The results for y and 2y+P, as well as the
corresponding 1, are given in Fig. 6 as a function of T, .
For values of T, just below Tf (2.5 —2.9 K), the fits turn
out to be markedly inferior (X~=5 —40), while X becomes
minimum at T, =0 K. The results of Fig. 6 thus rule out
T, = Tf, but, of course, would be consistent with any T,
below about 1 K, such as could be due to residual inter-
layer coupling. Since the critical behavior is accessible to
experiment at feasible time scales only above approxi-
rnately 3 K, such a small T, ~ould however not detract
fr om Rb2Cu ] Co F4 to realize the d =2 SG with
T, =0.

V. STATIC SCALING ANALYSIS

10
I—

o

Rb2Cuo 782CoO 2)8 „
Tc=OK

5 = 3.2, P = 0.0

o 4.25 K

~ 4. 10 K

o 3.95 K

~ 3.80 K

~ 3.65 K

o 3.50 K

~ 3.35 K

+ 3.20 K

10 10 10 10
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The dependence of the nonlinear susceptibility on the
field and the temperature has in addition been examined
in the context of static scaling, an approach that has

FIG. 7. T, =O scaling plot of the nonlinear-susceptibility
data. External fields range from 1.0 G to 12.5 kG.
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of fields considered (1.0 G to 12.5 kG) and temperatures
from 4.25 to 3.20 K. It is seen that truly excellent con-
formity with the T, =O scaling prediction is achieved
after adjustment of b, and p for optimum coincidence of
the data on a universal curve. The critical exponents ob-
tained are P=O. O+0. 1 and b, =3.2+0.2, which implies

y =4.4+0.4. It has been noticed that critical exponents
deduced from scaling may suffer from systematic devia-
tions when using too large a field or temperature range.
In the present case, however, essentially the same results
are obtained upon restricting the data set to fields so
small that the nonlinear part of M (H) is less than 10% of
Xo. In Sec. VI, the critical exponents will be discussed in
some more detail. Inclusion of temperatures below 3.1 K
leads to a deterioration of the fit, obviously because the
system has fallen out of equilibrium at these tempera-
tures. The scaling of X„~ in Rb2CuQ 782Coo»8F4 thus fur-
ther establishes T, =O, with essentially the same ex-
ponents as derived in the previous section. We gain a
more accurate determination of p, and, more important-
ly, we are able to extend the analysis to much higher
fields. The latter is feasible because Eq. (10) encompasses
all singular contributions contained in Eq. (8), whereas
the dominant nonlinear terms a3 and a5 suSce at low
fields only.

Our results show an overall agreement with the
findings from Monte Carlo simulations of the d =2
Edwards-Anderson Ising SG. This includes T, =0 scal-
ing of the nonlinear susceptibility and the critical ex-
ponents, for which the simulations yielded p=O and
5=3.5+0.5." Although ample evidence is available that
T, =0 for the d =2 Edwards-Anderson SG model, a re-
markable feature of the Monte Carlo simulation data is
that they could equally well be scaled to a d =3 scaling
expression, distinguished from d =2 by a nonzero transi-
tion temperature. To show that the present data for
Rb2Cuo 782Coo», F4 exhibit an entirely similar behavior,
we have fitted them to the d =3 analogue of Eq. (10),

x
( +P)i2, y+ (11)

in which t =( T —T, )/T. The scaling function Q(x)
behaves as cox for small x, and as c„x in the high x
limit, with 5 an additional critical exponent. For the
range of T, from 3.0 down to 0.5 K, fits of a quality more
or less comparable to that of the fit of Eq. (10) are ob-
tained. We find 5=21.0+0.2, and, with decreasing T„y
varying from 0.8 to 23, and p from 0.04 to 1.1. As in the
previous section (cf. Fig. 6), there appears to be a definite
trend, albeit a small one, towards better fits with lower
T„which is indicative of T, =0 K.

VI. DISCUSSION AND CONCLUSIONS

We have successfully examined the nonlinear part of
the susceptibility of Rb2Cuo 782COO 2isF4 on the basis of (i)

the power-law divergences of a&(T) and a~(T) towards

T, =O and (ii) a static T, =O scaling analysis. This
verifies the theoretical evidence for a vanishing T„as ob-
tained for d =2 SG models with different random-bond
distributions. The two analyses have yielded essentially
equal exponents. Summing up, we find P=O. O+0. 1 and
@=4.5+0.2. The result for y agrees within errors with
the result recently obtained from dynamic scaling of the
ac susceptibility, y =4.2+0.6.

In discussing the exponents, we first note that the
theoretical results seem to differ for the two best-studied
Ising square-lattice SG model systems, viz. , the Gaussian
and the +J model. For the Gaussian model p=O, while
various methods of calculation have resulted in the re-
markably high value of y=7. ' Early work on the +J
model, involving large-scale Monte Carlo simulations and
transfer-matrix methods, yielded y=4. ' More recently,
a promising new replica Monte Carlo method permitted
lower temperatures to be achieved, resulting in y =5.3.'
The same value, 5.3+0.3, was found from high-
temperature series expansions, ' while a finite-size scaling
study gave y =4.5+0.5.' As regards p in the case of the
+J model, a very small, but finite, value may be estimated
from the hyperscaling relation 2P=v(d —2+g). ' Upon
comparing the theoretical results with the present experi-
mental ones, we see that our result for y, 4.5+0.2, seems
to be somewhat smaller than the mean of the more recent
theoretical estimates for the d =2 +J model. The agree-
ment must nevertheless be considered quite satisfactory.

Our results have been derived in a temperature range
corresponding to about 0.1 or 0.2 times bJ, with AJ
characterizing the width of the bond distribution. For
comparison, the results from the Monte Carlo simula-
tions and finite-size scaling pertain to temperatures down
to -0.5b,J. The present y, therefore, is more sure to
refer to the true asymptotic critical regime. We further
note that the error given for y may be underestimated
somewhat because of possible systematic uncertainties
contained in the correction for the residual ferromagnetic
correlations. To assess the effects of the latter, it would
be desirable to similarly determine y in a
Rb2Cu, Co, F~ SG with larger x, say x =0.35.

In summary, the scaling and the power-law divergence
of the static nonlinear susceptibility evidence that the SG
transition in the d =2 Ising SG model compound
Rb2Cu, „Co„F4 occurs at zero temperature, with the
critical exponents in conformity with theory. Experimen-
tal verification is thus provided that the lower critical
dimensionality for short-range Ising SG exceeds 2.
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