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Superconductivity and lattice distortions in high-T, superconductors
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A thermodynamic analysis of the behavior of the lattice parameters and elastic properties at T,
in the orthorhombic high-T, superconductors La2-„Sr„Cu04 and YBa2Cu307 is presented. Ex-
pressions for the singularities in the specific heat, lattice parameters, and sound velocities are de-
rived using a mean-field expression for the superconducting free energy, and Gaussian fiuctuation
corrections and critical behavior are discussed. The mean-field expressions are used to interpret
presently available data on the thermal, structural, and elastic properties of polycrystalline sam-
ples, and additional measurements necessary to complete the determination of the theoretical pa-
rameters are suggested. The usefulness of the theory in providing quantitative consistency checks
among different types of experimental measurements and in understanding the coupling between
crystal structure and superconductivity is emphasized. It is found that although the first strain
derivatives of T, are comparable in magnitude to those in conventional superconductors, some
second strain derivatives of T, are anomalously large.

I. INTRODUCTION

There have been a number of reports in the high-T, ox-
ide superconductors of unusual behavior of the structural
and elastic properties at the superconducting transition
temperature T„most notably of anomalous temperature
dependence of the lattice parameters and of large discon-
tinuities in the temperature derivative of the sound veloci-
ties. While this behavior indicates a significant coupling
between superconductivity and the lattice, the precise in-
terpretation and significance of individual measurements
has, up to now, not been systematically examined. In this
paper, we present a thermodynamic analysis of the singu-
lar behavior of the structural and elastic properties of
La2-, Sr,Cu04 and YBa2Cu307 at T,. In addition to
mean-field behavior, we consider Gaussian fiuctuation
corrections and behavior in the critical region. From the
most general free energy allowed by symmetry for the
coupled superconducting-lattice system, we derive expres-
sions for the singularities in the behavior of the lattice pa-
rameters and sound velocities near T,. With a relatively
small number of parameters —T„ the specific-heat jump
at T„ the elastic moduli and the strain derivatives of T,—these expressions provide a coherent and systematic
framework for analyzing and interrelating a wide variety
of thermal, mechanical, and structural measurements.
This approach has been successfully applied to the A15
superconductors, ' yielding an understanding of the inter-
play between superconductivity and structural instabilities
in those materials. For the oxide superconductors, this
analysis has the advantage of being based on purely ther-
modynamic arguments, thus being independent of the de-
tails of the microscopic mechanism for superconductivity
while yielding strain derivatives of T„which are relevant
to the construction of realistic microscopic models. Using
this approach, we examine the presently available experi-
mental data for La2 —„Sr„Cu04 and YBa2Cu307. Since
at this writing the only published sound velocity data are
on polycrystalline samples, we use an effective medium

formalism to derive appropriate theoretical expressions.
We find strong indications that in both La2, Sr,Cu04
and YBa2Cu307 some second strain derivative of T, is

unusually large, (I/T, )dzT, /de2-103, although the first
strain derivatives are relatively small. Thus, further mea-
surements to determine these derivatives more precisely
are likely to yield important information on the nature of
high- T, superconductivity.

The outline of this paper is as follows. In Sec. II, we

give the mean-field expression for the free energy and
derive from it expressions for various measurable quanti-
ties. Where possible we give the BCS values for parame-
ters in our equations. In Sec. III we show how these ex-
pressions would be modified were the transition not
mean-field, we give estimates of the size of the critical re-
gion within which mean-field theory breaks down and we

give formulas for the Gaussian fiuctuation contributions
to quantities of interest. In Sec. IV we give the effective
medium equations for ceramic samples, use the frame-
work to analyze presently available data, compare various
experiments, and suggest further measurements. Section
V is a summary of the results derived in the previous sec-
tions and a discussion of their physical interpretation.

II. MEAN-FIELD ANALYSIS

In this section, we write the mean-field free energy as
the sum of a normal-state contribution and a supercon-
ducting contribution which explicitly contains the cou-
pling to the lattice. From this free energy, we obtain ex-
pressions for three types of singularities at T,: (1) a
discontinuity in the temperature derivatives of the lattice
parameters; (2) a discontinuity in some of the elastic
moduli, and hence a discontinuity in the magnitudes of
the corresponding sound velocities; (3) a discontinuity in
the temperature derivatives of the elastic moduli and
hence a discontinuity in the temperature derivatives of the
corresponding sound velocities.
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The normal-state contribution to the free energy can be
written as an expansion in symmetry-invariant combina-
tions of the strain e;j, referred to the equilibrium structure
at T,. At temperatures near T, the high-T, superconduc-
tors are orthorhombic (a =b&c), with a structural tran-
sition to a tetragonal phase (a bWc) at higher tempera-
tures. In La2, Sr Cu04, the orthorhombic phase is re-
lated to the tetragonal phase through the buckling of the
a-b Cu02 planes, with the corrugations running along
(110). In YBa2Cu307, a pair of a bC-u02 planes
sandwiches an a bC-uO plane. In the orthorhombic
phase, the oxygens in this plane order to form CuO chains
along the b direction. In writing the normal-state contri-
bution to the free energy, we can ignore the (smooth)
temperature dependence of the expansion coefficients
without loss of generality, since we are focusing on singu-
lar changes at T,. Thus, we get

F„(kg —,
' c;c; e + —,

' c;8; +I; ke;e' ek

the free energy. In mean-field theory the difference in
free energy between normal and superconducting states is,
for T~ T„

Fs N(T T) 1 A 1 +2 T
2 c

Tc
(2.3)

T, T,p(1 +a;e; +2 e;d„&el+ 2 4;e; + ),
N Np(1+P c;+ ),
where we define

d lnT, 1 d2T,

del
' '

T,p de;dej
'

(2.4a)

(2.4b)

Here N has units of states per unit energy and volume,
while A is dimensionless. Coupling of superconductivity
to the lattice is a consequence of the dependence of T, and
N on strain, which we write as

+AijeiZz+ c'ri'e&+ ' ' ' (ij,k 1,2, 3) . (2.1)
d'T,

-2Tc0 dZ;

d lnN

ding

Here e; represents the diagonal strain e„„e~~,e„,
stands for the off-diagonal strains e,~,e„,e~, . c;j and c;
are the orthorhombic elastic moduli, I;jk and A;j are
anharmonic coefficients, and o; are the applied stresses.
Unless otherwise specified, we assume the applied stress
a; 0. Combinations of elastic moduli are related to the
various sound velocities. For example, v;, the velocity of
longitudinal sound propagating along i, is given by

The superconducting contribution to the specific heat at
constant strain, C, NT[I+3A(T —T, )//T, ], can be ob-
tained directly from (2.3). We will see below that the
difference between the specific heat at constant strain and
at constant stress is a small correction which will be
neglected. Thus we obtain for the specific-heat jump at
Tc

v 2-c;;/p, 5C—=C(T, ) —C(T,+) NpT, p (2.5)

~;(P)-—Pgc,,-'j
~jkl Z cjm Z ckn cli

, Nl , n
(2.2)

We now consider the superconducting contribution to
I

Fs 2 No(T T~o) 1 A 1
1 2 T

TcO

where p is the mass density of the crystal.
By setting o; P, we can examine the effects of pres-

sure for T T,+:
dc dc
dT r+ dT r- (2.6)

To obtain the behavior of the elastic properties and lat-
tice parameters at T„we expand Fs in powers of T—T,p
and e. The total free energy then is F F„+F„where

and for the discontinuity in the temperature derivative at
T, we have

—
2 NOTcO —2

T TcO

TcO

T TcO
a; e;+ a;aj+ (3Aa;aj —2a;Pj —h,j) e; ej—

cO

T Tco-
TcO

j j (2.7)

From the term of order (T—T,p) e, we derive a jump in

cgj at Tc:

Ic;,(T,+) —c;,(T, )j '
a;a,

cgj cgj cgj
(2.8)

Avg

Vg'

CTcoa;2
(2.9)

Because of the restrictions of orthorhombic symmetry,
there is no term of order (T —T,p)~Z and the c; do not
have a discontinuity at T,.

Discontinuities also occur in the corresponding sound ve-
locities. For example,

The dimensionless parameter ACT, p/c;j, which appears
in Eqs. (2.8) and (2.9), is the ratio of the superconducting
condensation energy to an elastic energy and sets the scale
of effects of superconductivity on the lattice. It turns out
to be extremely small (-10 ) and thus we work only to
leading nontrivial order in this parameter.

The equilibrium strains for T& T, are obtained by
minimizing F with respect to e; and Z;:

Z;(T) 0,

e;(T) —NpT, p(T —T,p)cj 'aj.
The discontinuity in the logarithmic temperature deriva-
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tive of the lattice parameters is thus

dc; dk;

dT r+ dTr—
C

A+e;(T)- —(2 —a) c;, 't' 'a;,
a

(2 —a) (1 —a)
pv (T)-c;;—A+ t 'a;.

a

(3.2a)

(3.2b)

hCTc pcij a (2.10)

klcij = cp ij ep cij
~cO reo

ACT p(3Aa;aj 2a;pj 4; +j6I ijkck7'ai~ .

(2.11)

For computing the temperature dependent part of c;, we
rePlace e; by c j '[—NPT, P(T —T,P)aj+Ajkf )],obtained
by minimizing F at fixed Z;, yielding

The difference between the superconducting contribu-
tion to the specific heat at T & T, at constant (zero) strain
and at constant (zero) pressure arises from changes in the
free energy due to the temperature variation of the
strains. From Eq. (2.10) it can be seen to be of order
ACT, p/c;j so its neglect in (2.5) and (2.6) is justified.

Finally, we examine the discontinuities at T, in the
temperature derivatives of the elastic moduli, which give
rise to discontinuities of the slopes of the corresponding
sound velocities. For T & T„replacing e; by k +e;(T) in
F yields the temperature derivative of c;j from the term of
order (T —T,p) (e'):

Here the reduced temperature t (T —T,p)/T p.
According to (3.2) the lattice parameters do not diverge

near T, if a & 1, while the sound velocity diverges nega-
tively if 1&a&0. A nonpositive sound velocity is un-
physical; other terms not included in the arguments lead-
ing to (3.2b) become important for T sufficiently close to
T„modifying the critical behavior in that region. The
lower bound of the range of reduced temperatures for
which (3.2b) is valid may be estimated from the condition

(2 —a) (1 —a) (3.3)
a

-exp( —10 ).t &exp

Now the superconducting transition for conventional
superconductors is in the x-y universality class. If the
transition has three-dimensional (3D) x-y exponents, a is
very small, so that (1/a)t '- —ln(t). Thus in this case
(3.2a) and (3.2b) would give approximately logarithmic
divergences for the sound velocity and the temperature
derivatives of the lattice parameters over some range of
temperatures sufficiently far from T,. Using (3.3), the
smallness of a, the estimate A+-ACT, p, and Table I we
find that Eqs. (3.2) are valid for

—FACT, pa;

A~c; —ACT, P(A;+2cjk 'akAj, ) . (2.12)

These slope discontinuities involve the parameters P;, d;, ,
4;, and various combinations of I;jk and A;j which do not
appear in the previous expressions.

III. FLUCTUATION EFFECTS

i T T,(e)i-
f T, e

a T, (e)
+ I ~ ~ (3.1)

Here a is the specific-heat exponent and A+ and A
are dimensional factors, presumably of order NpT„which
refer to T & T, and T & T„respectively. The ellipsis
refers to terms involving higher powers of T —T,. By ex-
panding (3.1) in powers of e and combining the result
with the lattice free energy, Eq. (2.1), one may obtain
singular contributions to the longitudinal sound velocities
and the lattice parameters. For, e.g., T & T, one 6nds

The results in the previous section were derived from a
mean-field expression for the superconducting free energy.
It is easy to see that in each of these cases the nonanalytic
behavior derives from and is identical to the nonanalytici-
ty in the specific heat. We define p(T, e) as the free-ener-
gy difference between normal and superconducting states
at temperature T and strain e. Sufficiently close to the su-
perconducting T, we may approximate p by its most
singular part:

yP SxhC(p,

y2
' 4irhCQa.

(3.Sa)

(3.sb)

Here AC is the mean-field specific-heat jump per unit
volume and (p is the bare coherence length of the mean-
field theory. Equation (3.5b) is written for a three-
dimensional material consisting of uncoupled layers; hC is
the bulk specific heat and a is the distance between layers.

For temperatures
~
t

~
& tg one may observe Gaussian

fluctuation corrections to mean-6eld expressions. It is
straightforward to derive an expression for the specific
heat including both mean-6eld and Gaussian fluctuations.
For x-y critical behavior one inds

C hCygt j (t & ts), (3.6a)

[t('
C hC 1+ (~ z)j2 ( t & ts). —(3.6b)

The upper bound of the region over which (3.3) applies
is determined by the requirement that the term written in
(3.1) dominate the less singular parts of the free energy.
In the absence of a detailed theory of the less singular
terms a quantitative bound cannot be given. A rough esti-
mate may be obtained from the Ginzburg criterion,
which determines the temperature scale ts at which a sim-
ple perturbation expansion about mean-6eld theory breaks
down. True critical behavior will be observable only for
t && tg. For the x-y model in d & 4 dimensions one has

t 2/(4 —d) (3.4)
with
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Fluctuation behavior in the specific heat implies fluc-
tuation behavior in the elastic properties considered in the
previous section. Applying the previous arguments to the
term in the superconducting free energy yielding Eq. (3.4)
gives a mean-field plus fluctuation expression for the
sound velocity

Avi

Vi

2—ACT, a; &d 4&&2
ydt (t & tg),

-BCT,a;

(3.7a)

( —t & ttt),

(3.7b)

'I

I I
I t
I
I I
I I

and for the lattice parameter

T, —d, CT,c;J 'aj yet (t & ts),
~(-)i

T, ~CT—,c~ 'aj 1+ (~ 2)/22 d-2 2

(3.8a)

(3.8b)

The behavior near T, of the lattice parameter and longitu-
dinal sound velocity is shown schematically in Fig. l.

We now give estimates of the size of the critical region
and of the magnitude of the Gaussian fluctuation contri-
butions to elastic properties in the high-T, superconduc-
tors. The high-T, materials seem to consist of weakly
coupled layers. If the interlayer coupling is weak enough,
then for sufficiently large t the fluctuations will be of low

dimension, while as t decreases the system will cross over
to three-dimensional critical behavior. The scale for
crossover to 3D behavior, t„, may in principle be either
larger or smaller than the scale ts which determines the
boundary of the critical region. The parameters t„and ts
are not accurately known for the high-T, materials. At
this writing preliminary data are available for YBa2-
Cu307 but no data for La2 —„Sr„Cu04. A recent
analysis of upper critical fields and fluctuation conduc-
tivity has yielded values -8 A for the geometric mean of
the a-, b-, and c-axis coherence lengths and a value of
t„-0.05-0. 1 for a 2D-3D crossover. Using this value for
the coherence length, Eq. (3.5) and Table I, we find

y 0 02 (i.-e. , t. s-4X10 ), so that for y « t« t„(i.e.,
0.04 K«

~
T —T, ~

& 10 K) three-dimensional Gaussian
fluctuation behavior should be observable, while true criti-
cal behavior should be observable only for

~
T —T, )

FIG. 1. Sketch of temperature dependence of lattice parame-

ter (lower curve) and longitudinal sound velocity (upper curve)

for temperatures near the superconducting transition. The solid

lines represent mean-field behavior, the dashed lines represent

the Gaussian fluctuation and critical behavior. For the lattice

parameter, the change in slope of the mean-field lines and the

deviation of critical from mean-field curves may be positive or

negative according to the sign of the strain derivative of T,.

((0.04 K. Direct measurements of the fluctuation contri-
bution to the specific heat consistent with these estimates
have been reported.

The values quoted for ts and t„should be regarded as
rough estimates. For example, mean coherence lengths of
—15 A have been reported by other workers. 9 However,
it seems likely that although true critical behavior would

occur only in an unobservably small temperature window

about T„Gaussian fluctuation contributions to the longi-
tudinal sound velocity may be observable in samples with

sufficiently sharp transitions for temperatures within a few

degrees of T, . Fluctuation behavior in the lattice parame-
ter should also be observable in principle, but as we shall
see in Sec. IV, even the mean-field behavior of the lattice
parameters is very difficult to resolve with presently avail-

able techniques.

TABLE I. Parameters determining the order of magnitude of the effect of superconductivity upon

elastic properties of the 815 superconductor V3Si and the oxide superconductors LaI.8sSro ~sCu04 and

YBa2Cu307. T, is the superconducting transition temperature, hC the specific-heat jump at the transi-

tion, and 8 is the bulk modulus. The data on V3Si are taken from Ref. 1. The data on the oxide super-

conductors are taken from the references indicated in the text.

C mJ
cm K

8(10 kbar) c,/8
&CTc

( )8
dlnT,

dp

V3Si
Lai.ssSro. I sCu04
YBa2Cu307

17
36
92

61
11
50

1.7
1.7
1.7

0.04 6
2

27

4
14

1.3
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IV. ANALYSIS OF EXPERIMENTAL DATA

We apply the results of the mean-field theory to a
variety of experimental data. %e obtain, when possible,
estimates for the parameters which appear in the theory;
we discuss the consistency of the various measurements
and suggest further measurements.

Before considering the more problematic situation in

the high-T, materials, it is instructive to review the appli-
cation of the theory to the 215 superconductor V3Si,
which has been thoroughly studied and for which the
effects of superconductivity on the lattice are relatively
large. V3Si has a superconducting transition temperature
T, 17 K. Depending on sample preparation, it either
undergoes a second-order cubic-tetragonal structural
transition at a temperature Tq between 18 and 25 K (Td)T, ) or remains cubic to low temperatures (Tq 0 K).
The expression for the mean-field free energy of a cubic
sample is particularly simple because of the cubic symme-
try. From measurements of the speci6c-heat anomaly hC,
various sound velocities, and the pressure derivative of
T„'0 the two elastic moduli 8 (c~~+2c~2)/3 and c,

(c~~ —c~2)/2 and the first- and second-order coefficients
in T, (e) can be readily determined. Values of various pa-
rameters for V3Si are given in Table I. While the sound
velocities show no elastic constant discontinuities at T,
within experimental resolution, the discontinuities at T, in
their temperature derivatives are very large. This fact is
reflected in the values of the theoretical parameters, with
the first-order coefficients in T, (E), a~' a2' a3' 4,
being much smaller than the second-order coefficients
g& f~ —1.4 x 10, g&~(~ —2.9 x 10, and g44 —5.9
x10 . From Table I we 6nd (FACT, /8)a;t'1-24x10
The resulting effect on lattice parameters in cubic V3Si at
T, is smalL

For samples with T, & Td, below Td a tetragonal strain

2~r —~r ~r
, 0,0,0

lower orthorhombic symmetry means there are more than
twice as many parameters as in the cubic 815 case. Data
on the lattice properties near T, are available only for
polycrystalline samples, and such measurements can be
interpreted in terms of averages of intrinsic properties of
the material only approximately. Also, the superconduct-

ing transition can be broad enough partially to obscure the
associated singularities. Lastly, if the relevant elastic
modulus is not small, the scale of the effect of supercon-
ductivity on the lattice is likely to be such that only very

high precision measurements can detect it. So, pending
accurate measurements on single crystals, the extraction
of the theoretical parameters is a difficult task which can-
not be fully completed. However, our partial analysis will

prove to contain some useful information.
We start by considering measurements of the elastic

moduli. Though a complete determination has not yet
been made, information is available from the dependence
of the lattice parameters on pressure de;/dP -QJ c;J ',
measured using x-ray diffraction. A bulk modulus 8

(g;, c;P) ' of 1700~160kbar and c/a constant up to
220 kbar was measured at 15 K for La~ sSro 2Cu04, which
is tetragonal at that temperature. ' For YBa2Cu307, the
identification of peaks associated with different lattice
constants is complicated by b =c/3, with either '

—0.30, 8 —0.40,
de~ de2

or

de~ de 3 d»28 8 —0.29, 8 —0.42 .
dP dP

' dP

In either case, 8 1700 kbar, as has been con6rmed by
several other measurements. ' In La~ sSro 2Cu04, the de-
viation from linearity of volume as a function of P is ap-
proximately d, V/Vo 0.01 at 200 kbar. ' With (2.2), this
permits an estimate of the average third-order elastic con-
stant

db, db,

dlnT T-T, dlnT, T

FACT a' —a'
3xlQ

2Cg

in rough agreement with the experimental value.
In the case of the high-T, materials, it is more difficult

to apply the theory of Sec. II for several reasons. The

develops. The distortion from cubic symmetry at T, is
small, a representative value being" b&-2.5x10 3. In a
noncubic material the a; need not all be equal. The a; in
the tetragonal phase may be estimated from the cubic
values of the 6;J and the distortion b, . One finds the an-
isotropic (and relatively large) values a2' a3' 10,
ajar'~ —17. At T, a sharp break in the temperature de-
pendence of b, is observed, a typical value being
6~br 5x10 . As a result, 8'r becomes virtually temper-
ature independent below T, . This large break in slope fol-
lows from the small value of c, and the large anisotropy in
the a;. Using the previously quoted a;, the value of c,
from Table I and Eq. (2.10), we find

of
2r ~v P = —028 3Vp 8

In YBa2Cu307, no significant deviation from linearity
with P is observed up to 150 kbar, ' at a resolution hV/
Vo&0.01. The same type of estimate yields ~I/8~
& 0.4. We can obtain an independent order of magnitude

estimate of I and the shear anharmonicity A from the
measured average Griineisen parameter's y, which is
defined as the average over all phonon modes of
d lnco/d ln V. In our elastic continuum model, y is roughly
a third-order elastic constant (I or A), divided by some
average elastic constant (-8). Thus, with a measured
value of y 3 in YBa2Cu307, we find I /8 and A/8 to be
of order unity.

In both materials, there have been a number of mea-
surements of C(T) near T, and determinations of AC, the
specific-heat jump at the transition. Of the latter, ' we
select the largest, given in Table I, as probably reAecting
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the highest superconducting fraction in the sample. Even
so, the parameter ACT, /B, which sets the scale of super-
conductivity effects on the lattice, is 2 x 10 s in
La~ s5Srs ~5Cu04 and 27x10 in YBaqCuq07 and is in
both cases very much smaller than the relevant ratio
ACT, /c, 210x 10 in VqSi. From the measured
change in slope of the specific heat at the transition [Eq.
(2.6)] we estimate 4 ~ A ~ 6 in LaI s5Sra ~5Cu04 and
2 ~ A ~ 5 in YBaqCuq07. These values are substantially
larger than in conventional superconductors (Aacs 0.67,
A pb~2).

Next, we examine measurements which give informa-
tion about T,(F). The hydrostatic pressure derivative of
T, determines the average of the stress derivatives, i.e.,

rhlnTc + dlnTc

8P j Aof j, j
For LaI ssSra &5Cu04, 8(dlnT, /dP) is unusually large
and positive, with a value of 14. ' In YBaqCuqOq, the
value 1.3 is significantly smaller. ' The 8+jc;, ' are ob-
tained from the pressure dependence of the lattice con-
stants, as discussed above. Thus, for La~ s5Sra ~5Cu04 we
obtain & pa; 14, while for YBagCusOq we have either
0.30(a~+ad)+0.40as 1.3 or 0.29(a~+ aq)+0.42aq

1.3, the ambiguity arising from the previously discussed
difficulty in the assignment of peaks in the x-ray pressure
measurement because b=c/3. In both materials, no
significant deviation from linearity of T, as a function of P
is observed up to 8 kbar. In LaI s5Sro ~5Cu04, with a reso-
lution of hT, 0.1 K, this gives a bound

d Tq
& 240,

Tco dP

and in YBaqCuq07, with a resolution hT, 0.05 K, we
find

d T,
& 60.

Tco dP

This provides a constraint on the parameters Z and I;jk,
since

g~ d T, I;,k BdlnT,a+6
TcO dP ij k ~ ~crk

x agcI ' agcj 'I, , m

This expression shows that while d T,/dP has a contri-
bution from the second strain derivatives of T„the contri-
bution from the first derivatives of T, can also be sig-
nificant if the anharmonicity is large. From the previous
estimate of I, we find that anharmonicity contributes to
(B /Tce)(d Tc/dP ) roughly

gd ]n Z; I-
—20 for La I.ssSro. I5Cu04

cd g 3 for YBaqCu307

and thus is much less important than the second deriva-
tive.

We now consider measurements of the variation of the
lattice parameters with temperature near T,. From Eq.

(2.6), we see that discontinuities in the temperature
derivatives at T, yield c;j 'aj j—jlnT, /do;, and that the
scale of lattice effects is extremely small, set by

ACT, Bd ln T,
8 dP

c

2.8 x 10 for Lai.ssSro. isCu04

3.3 x 10 for YBapCu307

However, it is possible that the effects on individual lattice
parameters could be larger if an elastic constant were
small compared to 8, or if T, depended sensitively on
some volume preserving deformation.

Dilatometric measurements of the linear thermal ex-
pansion along the 1th symmetry axis, u&h; de;/dT, can
be sufficiently sensitive to detect these discontinuities.
From the information in Table I we calculate that the
discontinuity at T, in the average thermal expansion
ha~h & g;a~h, ; is 2.5&10 K ' for Laq, Sr„Cu04
and 1.2x10 K ' for YBapCus07. The only available
data, on polycrystalline samples, give substantially small-
er values of ha&h (0.6 ~ 0.15)x 10 K ' in

La~.s5Sra. ~5Cu04 (Ref. 19) and ha~h below resolution of
0.5x10 7 K ' in YBaqCus07. ~a These low values can
partly be attributed to small superconducting fractions in
these samples and partly to the approximate nature of the
average over the individual crystallites. Additional
thermal expansion data, particularly on single crystals,
would be extremely useful.

Direct measurements have been made of the lattice pa-
rameters at a variety of temperatures near T, with both
x-ray and neutron diffraction in each material. Slope
discontinuities can be extracted or bounded by choosing
an appropriate temperature window about T, and fitting
separate straight lines to the data above and below T,.
However, as will be discussed in more detail below, the ex-
pected effects are at the limit of resolution of currently
available measurements of this type.

In x-ray measurements in Lap „Sr„Cu04 no singulari-
ties in the lattice parameters are observed. Upper bounds
for the singularities can be obtained from bounds on
slopes in the window T, + 30 K. For x 0.15,~' with a
structural transition temperature Tq of 200 K,
6 ~ b & 5 x 10, where the orthorhombicity b =2(b —a)/—
(b+a). For x 0.2(Tq(10 K), ~

h~e~ &1.1X10 and
h, Ie~ &0.8X10 . A potentially interesting measurement
would be for x =0.18-0.19, for which T, = Tq, so that
the corresponding small elastic constant might lead to a
sufficient enhancement of the effect.

At present, there have been three measurements in
YBaqCuq07 which show behavior which might be inter-
preted as discontinuities in the temperature derivatives of
the lattice parameters at T,.

The Grst two, high-resolution x-ray powder diffraction
measurements ' show an apparent change in tempera-
ture dependence of the orthorhombicity b=2(b —a)/
(5+a) at T,. In both, a rapid rollover in the temperature
dependence of b was observed. In Ref. 23, an additional
anomalous enhancement of 6' near T, was observed. Be-
cause this enhancement has not been observed in other
samples we shall not discuss it here. Attempts to in-
terpret the rollover in the temperature dependence of 8' in
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terms of a break in slope by drawing various straight lines
through the data above and below T, yield htb, given in
Table II. Upper bounds for the singularities in individual
lattice parameters can be obtained from bounds on slopes
in the window T, + 30 K; these bounds were used in Eq.
(2.10) to derive the bounds on dlnT, /drJ; given in Table
II. These give a bound B(d 1n T,/dP) ~ 24 consistent with
the directly measured value in Table I.

In the third measurement, Rietveld analysis of the
neutron powder pattern yields 6& et (2+ 7) x 10

( —7+'10)X10,h~e3 (13~10)&10,within
the bounds established above by x rays. These values were
used to obtain values for dlnT, /der; given in Table II.
However, calculation of b(T) directly from a and b shows
no anomalous enhancement near T, and a break in the
slope of the orthorhombicity d, tb (-10+ 12)&10
smaller than that suggested by x rays. The only sig-
nificant break appears to be in the c parameter. The re-
sulting value

d lnT, ACT,
P B

h, i V 2.4+' 3.4

vP-(8+4/3G)/p,

v,2-G/p.

(4.1)

(4.2)

Estimates of the elastic moduli 8 and G can be obtained

is, as in the case of the x-ray measurements, consistent
with the directly measured value given in Table I.

We now consider sound propagation. It was shown in
Sec. II that at T, sound velocities are expected to have
discontinuities in magnitude and temperature derivative,
from which one may extract the first and second strain
derivatives of T,. From Eq. (2.8) and Table I we see that
the order of magnitude of the relative discontinuity in the
sound velocity at T, is &100 ppm. There are by now

many published studies of sound velocities in high-T, ma-
terials, but only a few measure changes in the sound veloc-
ity to the requisite accuracy. Also, as of this writing, data
have been published only for ceramic samples. In what
follows we present a method for analyzing data on ceram-
ic samples, and we then discuss the results of various ex-
periments.

A ceramic sample can be regarded as an isotropic elas-
tic medium characterize/ by a bulk modulus 8 and a
shear modulus G. There are two corresponding sound ve-
locities, longitudinal (I) and transverse (s), given by

from the elastic moduli of the individual crystallites
through a variational effective-medium procedure which
provides rigorous upper and lower bounds. 26 The simplest
such expression which provides an upper bound, due to
Voigt, assumes constant strain in the crystallites:

8—BV - 9 Xcll +Z clj
l l+J

G~G„- —,', 'gc;; ——,
' gc;, +3+c

, i i~j i

(4.3a)

(4.3b)

The assumption of constant stress in the crystallites
leads to an equally simple lower bound, due to Reuss:

8~By- gc;; '+ —, gc;, ' (4.4a)
l l+J

r

G&Gg 15 4gc;; ' 2—$crj '+3gc;
l lAJ

(4.4b)

ACTc ~

a; (4.5a)

or

~CTc

~
i l

ACT, (Bird lnT, /dP)

(4.5b)

(4.5c)

AGE
25CT, Gjj dlnT, d lnT,

dp

(4.5d)

Note that both 8 and G acquire discontinuities at the
transition, in contrast to the case of a purely isotropic
medium where, by symmetry, only a discontinuity in 8 is
permitted. The discontinuity in Gp (or Gt ) vanishes
when all the stress (or strain) derivatives of T, are equaL
In what follows, we will use the Reuss estimates as ap-

Even at the cost of considerable additional complica-
tion, 27z these bounds cannot typically be improved
beyond a level where they differ by —1%, depending on
the degree of anisotropy. Thus Eqs. (4.3) or (4.4) or their
generalizations cannot provide useful bounds on the small
(& 100 ppm) expected changes in elastic moduli at T,.
However, it seems physically reasonable that calculations
of changes at T, of the Voigt or Reuss estimates can be
used to provide estimates of the true changes in elastic
moduli, if the elastic anisotropy is not too large. Thus, for
the discontinuities at T„we have either

TABLE II. Stress derivatives of T, and discontinuity in logarithmic temperature derivative of ortho-
rhombic distortion 8' for YBa2Cu307, as deduced from x-ray and neutron scattering measurements.

dlnT,' d-.
d lnT,

dab

dlnT,'d; h,CT,
8

X-ray (Ref. 23)

X-ray (Ref. 24)

Neutron (Ref. 25)

&12
&10
1+'3

&4

&7
—3+ 4

&32

&10
5+4

—15+' 8

—10+4

2%3



38 SUPERCONDUCTIVITY AND LATTICE DISTORTIONS IN. . . 8915

(4.6b)

proximations for the elastic moduli, since our previous analysis gives direct information about d lnT, /da; . .The resulting

expressions for the discontinuities at T, in the longitudinal and transverse sound velocities are

hvI 1 &CT, 4 G dlnT, 8 G2 BdlnT, dlnT,1+—— 8 + 3 8 4.6a
vi 2 8 3 8 dP 45 82

g da dP
~I

hv, 1 FACT, G dlnT, dlnT,
3 8 —8

v, 15 8 8 da; dP

We now apply these results to experiments on polycrys-
talline YBa2Cu307 and La2-, Sr„Cu04. G and 8 have
been measured by propagating longitudinal and transverse
sound through these materials. ' The values obtained
for 8 are only about 60% of the values obtained by x-ray
measurements of the variation of lattice parameter with

pressure. The difference is possibly due to voids in the
polycrystalline samples, which were not taken into ac-
count in our averaging procedure but which can have
significant effects on the measured values of various prop-
erties. In our analysis, we use the x-ray value for 8 and
estimate a void-corrected value for G by using the mea-
sured ratio G/8 which we assume to be relatively insensi-
tive to the density of voids, and is given by G/8 0.75
(YBa2Cu307) and G/8 0.4 (La~.sSrp. 2Cu04).

As discussed above, the x-ray and neutron measure-
ments of lattice parameter changes at T, are, by virtue of
their relatively large uncertainties, consistent with each
other, with the hydrostatically measured BdlnT, /dP, and
indeed with isotropy of the stress derivatives of T,
(dT /da; —,

' dT, /dP). However, the mean values of the
BdlnT, /da; are larger and anisotropic; thus it is of in-
terest to inquire whether they are consistent with the

I

dlnT, 1 dlnT, 1 ACT,

da; 3 dP 2 8

dEVI —130 ppm, (4.7a)

LLVs

s, R

—130 ppm. (4.7b)

The analysis of the x-ray lattice parameter data to obtain
these discontinuities is more diScult, since the values for
d InT, /da; given in Table II are only upper bounds. How-
ever, these enter only through the combination

dlnT, dlnT,8
da; dP

which is proportional to the anisotropy. Thus we can ob-
tain lower bounds on the predicted sound-velocity jumps
by using the measured 8,~b which provides a constraint on
the anisotropy, as follows:

2

I

sound velocity experiments. Using the values of G/8
given above, data from Tables I and II and Eqs. (4.4), we

can compute the discontinuities in sound velocities pre-
dicted for YBa2Cu307 by the neutron lattice parameter
measurements, finding

1

Thus, using for definiteness the smaller of the two x-ray values, (ACT, /8) 'h~b —10, we find

»I 1 ACTgp

U~ 2 8
»s ~C~cp G 1

8 810

1+——4 G
3 8

ACT, p

8

dlnT, 4 G2

dP 15 82
2

h~b 200 ppm.

WCT,

8 160 ppm,

For both longitudinal and transverse sound velocities,
no jump has been observed within experimental resolu-
tion; thus Avi/v~ is 520 ppm and hv, /v, & 100 ppm.
Therefore, the mean values of the dlnT, /da; inferred
from neutron measurements and the upper bounds in-
ferred from x-ray measurements are inconsistent with the
sound velocity data. There are two possibilities for resolv-
ing this inconsistency. One, a reasonable possibility in
view of the large experimental uncertainties, is that the
true values of the dlnT, /da; are considerably s.maller
than the mean values or upper bounds, perhaps because
the observed behavior of the lattice parameters near T,
cannot be primarily attributed to breaks in slope. This
conclusion has been independently reached in Ref. 24,
where the observed thermal expansion was analyzed using

I

an anharmonic lattice model which does not involve super-
conductivity. Alternatively, the Reuss estimates for the
sound velocity jumps could be inaccurate due to a large
elastic anisotropy. In this case the anisotropy in

dlnT, /da; could be large, but this would not necessarily
imply a large anisotropy in a;.

In La2 —„Sr„Cu04, no de6nite information about the
anisotropy in B(dlnT, /da;) can be extracted from the
available lattice parameter measurements. Therefore we
assume

dlnT, 1 dlnT,
der; 3 dP

and from Eq. (4.6), Table I, and the value G/8 0.4 we
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&i lnG 25| lnv, .
(4.8)

find

h, v
130 ppm.

VI

This is consistent with observations of a jump of 150 ppm
in La| sSrp2Cu04 (Ref. 30) and 130 ppm in La|s-
Srp 2Cu04. The predicted jump in hv, /v, is identically
zero because of the assumption of isotropy.

In both materials, further accurate measurements of
the sound velocity jumps near T, would be of interest,
especially of the transverse velocity, which is directly sen-
sitive to the anisotropy in 8(dlnT, /der;). Ultimately,
questions of anisotropy will best be addressed by measure-
ments in single crystals.

To end this section we discuss the discontinuity in the
temperature derivative of the sound velocity at T,. This
discontinuity is large, and has been observed in many ex-
periments on oxide superconductors. However, it is more
difficult to interpret than the measurements previously
discussed, because [as Eqs. (2.11) and (2.12) show) it de-
pends on many more parameters. We shall argue that the
changes are much too large to be explained by the values
of the a; discussed, and estimate the other terms in Eqs.
(2.11) and (2.12), concluding that some combination of
the 5;J and 6; must be large.

Several groups have obtained data on the temperature
dependence near T, of sound velocity in ceramic samples.
From measurements of longitudinal and transverse sound,
the discontinuities in the logarithmic temperature deriva-
tives at T, of the elastic moduli 8 and G can be obtained
by using

4G 4G
hl lnB 2 1+——h, l lnvI ———h, l lnv,38 38

For La2, Sr,Cu04, there are two measurements of
&1 lnvi. &1 lnvi 9.47410 (Ref .29) and hl lnvi 6.1

x10 (Ref. 30). The observed value for hllnv, is
2.1x10 (Ref. 29). Thus

Ai ln8 0.6x 10 or 0.4x 10

lnG 4.2 x 10

For YBa2Cu307, we find hllnvI 5.8x10 (Ref. 29) or
hllnvi 4.2x10 (Ref. 31) and dllnv, 5.9x 1()
(Ref. 29), yielding

41 lnB 1.1x10 or 0.53410

d, l lnG 1.2x10

dilnG is obtained directly from the measured transverse
sound velocity. To obtain AllnB requires knowledge of
G/8 and also the subtraction of two roughly equal quanti-
ties; thus we believe the values of Al lnB to be much less
reliable than those of dllnG. However, it seems likely
that in La2 —,Sr,Cu04, hllnG))hilnB, and that as first
pointed out by Bhattacharya it is the large value of
Al lnG that accounts for the observed change in tempera-
ture derivative of both longitudinal and transverse sound
velocities in La2 —„Sr,Cu04. In contrast, in YBa2Cu307,
LL| lnB is comparable in magnitude to, but perhaps some-
what smaller than, hl lnG. Both contribute significantly to
the observed ht lnvi.

We turn now to an analysis of these results. By com-
bining Eqs. (2.11), (2.12), and (4.4) we obtain Reuss esti-
mates for these quantities. For the change in 8 we find

FACT, dlnT,
(hilnB)g/ ' - 3A B

For the change in G

d InNp d lnT,

dP dp

8' d'T,
Te dP

(4.9)

d lnNp

dP

282 d Tc d T~+ —3
Tc0 dP s der.

ACT, I G dlnT,
(hllnG)g —6A 3g 88 15 8 i. doi

dlnT,+4 8
dP

dlnT,
dP

d lnNp8
da;

1lnT,—3 8
do;

dlnT, Ak;—3+8 c; A; —28
dai, 8

(4.10)

First, we compare the expression for 61 lnB with the ex-
perimentally measured value. In Lai 85sro i5Cu04, the
first term in (4.9) is, for the experimentally measured
values of A 4-6, 4.8-7.2x10, an order of magnitude
larger than the observed h, ilnB. Thus the contribution
from the second and third terms must be comparable to
the first and opposite in sign. Our estimate of

d'T,
~240

c dI'

I

shows that the third term is about an order of magnitude
too small to be significant, while for the second term to be
important one would have to have 80 (Bd lnN p/
dP ( 130. Such extreme values seem unlikely on physical
grounds, if Np is essentially an electronic density of states,
and are inconsistent with the estimate Bd lnNp/dP-1 ex-
tracted from measurements of the pressure dependence
of the magnetic susceptibility by assuming this arises from
the pressure dependence of the Pauli contribution.

In YBa2Cu307, the first term in (4.9) is 10-25 for
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2 ~ A ~ 5, which leads to a contribution to hi lnBii an or-
der of magnitude too small to explain the observed d, i lnB.
Similarly, the bound

d'T, «60
Tc dP

shows that the third term is at least a factor of 4 too small
to explain the observed hi lnB, while for the second term
to contribute one would have to postulate the unphysically
large value Bd 1nNO/dP -—100.

Next, we consider the various contributions to 6~lnG
for Lai.s5Sro ~5Cu04. The first term in (4.10), which in-
volves the anisotropy of the first stress derivatives of T„
can be rewritten as

6A $3003 .
Vs

FACT,

8
Clearly, for reasonable values of A, this term alone cannot
account for the observed hi lnG. The scale of the second
term is set by our estimate of 8(dlnNO/dP) from hi lnB
and the limits on the anisotropy of the first stress deriva-
tives of T, as &25. The last term in (4.10), which in-
volves the shear anharmonicity A;J, can be estimated as

dlnT,
(0.16) 8 —=2.5

P 8

or

82dT, —82 dT, Sx10
Tc do'i Tc dcrl dc'.

g2 g.——I x10 .3
l

c;

An analogous series of arguments using the Voigt esti-
mates (4.3) leads to either 6;;= —6;J.= —800 or
a;= -600.

In summary, the large observed discontinuities in the
temperature derivatives of the effective shear modulus G
and the transverse sound velocity in both La2 —„Sr Cu04

if we use the order of magnitude estimate from the
Griineisen parameter A/8-1. Thus, to account for the
observed hi lnG, there must be a large contribution from
the second derivative terms: either

82 d T, -8& d T, ——5x10,
Tc do; Tc doidcrj

or

8 2
4Q ——1 x lp .l

Ci

An analogous series of arguments using the Voigt esti-
mates (4.3) leads to either 5;;= —6;J.= -2000 or
5; = —1400.

The analysis of hi lnG for YBa2Cui07 is very similar.
The first term in (4.9) is & 22M. The second term and the
shear anharmonicity term are similarly too small. Thus,
in this case too there must be a large contribution from
the second derivative terms to account for hi lnG: either

and YBa2Cui07 indicate that a second derivative of T,
with respect to some volume preserving strain is very
large, even though none of the first derivatives are large.
However, within the approximations we have used, the
discontinuity in the derivative of the effective bulk
modulus 8 is unexplained, the experimental value being
an order of magnitude larger than the theoretical estimate
in YBa2Cus07 and an order of magnitude smaller in
La2, Sr,Cu04. There are several possible explanations;
as previously mentioned, the experimental values for
5i InB are in our view considerably less reliable than those
for hilnG; alternatively, it is possible that the bounds we
have quoted for d T,/dP are too small; also, the theoreti-
cal values depend quadratically on dlnTc/dP, so that a
factor of 3 error there could resolve the discrepancy. Fi-
nally, in the Reuss averaging procedure, the expression for
hilnB involves only isotropic pressure derivatives. It is
possible that in the present case, in which the hilnG re-
sults indicate that some second derivative of T, is very
large compared to (8 /T, )d T,/dP2, the Reuss approxi-
mation is inaccurate and the large derivative contributes
also to hi lnB.

V. SUMMARY

We have outlined the theory and analyzed currently
available experimental data concerning changes in lattice
properties at the superconducting T, in the high-T, oxide
superconductors. We have considered the possibility of
non-mean-field critical behavior, finding that Gaussian
fluctuation corrections to the mean field may be observ-
able, but that true critical behavior will occur only in a
very small (10 z K) temperature window about T,.
Within mean-field theory we have written equations for
the discontinuities that occur at the superconducting T, in
the magnitude and temperature derivative of elastic
moduli and sound velocities for single-crystal and ceramic
materials and in the temperature derivatives of the lattice
parameters. The accuracy with which the discontinuities
should be measured is set by ACT, /c;, , where dC is the
specific-heat jump and c;~ is an elastic modulus. We esti-
mate this to be 10 -10 for the oxide superconductors,
although it may be larger if some elastic constant is very
small relative to the bulk modulus. Because much of the
available data are not of the requisite accuracy and were
measured on incompletely characterized samples, it is
difficult to come to definite conclusions. However, we
have argued that the data suggest that in both
La2, Sr,Cu04 and YBa2Cus07 the first strain deriva-
tives of T, are roughly equal to each other and therefore
to —,

' B(dT,/dP). This conclusion is based on effective-
medium analysis of ceramic sound velocity data; the
effective-medium analysis applies only if the elastic an-
isotropy is not large The mag.nitudes of the first strain
derivatives of T, are not large compared with other super-
conductors. The dramatic change in the temperature
derivative of the sound velocity shows that some second
strain derivative of T, is large:

d'T, —10 .
Tc de~j.
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In principle, lattice anharmonicity and higher-order tem-
perature terms may contribute to the slope change, but
our estimates indicate these contributions are by 1-2 or-
ders of magnitude too small to account for the observed
change. Transverse sound velocity experiments in poly-
crystals and the relatively small value of B d T,/dP (as
determined by hydrostatic pressure measurements) each
indicate that the hardening is due to the extreme sensitivi-

ty of T, to some volume-preserving shear distortion. The
data available to us do not permit more than a very rough
estimate of the magnitude of the second derivative, and
we are of course unable to determine which of the various
second derivatives are most important. Because the effect
is so large, we believe that a more precise determination of
the magnitudes of the various second derivatives of T,
would be very useful.

Perhaps the most straightforward determination of the
various strain derivatives of T, would involve measure-
ments of longitudinal and transverse sound velocities and
thermal expansions in single crystals. In view of the ap-
parent importance of Cu-0 planes in high-T, supercon-
ductivity, sound modes which deform the a-b plane are of
particular interest. In the absence of single-crystal data,
precise (-ppm) measurements of any discontinuity in
transverse sound velocities in well-characterized ceramic
samples would provide useful information on the anisotro-

py of the first strain derivatives of T,. In addition, mea-
surements of elastic moduli are necessary for accurate
analysis of ceramic data.

An accurate determination of the anisotropy in the first
strain derivatives of T, combined with a physically
reasonable assumption about T, (e) can be used to provide
information about the magnitude of some second strain
derivatives of T, . Assume that the orthorhombic struc-
ture at T, can be regarded as a slight distortion of a
tetragonal structure in which T, as a function of strain
has tetragonal symmetry (as is true for La2 „Sr„Cu04
and may also be true for YBa2Cu307 if the anisotropy
produced by the chains is irrelevant). For tetragonal sym-
metry ap a2'. For a small orthorhombic distortion b',

the anisotropy in the a; may be estimated from the second
strain derivatives 6;J, which should be nearly independent
ofb. One finds

~(&» —&12) al a2

Thus a bound on the anisotropy in the a; may be used to
obtain a bound on h~~ —6~2. However, it was shown in
Sec. IV that some second derivative of T, -0.5-1x103
(in La2 —„Sr„Cu04) and —1 —2x10 (in YBa2Cu307).
Values of h~~

—6~2 of this magnitude would lead to values
a~ —a2-16 for La2 —„Sr„Cu04, where 8 0.004, and
a~ —a2-27 in YBa2Cu307, where 6 0.017. Such a
large anisotropy is ruled out in both materials by the
bound on the jump in the polycrystal transverse sound ve-
locity v, . This argument suggests that h~~

—6~2 is not
large. However, since h33AAff and h~3eh~2, the size of
h~lnv, may be accounted for by the d„j alone. Alterna-
tively, the shear derivatives h,; may be large.

In conclusion, we discuss what may be learned from the
strain derivatives of T,. The 6rst strain derivatives pro-
vide constraints on microscopic models. According to one

physical picture of YBa2Cu307, the Cu-0 chains are of
crucial importance. We take the chains to run along the b
axis. In this case one might expect ab» a„a,. According
to another picture, the Cu-02 planes are the important
features. Then

~ at, ~

—
~ a, [ aa, . Depending on the sym-

metry of the superconducting order parameter one may
have a, + ah. If the coupling between planes, though
weak, sets T„one expects a, && a, ay.

The existence in the high-T, materials of such a large
second derivative of T„along with the much smaller
values of the first derivatives, requires explanation, since
in general we expect 5;J = a;a~. It could be that T, de-
pends sensitively upon a lattice distortion which, by sym-
metry, cannot couple to T, at linear order. A similar situ-
ation occurs in the 215 superconductor V3Si, where
A~~ —10 and

~ a; ~
(20, because the superconductivity is

strongly coupled to a charge-density-wave transition
which produces a small tetragonal distortion in a cubic
structure. However, there are difficulties in applying this
argument to the oxide superconductors. Although
structural phase transitions do occur in the oxide materi-
als, typically the transition temperature Td &) T,. The ex-
ception, which might be interesting to study, is
La2, Sr„Cu04 for x~0.18-0.19. Further, in the oxide
superconductors the observed structural phase transitions
are most probably not driven by Fermi-surface instabili-
ties. The transition in YBa2Cu307 is an order-disorder
transition, while in La2-„Sr„Cu04 Td is maximum in
La2Cu04 which is a magnetic insulator with a gap-to-
charge excitations greater than 1 eV. Finally, the previ-
ously presented estimate of h~ ~

—6~2 in terms of a~ —a2 is
inconsistent with this model. Thus if proximity to a
structural phase transition causes the sensitivity of T, to
strain, the transition is most likely not the observed
orthorhombic-tetragonal transition but instead a potential
transition to a still lower symmetry phase, which is inhib-
ited by the presence of superconductivity.

Note added. We have recently received reports3 '

of ultrasound measurements on single crystals of
YBa2Cu307. Longitudinal sound was propagated in the
basal plane and along the c axis; transverse sound was
propagated along the c axis. In one experiment, 33 the
small and nearly isotropic values a; —1.5 were found, in
agreement with the estimates we have presented. Values
for temperature derivative discontinuities of longitudinal
sound in the a-b plane (d~lnvt-2. 5x10 ) and c axis
(A~lnvt-1. 0x10 ) were also given, yielding A~inc, t,

-5x10 (c,t, is some effective longitudinal elastic
modulus in the a bplane) and h~ln-c33 2x10 . These
are somewhat smaller than the values of h, ~ln8 inferred
from polycrystalline data. In another experiment, the
bounds

~ a;
~

& 2.5 were reported, consistent with the other
results. Values for derivative discontinuities were not
given; from the figures we infer (although the low density
of points near T, leads to some uncertainty in our results)
h~ lnvt 1.5 x 10 (longitudinal, a -b plane), A~ lnvt

—6 x 10 (longitudinal, c axis), and A~ Inv,
—1.2x10 (transverse, c axis). Note that the c-axis

values are opposite in sign to the other single-crystal and
the polycrystal results, and are somewhat larger in magni-
tude as well.
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