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The new high-T, oxide superconductors appear to be superlattice structures with a basis com-

posed of metallic sheets as well as metallic chains. Using a simple free-electron-gas model for the
sheets and chains, we obtain the dielectric function e(q, te) of such a multilayer system within the
random-phase approximation (RPA). We give results valid for arbitrary wave vector q appropri-
ate to sheets and chains (as in the orthorhombic phase of Y-Ba-Cu-0) as well as for two different
kinds of sheets (such as may be present in the Bi-Sr-Ca-Cu-0 superconductors). The occurrence
of acoustic plasmons is a general phenomenon in such superlattices, as shown by an alternative
formulation based on the exact response functions for the individual sheets and chains, in which

only the intersheet (chain) Coulomb interaction is treated in the RPA. These results generalize
the long-wavelength expressions recently given in the literature. %e also briefly discuss the analo-

gous results for two arrays of mutually perpendicular chains, such as found in Hg chain com-

pounds.

I. INTRODUCTION

In this paper, we give a general procedure for finding
the charge-fluctuation response functions and associated
collective modes in superlattice systems with a "basis"
composed of metallic sheets and chains, coupled by the
Coulomb interaction. We show that the random-phase-
approximation (RPA) integral equation for the various
response functions can be solved exactly if we limit our-
selves to two-dimensional (2D) sheets (in which the elec-
trons can only move in the x-y plane) and one-
dimensional (1D) chains in which the electrons can only
move along the chain direction (x or y). Our results are
of interest in connection with a wide variety of
condensed-matter systems but especially with the new ox-
ide superconductors.

In Sec. II, we discuss such a superlattice system
(periodic in the z direction) in which the basis is two me-
tallic sheets (in the x-y plane) and a plane composed of
chains (directed along the y axis). As argued in a recent
paper, ' the Cu-0 network in the high-temperature super-
conductor (b & 0.2) YBa2Cu307 s can perhaps be
modeled by such a periodic structure composed of sheets
and chains. The interesting result was that such a coupled
sheet-chain system generally leads to an acoustic plasmon,
which might play a crucial role in Cooper pairing in the
Y-Ba-Cu-0 superconductors. Our present work general-
izes the long-wavelength limit considered in Ref. i and
gives the dielectric function e(q, to) and response func-
tions for arbitrary wave vector q.

In Sec. III, we specialize the results of Sec. II by elim-
inating the chains. In this case, our general formulas
reduce to those recently discussed ' for a semiconductor
type-II superlattice (in this case, the basis is composed of

I

two different sheets). Our results involve a slight general-
ization in that we include the finite thickness of the sheets
through form-factored Coulomb interactions. The newly
discovered Bi-Sr-Ca-Cu-0 high-temperature supercon-
ductors may be an example of a superlattice with a basis
of two dtgerent kinds of metallic sheets (Bi-0 and Cu-0
sheets).

In Sec. IV, we discuss a set of two mutually perpendicu-
lar arrays of chains (usually referred to as the a and b
chains) such as one finds in Hg3 eAsFs. Our present
work extends the recent long-wavelength treatment to ar-
bitrary wave vectors. The general results we obtain and
the conditions under which the two chain arrays decouple
are similar to those found by Mohan. 5

In Sec. V, we briefly discuss the generalization in which
only the "inter-Coulomb" interaction is treated in the
RPA. By inter-Coulomb, we mean that Coulomb interac-
tion between electrons in different sheets or chains (or be-
tween sheets and chains). In contrast, the "intra-
Coulomb" interaction between electrons in a given sheet is
treated exactly.

Earlier references to the literature on these systems can
be found in Refs. 1-5. This paper is mainly devoted to the
technical details of how one solves the RPA integral equa-
tion in the various models. However, in Sec. VI, we
briefly discuss the possible relevance of the acoustic
plasmons which arise in such superlattices to high-
temperature superconductivity.

II. SHEETS AND CHAINS: Y-Ba-Cu-0

The RPA integral equation for the inhomogeneous sys-
tems we are concerned with is given by (for further de-
tails, see the introduction of Ref. 4)
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Here Z;J (r, r', rv) is the dynamic response function describ-

ing the correlation between the electronic density fluctua-
tion Bp;(r) in the ith sheet (or chain) and the electronic
density bpj (r) in the jth sheet (or chain). v(r —r') is the
Coulomb interaction. We shall solve this by using Fourier
transformation techniques and thus we will work with

Z;, (q, —q ) &~dre'~'„dr'e 's 'Z;, (r, r'), (2)

where, from now on, the frequency dependence will be left
implicit. We treat the Coulomb interactions in a given
sheet (or chain) as well as between different sheets
(chains) on the same footing in (1). Thus, ZD(r, r') is the
response function for noninteracting electrons in a sheet
(or chain) of type i.

For our chain-sheet model of Y-Ba-Cu-O, we take our
basis to be two metallic sheets (sheet a at z 0 and sheet b
at z zb) and chains along the y axis (separated by a dis-
tance a in the x direction) in a plane at z z, . This basis
will be repeated in the z direction with period c. Thus
i,j a, b, or c, where c represents one of the chains. We
assume for simplicity that there is negligible charge
transfer between the different sheets and chains. More-
over, we assume the electrons in the sheets can only move

in the x-y plane and the electrons in the chains can only
move in the y direction. That is, the electrons are in their
lowest transverse states.

The charge fluctuation at r in a sheet of type a is given

by [r)) -(x,y)]

8pb(r) -gw, (z —Z, —zb)8pz (r~~),
Zg

while for a fluctuation at r in a chain

bp, (r) gw, (r& —R, )bpa, (y) .
Rc

(5)

Here R, gives the position (in x-z plane) of the chain in-

volved,

R, (na, O, z, +mc),

where n, m are integers. These form a Bravais lattice. In
(5), w, describes the spatial extent of the lowest trans-
verse eigenstate '5 in a chain centered at R„with r&
standing for the x-z components perpendicular to the
chain axis. It follows from the symmetry of this system
that Z;J(q, —q') 0 unless q' q+G, where 6 is a
reciprocal-lattice vector in the (x,z) plane:

6 (2nn, /a, 0,2nn, /c); n„,n, integers .

where Z, mc (m an integer). Here w, (z) is a strongly
peaked function which describes how localized the elec-
trons are to a sheet [essentially w, (z) is related to the
lowest transverse eigenstate in the z direction]. Similarly,
the charge fluctuation at r in a sheet of type b is given by

bp, (r) gw, (z —Z, )bpz (r~~),
Zg

(3) Using the specific form given in (3), one can show that
Z„has the following structure:

Z„(q+G', —q
—G) P, (q, +G,')P, (q, +G, )Z„(q+G', —q —G, ),

where the key point is that Z„does not depend on the z components of G and 6'. Here the sheet "form factors" P, are
the Fourier transforms of w, (z). Similarly, one finds that

Z„(q+G', —
q

—G) P, (q&+6')P, (q&+G)Z„(q)e

where q~ is the xz component of q and Z„(q) is completely independent of 6 and G'. Finally, we have

Z„(q+6', —q —6) -P, (q, +G,')P, (q +6)Z„(q+G,')e
(10)

Zb, (q+G', —
q

—G) -p, (q, +G,')p, (q&+6)Zb, (q+G,')e ' ' * "e' *

For the noninteracting response functions, only electrons in the same sheet or chain are correlated. One finds

Z,', (q+G„', —q —G ) -N, Z2, (q~~),

Zbb (q+G», —q
—G ) -N, Z2b(qadi), (11)

Z,',q -N,ZD)(qy),

where Z2 (q~~, co) [Z& (q~, cv) ] is the usual 2D (ID) Lindhard function. N, is the number of sheets of type a (or type b) per
unit volume and N, is the total number of chains per unit volume. We also note explicitly that

Z„(q+G„', —q —G) N, p, (q, )p, (q, +G, )Z2, (q~~, cv) -Z, (q, —q
—6), (12)

which will be needed later.
Fourier transforming (1),using the fact that Z(q, —q') is zero unless q' q+6, gives

Z;, (q, —
q

—G) Z,;(q, —q —G)b;, +~,;(q, —q —6')v(q+6')~J, (q+6', —q —G),
G' J

~here v(q) 4' /q . Thus we have

(13)
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X„(q,—q —6) -X„(q,—q
—G)++X„(q,—q

—G') v (q+ G')

Using (9) and (10),we find

x [X„(q+6',—q —G)+Xb, (q+6', —
q

—6)+X„(q+G', —q —G)] . (14)

X (q) N,Xi(qy)+N, X( (qy)gp, (q&+6')v(q+6')[p, (q, +G,')X„(q+G')e

+P, (q.+6')X„(q)],
after canceling out p, (q&)p, (q&+ 6)exp( —iG, z, ) from both sides. Proceeding similarly, one finds

X«('q) NsX2u (qadi )g p, (q, +G,' )u (q+ G ') [p, (q, +G,' )X„(q+G„' ) +p, (q, +G,')Xb, (q+ G„' )e' q*

G'

+p, (q&+ 6')x„(q)e' '*+ "'],

(is)

Xb, (q) NXzb(q~1)g Ps(q, +G,') v(q+ 6')f P(q, +G,') X„(q+G,') e
' * * *'+P, (q, +G,')Xb, (q+G„')

G'

+p ( +6,)X ( ) i(q, +G,')(sz zs)] (i7)

A major simplification of (15)-(17) results when one
notes that

x„(q+G„', —q —6) -x„(q, —q —G),

Xb, (q+G, —q —6) Xb, (q, —q
—6) .

I

Here we have defined the following quantities:

ec —= 1 —ucc(q)NcXl (qy),

e, —= 1 —
vss (q)NsX2, (qi),

u .(q)NsX2b (qi)

(2i)

This can easily be seen using the RPA equation of motion
for these quantities analogous to (14) for X„, in conjunc-
tion with (12). It follows that

X„(q+Q,') X„(q); Xb, (q+Q„') Xb, (q), (19)

and thus (15)-(17) reduce to three coupled algebraic
equations for X„, Xb„and X„, which are easily solved.
We find

X„(q)e, N, X~ (qy)+N, X( (qy) [v„(z,)X„(q)

+v„(z, —zb)Xb, (q)],

X„(q)e, N, Xz, (qi) [v„(—zb)Xb, (q) +v„(—z, )X„(q)]

Xbc (q) eb Nsx2b (qi) [u» (Zb»«(q) + ucs (Zb Zc )Xcc (q) ] ~

(20)

where the effective form-factored Coulomb potentials are

u„(q)-=g
~ p, (q +6) ~'u(q+6),

v„(q)—=X IPs(q. +Gs) I v(q+G),
G (22)

v„(q;z)—:QP, (q&+6) P, (q, +G, )v(q+6)e
G

v„(q;z)=ZIp (q +G*) I u(q+6)e
G

It is clear that e, (q, a) ) is the dielectric function of the
chain array by itself, while e, (q, rv) is the dielectric func-
tion of the system of coupled a sheets. We also note that
all the effective potentials v(q) and v(q) in (22) are
periodic functions with respect to the reciprocal lattice
vectors G, i.e., v(q+ G) v (q), etc.

Solving the set of equations in (20) for the three
response functions, we find they all involve the same
denominator, namely the dielectric function of the cou-
pled sheet-chain-sheet superlattice. This is given by [note
u*(z) -u( —z)]

e(q, v)) e, [e,eb —N, Xz,N, X2b ) v»(zb) ) ] ebNcXiNsXzc I ucs(zc) I

E N, X( N, Xzb ~
v„(z, —zb )

~ N, X) N, X2 N X2b 2—Re [v„(z,)u„(—zb )v„(zb —z, )] . (23)

The dispersion relation of the charge fluctuations is given
by the zeros of e(q, co). Using the periodicity of the
effective potentials in (22), one may verify that
e(q+G„as) e(q, a)) and thus the modes need only be
considered for q, in the first Brillouin zone ( —)r/c & q,( sr/c).

Several special limits of (23) are useful to consider.

I

First of all, we note that if we remove the coupling be-
tween the a array, the b array, and the c array, the dielec-
tric function reduces to e-e, ehe„as expected.

If we assume the electrons are well localized in the
sheets and chains, we can set the form factors in (22) to
unity as a first approximation. Then we have v„v„and
v„-u„In the l.ong-wavelength limit (defined by
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q «G;„),we have the further simplification that all the
effective potentials in (22) reduce to the bare Coulomb
potential v(q). In this case, (23) is given by

e(q, rv) -1—v(q)(N, X(+N,E2a+Nsl2b). (24)

This long-wavelength expression was the basis of our ear-
lier paper' on this model. We recall that N, is the total
number of sheets N,' divided by the volume. Since the
volume V N,'Ac, where A is the area of one sheet, we
have N, 1/cA. Similarly, N, is the number of chains N,'

divided by the volume. Writing V N,'LA„where L is
the length of a chain and A, ca, we have N, 1/A, L.

We note that if we let the distance c between the sheet-
chain-sheet "sandwiches" become very large, the zeros of
e will describe the resonances of these uncoupled units.
Formally this limit is taken by treating the G, summations
in (22) as integrals. If we further restrict ourselves to the

qt 0 limit, we need only keep the G„O term in the
summations. Setting the form factors P, P, 1 [this
corresponds to treating the chains (sheets) as strictly 1D
(2D) systems), the effective potentials in (22) reduce to

2'
C,

Kev„(z)-v„(z) ce

One can use these results in (23) to find the dielectric
function of a single sandwich. In the high momentum
limit (qlzb, qlz, ))1), each sheet and plane of chains acts
independently with

existence of the rv =v(FqF mode is associated with the
screening effect of the Cu-0 sheets on the charge fluctua-
tions in the Cu-0 chains along the y-axis.

eaeb Ns&2aNs&2b I "ss(d) I (27)

where d is the distance between the a and b sheets. Solv-
ing (20) for the response functions gives

( )
N$~2a eb

Zaa Q

Ns&2bvss(q, ) s&2a
Xb, (q) - -X,*b q, (28)

0
Ns~2b ea

Zbb

The effective potentials v„and v„ in (22) now only in-

volve summations over G, n, 2n/c.
Setting the form factors p, to unity (i.e., the metallic

sheets are infinitely thin 2D systems), one can write the
potentials in terms of lattice sums

III. SUPKRLA'I I ICE OF ALTERNATING SHEETS

While it is only a special case of (23), it is of interest to
make a few specific remarks on a superlattice with two
metallic sheets per unit cell. Formally, this corresponds to
setting Xl to zero, which leaves us with two arrays of cou-
pled sheets. The dielectric function of this system is given

by [see first line of (23)1

0

e, (q, co) -1—2' Z1

qII aL '

(24')

v„(q) -4sre 'S(0),

.-„(q,d) -4~e 2S(d),
(29)

qx

qy
1+V lF Nl(e(F)

V2F N2(82F) 2a
(26)

0

e (qrv) 1 — (i a, b),2' Z2i

qII

where 2lre /ql is recognized as the Fourier transform of
the Coulomb potential in a 2D system. This result should
be contrasted with the long-wavelength limit result in (24)
for a coupled system of sandwiches, which is valid for
qc (& 1.

In using (23) for the plasmons in YlBa2Cu30'7 —s super-
conductors, an appropriate basis is that of two Cu-0
sheets with a middle layer composed of Cu-0 chains. To
a good approximation, one can take zb 2c/3 and

z, c/3, in which case zb —z, c/3. Both Cu-0 sheets
are the same (Z2, X2b), but we still expect three kinds of
plasmons in this sheet-chain-sheet unit. In Ref. 1, we
showed that in the long-wavelength limit described by
Eqs. (24), one may have an acoustic plasmon (co ) as well

as a bulk-type plasmon (co+). In the simple electron gas
model for El and X2 that was used, it is clear that one
must have co—& v2FqII. One may show that this requires

where

C ~ -iq, (s+z~) -qN Is+ z~ I

m
(30)

2'v„(qd)- c
sinh [q l(c —d) ] +e 'q*'sinh(q ld )

cosh(q lc) —cos(q, c)
These results agree precisely with those recently given

in the literature. The special case of d c/2 was origi-
nally discussed by Quinn and co-workers. 7 In this limit,
(31) reduces to

s

2sre 2cos(q, d) sinh(qld)
32

cosh(2q ld ) —cos(2q, d )

From the general structure of v„and v„ in (22), one sees
that for d c/2,

In the limit N, ~ ao, these sums can be carried out
analytically to give6

2Ãe sinh(q~~c)Vssq-
ql cosh(qlc) —cos(q, c)

(31)

where Nl (N2) is the density of states at the Fermi sur-
face of a 1D (2D) electron gas. The fact that q /qz must
be larger than a critica/ value shows once again that the

v(q) -vE(q)+ vll(q),

v(q, d) vs (q) vQ(q),
(33)
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where vE(q) is the part coming from the even terms in the
G, summations while vo(q) is from the odd terms. If all
the layers have the same response functions (X2, X2b

X2 ), one can show that (27) reduces to

e(q, co) (1 —2vEN, X2)(1 —2voN, X2) .

Calculating the full response function using

(34)

X(q —q —G )-~ (q —q —G ) (35)
l,J

one can show explicitly that it simplifies finally to the ex-
pected result, namely the response function of a superlat-
tice with 2N, sheets (per unit volume) with period d.

For further discussion of the collective-mode spctrum
predicted by (27), we refer to the literature. 2 ' Under
certain conditions, one has both acoustic and optical
plasmon modes even for q, 0. In the long-wavelength
limit, we simply have

e(q, cv) 1 —v(q) UV,Xf~+N, X2bl . (36)

IV. COUPLED CHAIN SYSTEMS IN HI3-gAsFg

In Hg chain compounds, one has a superlattice made up
of two mutually perpendicular chain arrays of Hg ions. In
a recent work, the electronic response functions of this
system were evaluated in the q 0 limit. In the present
section, we generalize this analysis to arbitrary wave vec-
tors.

As in Sec. II, it is convenient to introduce electronic
response functions X;J (r, r') which describe the correlation
between a density fluctuation at r in a chain of type i (a or
b) and a density fluctuation at r' in a chain of type j. We

I

In the opposite limit cq~~&&1, the collective modes are
those of two coupled parallel sheets separated by the dis-
tance d.

We might remark that in the newly discovered Bi-Sr-
Ca-Cu-0 high-transition-temperature superconductors, '

there is the possibility that one is dealing with a superlat-
tice structure which involves two (or even three) different
kinds of metallic layers. " It immediately follows from
(36) that such a superlattice may give rise to acoustic
plasmons, z"' as can be most easily seen by analogy to
Fig. 2 of Ref. l.

have

bp, (r) -gw, (r~ —R, )bpR (x),
R»

(37)

Xbb(q+Gb 'q Gb)

p(q +Gb)Xbb(q)p(q +Gb)e ' '* '*, (40)

where D is the closest distance between the a and b chains
(D cT/4=3. 1 A in Hg3-sAsFb). The phase factors
enter here because the b-chain sublattice is shifted upward
(in z direction) from the a sublattice by the amount D.
Finally, for the correlation function between chains of a
different kind, calculation shows that

Xb. (q+Gb, —
q

—G.)

P(q&+ Gb )xb, (q)P(q~+ G, )e

Using (39)-(41) in the RPA Eq. (13),we obtain

(41)

where the a chains are assumed to be along the x axis and
r& (y,z). The positions (in y-z plane) of the a chains
are denoted by R, and form a triangular lattice, to a good
first approximation. Similarly the density fluctuations in
the b chains (along the y axis) are described by

bpb(r) gw, (r& —Rb)bpR, (y) . (38)
Rb

The b-chain lattice is described by the Bravais lattice vec-
tors Rb in the x-z plane and r& (x,z). Using (37) to
calculate the Fourier transform of X„,we find it has the
following structure:

X„(q+G„-q—G, ) -P(qJ. +Gg)X«(q)P(qi+6, ) .

(39)

Here the reciprocal-lattice vectors of the a sublattice are
denoted by 6, (these are in the y-z plane). The key
feature of (39) is that the dependence on G, and G,' is
completely contained in the chain form factors. To re-
mind us that only the yz component of q enters in the
form factors of p, we use the notation q&. We recall that
a general discussion of the symmetry properties of X;J was
given in Ref. 4. Clearly, in our model, all band-structure
effects in a given chain are ignored.

Proceeding in a similar manner, one finds

X„(q) N, X) (q„)+N&X& (q„)QP(q~+6, )v(q+6, ) [P(q~+6, )X«(q)+P(q~+G„)Xb, (q)e ' " l
G

Xb. (q) -N, ZAN)XP(q~+Gb)v(q+Gb) lP(q~+Gb)Xba(q)+P(qi+Gb. )X«(q)e' " l .
Gb

Solving these, we obtain

(42)

N,X (q„)e,(b) — N,X (q )vb, (q)N, X (q )
(43)

where the dielectric function of the two coupled arrays is

&(q, co) e, (a)e, (b) —v,b(q)vb, (q)N, X~ (q )N,X~ (q~), (44)
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with

e, (a) =1 —N, X~((q. )v..(q),

e, (b) =—1 N—,&Bq»)vbb(q),

and the form-factored effective potentials

(4s)

close to 6b (with G»eO), the response will be essentially
that of the b array, uncoupled from the a array.

V. ALTERNATE FORMULATION IN TERMS OF
EXACT RESPONSE FUNCTIONS FOR

SHEETS AND CHAINS

v„(q)=g
~ P(q&+6, ) l v(q+6, ),

G,

"bb(q) =-Z
I P(q~+ Gb) I 'v(q+6b),

Gb

vab(q) =ZP(qf +6.)P(q&+ G„)v(q+6, )e
G,

"ba (q )=ZP—(q~ +6b )P (qf+Gb. ,)v (q+ 6b )e
Gb

(46)

The results in (43)-(46) give the exact RPA solution for
the two coupled chain arrays.

As in earlier sections, the long-wavelength limit is easily
recovered. In this limit, all the effective potentials in (46)
reduce to the bare Coulomb potential v(q) and (44) then
simplifies to

e(q, tv) 1 —v(q)DV, X& (q )+N,X& (q») j . (47)

This was the approximate form discussed in Ref. 4. As
discussed there, one finds that (47) always leads to an
acoustic plasmon in which the charge fluctuations in the a
and b arrays are essentially out of phase with each other.
We recall that N, 1/A, L, where L is the length of a
chain and A, is the area of the unit cell of the a-chain sub-
lattice.

Since the G, components of the two arrays are identi-
cal, one immediately sees that

v;;(q+G, ) -v;;(q),

v,b(q+G, ) v,b(q)e' '

vb. (q+G, ) -vb. (q)e

(48)

v„(q) -v„(q —6,),
v,b(q) -v b(q —6, )e' " (49)

while vbb (q) and vb, (q) are very small. To the extent that
we neglect the latter, we see that e(q, rv) in (44) reduces
to e, (a) in (45). Thus, in agreement with Ref. 5, the
plasmon modes would be that of the a array, essentially
uncoupled from the b array. Similarly, if we take q to be

Using these results, one may verify that e(q+G, ) e(q)
and hence we need only consider the plasmon modes tv(q)
in the first Brillouin zone in the z direction ( —tr/d (q,
& n/d).

In contrast to Ref. 5, we do not find that the interarray
response functions such as Zb, in (41) vanish unless
Gb, G,» 0. As a result, the summations in v,b and vb,
in (46) are not restricted to the G, components. Apart
from this difference, (44) is identical to that given by
Mohan. We note that if one considers a wave vector q
close to some reciprocal-lattice vector 6, (with G,»WO),
we have

-inter 2' C
2 -tq, z -q„(z (

Uss Q e
z (~0)

(so)

The term Z 0 corresponds to intra-Coulomb interac-
tions in a given sheet, namely

2- intra+

gll

Similarly, the inter-Coulomb part of v„ is given by'

-&nter( ) 2 &q~ ttr

R, ~0)

(sl)

x J dr& Ev(q» l r&+ R, l )w, (r~/J2) .

(52)

All the calculations in this paper involve solving the
RPA integral Eq. (1) for multilayered systems (superlat-
tices) with a basis composed of metallic sheets and chains.
The building blocks are the response functions X2 and Z~

of noninteracting electrons in sheets and chains. Thus we
have treated the intra-Coulomb interaction in sheets
(chains) and the inter-Coulomb interaction between
diferent sheets (chains) within the same RPA.

In real systems of interest, one is often dealing with
sheets and chains in which correlation effects are very im-

portant. In particular, there is considerable experimental
evidence that in the high-temperature oxide superconduc-
tors, the Cuo sheets are not well described in terms of
simple energy-band theory in that one must include strong
on-site Coulomb repulsion as well as the Coulomb interac-
tion between different sites. ' ' In this section, we point
out that it is straightforward to generalize the analysis in

this paper so that only the inter-Coulomb interaction be-
tween different sheets and chains is treated in the RPA.
In this case, our starting equation has the same structure
as (1) but X~ is replaced by "exact" response functions Z&

and X2 for single chains and sheets, while v is now limited
to the inter-Coulomb part. '4

We shall only discuss how the results of the sheet-
chain-sheet model in Sec. II are modified. The new equa-
tions are easily seen to lead to (20) and (21) once again,
with of course Z~ X~ and Xq; X2; (i a,b). The
effective Coulomb potentials v„and v„ in (22) are al-
ready inter-Coulomb interactions between chains and
sheets. The only changes are in the v„and v„ in (21) and
(22) since these must now be limited to the inter-Coulomb
interaction.

The most convenient way of extracting out the intra-
Coulomb interactions is to use expressions for v„and v„
which explicitly involve summations over the different
chains and sheets. Using (29) and (30), which are valid
for the extreme limit of 2D metallic sheets [P,(q, ) 1],
one has
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In the Gaussian approximation for the transverse elec-
tronic eigenstates, we have

(53)

where ro is the "radius" of the chain. Here q& (q„O,q, )
and Ko is the zeroth-order modifled Bessel function. As
discussed in more detail in Ref. 15, if we add the intra-
chain (R, 0) contribution to (52), the resulting expres-
sion for v„(q) is completely equivalent to the
momentum-space expression given in (22) involving a sum
over reciprocal-lattice vectors.

The advantage of this generalized formalism, which
builds on the fully interacting response functions of the
sheets and chains (Z2 and X~), is that it allows one to con-
centrate on the new features which arise from the inter-
Coulomb interaction. In particular, the basic message of
Ref. 1 is that one expects acoustic plasmon modes in a su-
perlattice structure whenever the basis is composed of
subunits (sheets or chains) whose response functions have
poles at diferent frequencies. Sheets and chains in YBa-
CuO and two different kinds of sheets in Bi-Sr-Ca-Cu-0
thus may lead to similar kinds of acoustic plasmons. The
key requirement is that the sheets and chains exhibit elec-
tronic charge fluctuations.

VI. CONCLUDING REMARKS

While it is not the main purpose of this paper, we wish
to briefly discuss the role that the acoustic plasmons
(which arise in superlattices with a basis) may have as a
pairing mechanism in high-transition-temperature oxide
superconductors. '

We flrst consider the Y-Ba-Cu-0 superconductors
which are described by the sheet-chain-sheet model of
Sec. II. As we discussed here atld in Ref. 1, the acoustic
plasmon rn is clearly associated with the "Tomonaga
phonon" of a noninteracting 1D electron gas, the intra-
Coulomb interaction in the Cu-0 chains being effectively
canceled by the screening effect of the inter-Coulomb in-
teraction with the Cu-0 sheets. In a schematic sense, one
expects that the effective interaction between electrotls in
a given Cu-0 sheet will be given by v(q)/a(q, m) and that
as a result of the low-frequency chain mode tu-(q»), this
effective interaction will be attractive. This attractive re-
gion will be most effective when q, »q», since then it is
well separated from the characteristic electronic frequen-
cies of the Cu-0 sheets and also the co mode is only
weakly damped. '

Our model is also especially interesting in connection
with the 60-K superconducting phase of Y~Ba2Cu3-
07—s (with b ~0.3)—sometimes called the ortho-II phase
to distinguish it from the 90-K orthorhombic phase
(b50.2). Apparently there is good evidence that in the
60-K phase, every other Cu-0 chain is missing. ' ' As
can be seen from Eq. (8) in Ref. 1, the size of the frequen-

cy region associated with the acoustic plasmon in which

a(q, ro) is negative (attractive) is proportional to density
of the chains. This is certainly consistent' with the
dramatic lowering of the transition temperature from 90
to 60 K.

While we assumed intraplane pairing in the Cu-0
sheets in the above remarks, it is clear that the acoustic
plasmon associated with the chains could also lead to in-
terplane Cooper pairing. 2o

In our model, the role of the chains in YBaCuO super-
conductors is simply a source of charge fluctuations with a
much lower frequency than that associated with the Cu-0
sheets. Even with random oxygen vacancies and Cu(1)
sites substitutions by other elements, as long as the middle
layer associated with Cu-0 chains exhibits a metalliclike
behavior, one can expect our model dielectric function to
be qualitatively correct.

In the case of the new Bi-Sr-Ca-Cu-0 and Tl-Ba-Ca-
Cu-0 superconductors, it appears that the high-temper-
ature phase may have three Cu-0 sheets in the superlat-
tice basis. It seems that there are no Cu-0 chains but if
either the BiO or the T10 sheets exhibit any metalliclike
behavior, they would play the same role as chains and
would give rise to low-energy acoustic plasmons. 2' If the
plane of chains at z, in Sec. II is replaced by a metallic
sheet (labeled by c), the only change in (23) is

N,X&(q») N, X~(qs). Of course, in (22), the chain
form factors P, (q&+G) are also replaced by P, (q, +G, )
and the summations now only involve G, components.
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