Exchange-driven ferric low-spin high-spin transition in iron-doped $YBa_2Cu_3O_7$

M. Eibschütz and M. E. Lines

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

J. M. Tarascon

Bell Communications Research Inc., 331 Newman Spring Road, Red Bank, New Jersey 07701

(Received 30 June 1988)

Mössbauer Zeeman measurements at 4.2 K on YBa₂Cu_{3-x}Fe_xO₇₋₈ ($\delta \approx 0$) with x =0.1, 0.2, and 0.4 establish that the major feature at x =0.1 corresponds to a low-spin (LS) $3d^5$ ($S = \frac{3}{2}$) configuration, but that for $x \gtrsim 0.2$ an increasing fraction of this LS spectrum transforms to a high-spin (HS) $3d^5$ ($S = \frac{5}{2}$) counterpart. An explanation is given in terms of a LS-HS transition driven by σ -bonded superexchange interactions between nearest-neighbor ferric ions in their HS states.

The superconducting orthorhombic O phase of YBa₂Cu₃O₇ is known to be only marginally stable with respect to an anionically disordered semiconducting tetragonal T phase of equal composition. One method of inducing the O-to-T phase transition is via cation doping in the fashion YBa₂Cu₃- $_{x}M_{x}O_{7}$ with a small trivalent dopant such as M = Fe or M = Al.¹ These ions substitute very dominantly in the chainar [or Cu(1)] sites of the O phase, ^{2,3} breaking up the Cu(1)-O chains via electrostatic forces which prefer a higher M-site oxygen coordination z than the z = 4 available without anion disordering.

Our earlier room-temperature Mössbauer study of $YBa_2Cu_{3-x}Fe_xO_{7-\delta}$ ($\delta \approx 0, 0.01 \le x \le 0.2$) (Ref. 2) deduced that, although the *O* and *T* phases coexist over a wide range of *x*, the structure is already quite dominantly *T* phase at x = 0.1. In this oxygen-disordered *T* phase the Cu(1)-substituted ferric ions reside in sites of only two different local ligand coordinations, z = 5 (capped tetragonal, labeled V_5) and z = 2 (axial, V_2), with the V_5 sites being increasingly preferred as *x* increases.² In this same phase magnetic susceptibility measurements¹ between 50 and 300 K exhibit an iron contribution of Curie-Weiss form $C/(T+\theta)$ with a Curie amplitude $C = Ng^2 \mu_B^2 \times S(S+1)$ (in conventional magnetic notation) in which $S = 1.5 \pm 0.2$, indicative of a spin- $\frac{3}{2}$ or low-spin (LS) quantum state for Fe³⁺(3d⁵).

In an effort to confirm the presence of the LS quantum state by direct observation, using Mössbauer Zeeman spectroscopy, we have uncovered a new and intriguing phenomenon. Thus, while a Zeeman-split Mössbauer spectrum is observed at 4.2 K for all iron concentrations $x \gtrsim 0.1$, and a characteristic LS spectrum does dominate the response for $x \leq 0.2$, an additional feature—in the form of a strong high-spin (HS) Zeeman component -rapidly develops for $x \gtrsim 0.2$ to dominate the spectrum at x = 0.4 (Fig. 1). The results suggest the development of a LS-HS transition at low T as a function of $x \ge 0.2$. The only other possibility, that iron for x > 0.2 suddenly begins to populate a new site [Cu(2)?] with a permanent HS configuration can be excluded since, from Fig. 1(c), fully 75% of the iron sites are HS at x = 0.4, leaving significantly fewer LS sites at this concentration then at x = 0.2. Additional evidence that iron substitutes only for Cu(1) at least to x = 0.23 is available from recent neutron and electron diffraction studies by Bardet *et al.*⁴

The explanation can be found by deriving the *d*electron eigenorbitals in capped tetragonal oxygen ligand coordination (on which V_5 sites the vast majority of ferric ions reside for $x \ge 0.1$).^{1,5} Not only are the LS ($S = \frac{3}{2}$) and HS ($S = \frac{5}{2}$) configurations for $3d^5$ found to be close in energy but, of these two, only the HS one possesses a magnetically active σ -bonded *d* orbital, giving rise to

FIG. 1. 4.2-K Mössbauer Zeeman spectra for YBa₂-Cu_{3-x}Fe_xO_{7- δ} for iron concentrations (a) x =0.1, (b) x =0.2, (c) x =0.4. We show the positions of the six Zeeman lines L_i of Eq. (1) for each of the three spectra Z_i (*i*=1-3) defined in Table I.

<u>38</u> 8858

large (antiferromagnetic) exchange interactions $2JS_i \cdot S_j$ between Cu(1)-plane nearest-neighbor (NN) iron spins (details follow). Therefore, some HS energy levels, E(HS), but not their LS counterparts E(LS), are dramatically lowered by (antiparallel) paramagnetic NN spin correlations $\langle S_i \cdot S_j \rangle$ which can reach values approaching saturation, viz., -S(S+1), in disordered two-dimensional lattices⁶ at low temperatures T. If E(LS) < E(HS)in the absence of the exchange terms, then a LS-HS can occur as T is lowered, driven by two-dimensional paramagnetic spin correlations, provided that the iron concentration x is large enough.

The ⁵⁷Fe Mössbauer absorption spectra were obtained in a standard transmission geometry with a ⁵⁷Co-in-Rh source. Details about the absorber preparation using enriched ⁵⁷Fe were given in Ref. 1. The 4.2-K Mössbauer Zeeman spectra for YBa₂Cu_{3-x}Fe_xO_{7- δ} for x = 0.1, 0.2, and 0.4 are given in Fig. 1.

A single-site Zeeman spectrum for 57 Fe contains, in general, six component lines $L_i(i=1-6)$ which, in order of increasing velocity, are positioned to lowest order in field gradient at⁷

$$L_{1} = \Delta_{IS} - g_{1}\mu_{N}H + u ,$$

$$L_{2} = \Delta_{IS} - g_{2}\mu_{N}H - u ,$$

$$L_{3} = \Delta_{IS} - g_{3}\mu_{N}H - u ,$$

$$L_{4} = \Delta_{IS} + g_{3}\mu_{N}H - u ,$$

$$L_{5} = \Delta_{IS} + g_{2}\mu_{N}H - u ,$$

$$L_{6} = \Delta_{IS} + g_{1}\mu_{N}H + u ,$$
(1)

in which $g_1 = 0.2448$, $g_2 = 0.1418$, $g_3 = 0.0388$; Δ_{IS} is the isomer shift, H is the hyperfine field, and u is the first-order quadrupole shift.

In the spectra of Fig. 1, parts or all of three separate Zeeman spectra Z_i (i=1-3) can be discerned, with the respective Δ_{IS} , H, and u values as given in Table I. The components $Z_i(L_i)$ are shown in the figure. Spectrum Z_1 , which completely dominates at small $x \approx 0.1$, has a hyperfine field essentially equal to that expected for $S = \frac{3}{2}$ in the absence of any significant supertransferred⁸ component H_{ST} (viz. $H \approx 150S + H_{ST}$ for $\Delta_{IS} \approx +0.1$, ⁹ H in kOe). Spectrum Z_2 , which develops rapidly for $x \ge 0.2$, has a hyperfine field corresponding to HS $3d^5$ configuration $S = \frac{5}{2}$ together with a significant additional supertransferred component ≈ 75 kOe ($H \approx 180S + H_{ST}$ for $\Delta_{IS} \approx 0.4$).⁹ Spectrum Z_3 , which is a minor but recognizable feature at all x, is evidently also $S = \frac{5}{2}$ but with

TABLE I. The Zeeman hyperfine parameters associated with the three discernable component spectra Z_i (i=1-3) in the 4.2-K Mössbauer spectra of Figs. 1(a), 1(b), and 1(c). Isomer shifts (IS) given with respect to iron metal at room temperature.

i	LS or HS	H (kOe)	u (mm/s)	Δ_{IS} (mm/s)
1	LS	225 ± 5	$+0.3 \pm 0.1$	$+0.1 \pm 0.05$
2	HS	525 ± 5	0.05 ± 0.05	$+0.4 \pm 0.05$
3	HS	460 ± 10	0.1 ± 0.1	$+0.4 \pm 0.1$

essentially zero H_{ST} .

The minor spectrum Z_3 seems not to be involved in the LS-HS transition and we tentatively associate it with a small concentration of Fe replacing Cu(2) in CuO₂ planes, the condition $H_{ST} \approx 0$ then reflecting the fact that NN iron pairs in these sites are rare if Fe enters in a quasirandom fashion.

The LS-HS transition therefore involves spectra Z_1 and Z_2 , which are to be associated with Cu(1)-substituted iron at the overwhelmingly dominant V_5 oxygen coordination (Fig. 2). The electronic states of iron d electrons in arbitrary ligand coordinations can be derived¹⁰ by standard crystal-field methods.^{11,12} In Fig. 2 we show these levels E_i not only for V_5 , but for the minority V_2 site and (for reference) an octahedral V_6 site as well. The five delectron energies E_d are expressed, for each V_n , with respect to an absolute zero $\sum_d E_d = 0$ and in the commonly used 13 Dq units, defined such that the octahedral splitting is 10Dq. The actual levels in twofold and fivefold oxygen coordination in the T phase of $YBa_2Cu_3O_{7-\delta}$ will not correspond precisely to the model adopted, which presupposes an exactly equal chemistry for each ligand and uses free-ion values for the d orbital radial dimensions, but should have at least semiquantitative validity.

Populating these V_n levels with the five *d* electrons of the ferric ion $(3d^5)$, each enters with spin parallel to the resultant of those already present so long as the "Hunds rule" energy E_H is larger than the difference in energy between the competing "parallel-spin" and "paired-spin" crystal-field levels. Experimentally, Dq for Fe³⁺ in V_6 oxygen coordination is known to be ≈ 14000 cm⁻¹ ($\pm 10\%$) (Refs. 13 and 14) while E_H is of order 30000

FIG. 2. The *d* electron eigenstates and energy levels E_d of iron in sixfold, fivefold, and twofold oxygen coordination, with axes x, y, z as sketched on the schematic ligand configuration for V_5 . Energy units Dq are chosen such that the triplet-doublet splitting in V_6 octahedral coordination is 10Dq by definition.

cm⁻¹. Thus, $R = E_H/Dq \approx 22$ for V_6 . In other ligand coordinations R is less precisely known but is probably within the range 15 < R < 30. From Fig. 2, we estimate the possible ground-state configurations for V_5 and V_2

$$V_5: S = \frac{3}{2} \text{ if } R < 23; S = \frac{5}{2} \text{ if } R > 23; \qquad (2)$$

$$V_2: S = \frac{1}{2} \text{ if } R < 26; S = \frac{3}{2} \text{ if } R > 26.$$
 (3)

Since the room temperature Δ_{IS} for both these *T*-phase sites is essentially the same,² the correct spin state at this temperature must be LS $(S = \frac{3}{2})$ for both, implying that *R* is larger for axial than capped tetragonal chemistry.¹⁵

The LS-HS transition can now be rationalized provided only that the two closely spaced d levels (viz. the singlet x^2 and doublet xy, zx) are reversed at the Cu(1)-plane V_5 site from that depicted in Fig. 2. Consider a NN pair of V_5 -site ferric ions in the Cu(1) plane. With the singlet x^2 orbital lowest, the LS state has its Cu(1)-plane σ orbitals either empty $(y^2 - z^2)$ or doubly occupied (x^2) ; and both consequently nonmagnetic. LS exchange interactions are consequently weak, in agreement with the small H_{ST} of Z_1 . However, in the HS state, all five d orbitals are singly occupied and magnetic. As a result, strong antiferromagnetic exchange can now take place via σ -bonded orbitals in both the x and y directions, to as many as three NN irons, if they are present. It also follows that the LS state local d electrons contribute extensively to electric field gradients for both V_5 and V_2 , probably dominating lattice contributions.¹⁶ We note only that for the dominant V_5 site, for which the local delectron contribution is expected to be negative and parallel to x (see Fig. 2), the u shift of $+0.3 \pm 0.1$ (Table I) is consistent with these conditions and with the known pure quadrupole splitting magnitude of 1.04 mm/s (Ref. 2) if the magnetic moment tends to order perpendicular to x(almost certainly parallel to z, i.e., the c axis) as $T \rightarrow 0$.

Since V_2 sites have no Cu(1)-plane oxygen ligands, no exchange can ever arise involving these sites and they remain LS throughout.¹⁷ The LS-HS transition therefore involves only Cu(1)-plane V_5 sites [each threefold oxygen coordinated in the Cu(1) plane] and, in particular, clusters of NN irons on these sites, ranging from dimers, trimers, *n*-mers, etc., right up to the infinite cluster if x is large enough.

The most basic model can be developed by first considering a dimer. Let the LS state $S = S_0 = \frac{3}{2}$ be lower in energy than the HS state $S = S_1 = \frac{5}{2}$ by an energy Δ for the isolated monomer. Assuming a full quenching of orbital moments and ignoring dimer exchange except between HS configurations, we write a dimer spin-Hamiltonian involving spins at sites *a* and *b* in the form

$$\mathbf{H} = (\hat{\eta}_a + \hat{\eta}_b) \Delta + 2J \hat{\eta}_a \hat{\eta}_b (\mathbf{S}_\eta)_a \cdot (\mathbf{S}_\eta)_b - g\mu_B [(S^z_\eta)_a + (S^z_\eta)_b] H^z, \qquad (4)$$

in which $\hat{\eta}_a$ and $\hat{\eta}_b$ are operators with eigenvalues $\eta = 0, 1$; and H^z is an applied field parallel to z. It can be solved exactly for the magnetic response. However, here we need focus only upon the zero-field eigenstates $E(\eta_a, \eta_b)$, viz:

$$E(0,0) = 0, \quad E(0,1) = E(1,0) = \Delta,$$

$$E(1,1) = 2\Delta + J[S'(S'+1) - 2S_1(S_1+1)], \quad (5)$$

where $S' = 0, 1, ..., 2S_1$. The ground state is the LS-LS state E(0,0) if $\Delta > JS_1(S_1+1)$, or the singlet S' = 0 HS-HS state E(1,1) if $\Delta < JS_1(S_1+1)$.

For larger *n*-mer clusters the mathematics increases in complexity, but the basic nature of the possible ground states remains clear, being fully LS or fully HS depending upon whether Δ is > or $\langle mJ \mathscr{S}^2$, respectively, where *m* is the mean number of exchange paths per spin (monotonically increasing from 1 to 3 as *n* goes from 2 to ∞) and \mathscr{S}^2 is a number between S_1^2 and $S_1(S_1+1)$. We note, in particular, that whereas the LS state is highly (viz. 4*n*-fold) degenerate within the model, the HS state is a singlet (even *n*) or doublet (odd *n*) representing basically a fully aligned spin- $\frac{5}{2}$ antiferromagnetically correlated cluster. Thus, if $\Delta/J = m\mathscr{S}^2$ with *m* having some value between 1 and 3, then the exchange is large enough to produce a HS ground state for larger clusters but not for smaller ones.

The case for iron-doped YBa₂Cu₃O_{7- δ} ($\delta \approx 0$) can be semiquantitatively assessed from Fig. 1 where we see that about 8% of iron has undergone a $Z_1 \rightarrow Z_2$ (LS-HS) transformation at 4.2 K at a concentration x = 0.2. At this concentration, we see from the room-temperature quadrupole spectra² that $x \approx 0.17$ enters V_5 sites and, hence, fills some 25% of the available sites in a complete V_5 sublattice [which contains $\frac{2}{3}$ of the cation sites in the Cu(1) layers when $\delta = 0$].⁵ Elementary statistics now tells us that if Fe enters randomly into the V_5 sites, then 42% will be monomers, 24% dimers, 13% trimers, 8% tetramamers, etc., and that the last $\approx 8\%$ are filled by *n*mers with $n \gtrsim 5$. We conclude that it takes at least a five cluster of V_5 irons to acquire sufficient exchange per iron to produce a HS ground state in this system. If iron clustering occurs at x = 0.2, as suggested by Ref. 4, then this "critical number" could be significantly larger than five.

If we consider just the lowest two states of an *n*-mer with a singlet HS ground state and a 4n-fold degenerate LS state at an energy E_0 above it, then the percentage HS

FIG. 3. The percentage of high-spin character p_{HS} as a function of temperature as calculated from Eq. (6) for V_5 ferric clusters containing 6, 24, 100, and 1000 ions.

character $p_{\rm HS}$ at temperature $T \leq E_0/k$ for this cluster is

$$p_{\rm HS}(n) = 1/(1 + 4ne^{-E_0/kT}), \qquad (6)$$

which is plotted in Fig. 3 for n=6, 24, 100, and 1000. The "sharpness" of the HS \rightarrow LS transition as a function of T is seen to increase with increasing cluster size. In the

- ¹J. M. Tarascon, P. Barboux, P. F. Miceli, L. H. Greene, G. W. Hull, M. Eibschutz, and S. A. Sunshine, Phys. Rev. B 37, 7458 (1988).
- ²M. Eibschutz, M. E. Lines, J. M Tarascon, and P. Barboux, Phys. Rev. B 38, 2896 (1988).
- ³H. Tang et al., Phys. Rev. B 36, 401 (1987); X. Z. Zhou et al., ibid. 36, 7230 (1987); R. Gomez et al., ibid. 36, 7226 (1987); Chuck Blue et al., ibid. 37, 5905 (1988); C. W. Kimball et al. Physica B 148, 309 (1987); S. Nasu et al. ibid. 148, 484 (1987); B. D. Dunlap et al., Physica C 153-155, 1100 (1988); Z. Q. Qui et al., J. Magn. Magn. Mater. 69, L1221 (1987); T. Tamaki et al., Solid State Commun. 65, 43 (1988); E. R. Bauminger et al. ibid. 65, 123 (1988); C. W. Kimball et al., Mater. Res. Soc. Symp. Proc. 99, 107 (1988).
- ⁴P. Bordet, J. L. Hodeau, P. Strobel, M. Marezio, and A. Santoro, Solid State Commun. **66**, 435 (1988).
- ⁵For $\delta \approx 0$, there can be, at most, $2N'/3 V_5$ sites in a Cu(1) plane with N' total cations. With V_5 preferentially occupied to an increasing degree as x increases from zero, we expect the V_5 sites to be filled when x is a little larger than $\frac{2}{3}$. Beyond this concentration, the V_2 site should be filled by default, but it proves difficult to maintain $\delta \approx 0$ (or even to obtain reproducible samples) when $x \gtrsim 0.5$.
- ⁶Even a fully iron-filled V_5 lattice is, with a two-dimensional coordination number of only 3, unlikely to sustain a long-range order via Heisenberg interactions at any nonzero temperatures.
- ⁷M. Eibschutz and M. E. Lines, Phys. Rev. B 25, 4256 (1982).

limit of the infinite cluster the transition appears to be of first order¹⁸ although, of course, one cannot extrapolate to it via the two-level model of Eq. (6). Although we are not yet able to determine a value for J, it is expected to be very large, in line with that known to exist in other quasi- σ -bonded ferric systems.¹⁹

- ⁸B. C. Tofield, J. Phys. (Paris) Colloq. 37, C6-539 (1976).
- ⁹M. E. Lines and M. Eibschutz, Phys. Rev. B 30, 1416 (1984).
- ¹⁰M. E. Lines and M. Eibschutz (unpublished).
- ¹¹J. S. Griffith, *The Theory of Transition Metal Ions* (Cambridge Univ. Press, Cambridge, 1961).
- ¹²W. Low, Paramagnetic Resonance in Solids (Academic, New York, 1960).
- ¹³A. Abraham and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), Chap. 7.
- ¹⁴J. Owen and J. H., M. Thornley, Rep. Prog. Phys. 29, 675 (1966).
- ¹⁵Note that the Cu(2) site is also of V_5 coordination. Since Fe³⁺ in this site is HS throughout (Z₃ spectrum of Table I) we infer that $R \approx 23$ for V_5 , being slightly larger at the Cu(2) than the Cu(1) (V_5) site, possibly on account of the larger mean ligand bondlengths (i.e., smaller Dq) at the former location.
- ¹⁶As suggested by the finding $|u(LS)| \gg |u(HS)|$ in the Z_1, Z_2 spectra of Table I.
- ¹⁷The fact that we cannot separately identify them in the Z_1 spectra of Fig. 1 implies either that their population is not sufficiently large to see them or that their *u* shift is fortuitously close to that of Z_1 .
- ¹⁸For example, this is true for an "interacting-dimer" model of the infinite V_5 lattice in which the dimer spin correlations within and between dimers are calculated self-consistently.
- ¹⁹P. J. Wojtowicz, Phys. Lett. 11, 18 (1964).