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The coefficients of the thermal conductivity {a)and first viscosity (g) in thin helium films are eval-

uated explicitly as a function of temperature via phonon-phonon, phonon-roton, and roton-roton
scattering. Above about 0.8 K, phonon-roton scattering and five-phonon processes are the main

contributors to both coefficients. Below about 0.8 K, both coefficients increase exponentially with

decreasing temperature. At temperatures below 0.3 K, K» has a T ' dependence, while g» shows

exponential and T ' dependencies. In the case of g», the former is due to phonon-roton scattering
and the latter originates from three-phonon processes. The coefficient ~, from roton-roton scatter-

ing varies as T, and the roton part g„ofthe first viscosity is independent of temperature.

I. INTRODUCTION

Since the works of Landau and Khalatnikov on kinetic
phenomena' in superfluid helium, there has been continu-
ous interest in thermal conductivity and viscosity for
bulk liquid He and He at low momenta and at low tem-
peratures. Recently Kirkpatrick and Dorfman ob-
tained transport coefficients for very low temperatures
(naA, ))1) and for moderately low temperatures
(nai, ((1) on the basis of their kinetic equations for a
dilute superfluid, where n, a, and I, represent the number
density, the s-wave scattering length, and the thermal
wave length, respectively.

In the case of thin helium films, the dissipation of
superfluid flow and thermal conductance have been inves-
tigated by many authors. Ambegaokar et a1. have pre-
dicted that the effective thermal conductance in thin heli-
um films has exponential dependence on temperature for
T(T, and diverges exponentially for T~T, +, where

T, is the thermodynamic Kosterlitz-Thouless tempera-
ture. More recently the depairing and the depinning
vortices which give the power law and the exponential
dependence of thermal conductance have been investigat-
ed experimentally by Gasparini et al. , who confirmed
an exponential dependence rather than the power law for
T( T, . However, there is much less information about
thermal conductivity and viscosity in thin helium films at
low momenta and at very low and moderately low tem-
peratures. What is more important is that an incorrect
normal (downward) dispersion relation was used in Lan-
dau and Khalatnikov's well-known results, ' whereas the
correct dispersion is anomalous (upward) dispersion.
For this reason and in view of recent experimental devel-
opments on helium films, we present in this paper new re-
sults on the thermal conductivity and viscosity of
superfluid helium films through the theory of kinetic phe-
nornena developed by Landau and Khalatnikov. ' We

evaluate the thermal conductivity and viscosity within
three ranges of temperatures: 0.3 K T, 0.3 K~ T(0.8

K, and T)0.8 K. In these temperature ranges, scatter-
ing depends on the nature of interactions between ele-
mentary excitations, i.e., phonon-phonon, phonon-roton,
and roton-roton interactions. The scat terings which
govern the transport processes and kinetic coefficients of
thermal conductivity and viscosity can be determined by
the characteristic time v of scattering.

In the present paper we shall treat a thin helium film as
two dimensional (2D)—less than three atomic layers,

namely one statistical layer of 3.6 A —and neglect sub-
strate effects. In the calculations we shall use the 2D ex-
citation dispersion relation obtained microscopically

e(p) =cop(1+5g 52p + . )—,

e(p) =&+ (+ —&&)', (1.2)
2p

where co is the sound velocity, and 6, p, and Po are the
roton parameters. To evaluate the coefficients of thermal
conductivity and viscosity, we shall first calculate the
scattering cross section for the various interactions in
Sec. II. Then we shall evaluate the characteristic times
corresponding to the various scatterings by solving the
collision integral, and then obtain the thermal conduc-
tivity in Sec. III and the viscosity in Sec. IV. Finally, we
shall give results and a discussion in Sec. V in terms of
graphs and tables.

II. SCATTERING CROSS SECTIONS
AND DIFFERENTIAI. DECAY RATES

In this section we consider the interactions of elemen-
tary excitations by the second quantization method. " To
obtain characteristic times corresponding to the three in-
teractions, we first evaluate the scattering cross section or
the differential decay rate, which are directly related to
the collision integral. The collision process of phonon-

38 8838 1988 The American Physical Society



38 THERMAL CONDUCTIVITY AND VISCOSITY VIA PHONON-. . . 8839

phonon interactions includes a three-phonon process
(3PP, p,~p2+p3), four-phonon process (4PP,
p, +p2~~P3+ p4) and five-phonon process (5PP,
P1+P2~P3+ P4+ Ps }.

The differential cross section and differential decay rate
for 3PP in two dimensions are defined as

, dp
%co (2vrfi)

(2.1)

I
(F ~3 I

I)
I

5(EF E—J) dp2dp1.
(21r1rt)

(2.2)

The 3PP consists of two processes: the direct process of
emission of a phonon p& by p, =p2+p~ and the reverse
process of absorption of a phonon p& by p1+p& ——p1. The
transition atnplitude between the initial state

I
I ) and the

final state
I
F ) is given by"

3! (2M}(F I3 II& 5(P1 P2 P3}(2g)3/2

CO P2

Po P 1P)

' 1/2
1 Po 8 co co2 2

(Pl P2}+
3 P 1P2P'3

co P . P . Po

1/2

X[n (n +1)(np +1)]' (2.3)

3! (2M}
I~3 II&= — 5(P1 P2 P3}

( 2g)3/2

CP P2

po pips

' 1/2 2 2
1 po g Co Co

(Pl P3}+
3 P 1P2P3

co P . P . Po

1/2

X[(n +1)n& n& ]' (2 4)

where n is the distribution function of phonons with
momentum p. Then the total decay rate in both process-
es becomes

ETCp
WD= (u+1) p, p2pnz (nz +1)

2Apo P) Pp

1
X (n +1)5(EF El ) d—p2,Pg (2m')

(2.5)

phonons are moving in the same direction, and the con-
servation of momentum and energy Row hold. Thus the
phonons moving in a given direction attain equilibrium
with each other much faster than the phonons in other
directions. The diff'erential cross section [Eq. (2.1)] for
4PP becomes

do'(p~p1~p ~pI)

I
(F I&I I) I 5(e+e, —s' —e', ) dp'.

%co (2srsrt)

ETC p
W11 —— (u+1) p1p2p(np +1)np np

2Apo Pl P2 P3

1x5(EF EI),dp2- ,
(2rr1)1 )

(2.6)

(2.g)

Under the condition p &&p1 (Ref. 1) we obtain

(u +1)p1pIp' 5{a(p)+e(p, ) —s(p') —e(p', ))do= dp
8&i6 pocop (1—cose —351p, )

where u is the Gruneisen constant given by
(p /c )(Bc /Bp ).

In 4PP the transition matrix elements" are given by

(F III&= &F Im, II)

EI EJ—(2.7)

where the main contribution is due to the second term,
which becomes large as a result of vanishing denomina-
tor. This corresponds to the case where 5, is neglected
and the scattering between phonons is collinear. There-
fore, we should not discard the 5, term in Eq. (1.1). Tak-
ing account of 5g, which is much smaller than unity,
and small-angle scattering, we can find the maximum
value for (F

I
A

I
I). In small-angle scattering all the

(2.9)
As for 4PP above, the direction of momenta of the col-

liding particles is not changed in the 5PP case. The tran-
sition matrix elements in second-order perturbation are

&I Ia, I1)(1 Im, I
II)(III', IF)

(EI E, )(EI E»)-- 2.10
t, II

where II means intermediate states, and some terms con-
tain the vanishing denominators under the conditions of
5, =0 and collinear scattering. The 5PP has the max-
imum probability in small-angle scattering and leads to
equilibrium for the phonons moving in a given direction.
Rather than calculating Eq. (2.10) tediously, we make use
of the kinetic coefficient given by Landau and Khalatni-
kov. ' The rate of change per unit time in the phonon
numbers is
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1
N = —f f f [n&nzn3(n4+1)(n5+1) —(n, +1)(nz+1)n4n5]dto dp&dpzdp3,ph 1 2 3 4

(2m%)
(2.11)

where dw is the differential decay rate defined by Eq.
(2.2), which is proportional to p . N h can be expressed
in terms of the kinetic coeScient Fph as

Nph F p~ph (2.12)

Pph
n np =—n p(n p+ 1)

kBT
(2.13)

where p h is the chemical potential of phonons. The pho-
non distribution function n has small deviation from the
equilibrium distribution function nQ. The distribution
function n can be expanded as a function of chemical po-
tential as follows:

&„=%„o+ b, + (P Po—) P'
Bp 2p

+ —, , &+ (& —&p) P' +
8' 1

2. Qp 2p
(2.18)

where A~ is given by Eq. (1.2). Since the value of most
rotons is close to PQ, we may neglect P —PQ and replace
P by Pp. We may also drop the term (Bb, /Bp)p', which is
much smaller than (2.17). Then the interaction energy
between phonons and rotons can be expressed as

To simplify Eq. (2.11},we replace n, , nz, n3, and n by the
equilibrium distribution n&Q, n2Q, n3Q and n4Q, and in-
stead of n~ we substitute Eq. (2.13) into Eq. (2.11). Then
Eq. (2.11) becomes

2
a'a 1»oV= —

—,'(P.v+v P)+ —
z
+-

~p P ~P

(2.19}

1
~pQ k

n Jon2Qn3Q n4Q+ 1 n&o+ 1
kBT

1
Xdw 6 dp&dp2dp3

(2m')
(2.14)

(2.15)

Since w and A3 are proportional to -p and -p, re-
spectively, the integral of Eq. (2.15) is proportional to p .
Averaging over the phonon momentum gives

I ph
——aT (2.16)

Since n4Q and n5Q are much smaller than unity, they may
be neglected without any disturbance in Eq. (2.14), and
the integration of dw is replaced by average w. Then Eq.
(2.14) becomes

1 1
Iph=

k TB
n &on 2on 3ow 6 d p&d p2d p3(2m')

We note that the terms in the large square brackets of Eq.
(2.19) have magnitude on the order of 10 ' to 1 in 3D
liquid helium. '

When the roton changes momentum P to P', it absorbs
a phonon with momentum p and emits a phonon with

momentum p', In these processes we may consider two
intermediate processes, i.e., (I) P+p~P'=P+p —p' and

(II) P —p' ~P' =P —p'+ p. Since the roton momentum

is much larger than that of the phonon, we may view this
interaction as similar to that between heavy and light
particles. The momentum and the energy conservation
law in collision processes can be written as

cia+ (P ~o) =el''+ (
I ~+p p I

=Po)1 1 2

2p 2p

(2.20)

Under the conditions p,p' &&PQ and c.=cp &&3 pc, Eq.
(2.20) becomes

Here a is constant, which can be determined experimen-
tally by the attenuation coeScient of ultrasonic waves.

Now we return to the scattering of phonons by rotons.
We consider a roton in the presence of the phonon field.
We can treat this roton as a particle in a moving liquid
He. Therefore, there appears an additional term —P v.

This can be written in symmetric form

——'(P.v+v P) (2.17)

where P and v are the momentum and velocity opera-
tors. " The phonon field changes the density of the rnedi-
um, and thus we may expand the roton energy in terms of
the density p' to second order (p' =p —pp) as

p —p'=
z [rom (un —p'n')]'

2pcPQ

2

[m. (n —n ')]
2Pc

(2.21)

where m, n, and n ' are unit vectors directed along Po, p,
and p', respectively. Therefore, energy conservation im-
plies p=—p'. This means that the light particles do not
change the magnitude of momentum but change its direc-
tion. Taking account of p,p'~~PQ and P=PQ, the ma-
trix element [Eq. (2.1)] in second-order perturbation can
be obtained as
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[(m n)+(m n')](n n')
2Pp

Pp
+ (m n) (m.n') + A

IMC
(2.22)

forming the integration over p', we obtain

p2 3

[(m.n)+(m n)](n n')
87Th pQC

'2

2
p2 ()2g 1 BPpA= + (2.23)

Ppc Qp p Bp

Substituting Eqs. (2.22) and (2.23) into Eq. (2.1) and per-

(m n) (m n') +A d8.
PC

(2.24)

Averaging Eq. (2.24) over all directions of roton momen-
tum, we finally get

p~2 3
1 Po

3 z 2
(1+cosg)cos g+ (35cos f+3sin t()

8M poe 128 pc

& PpA
+30cos /sin f+— (3 cos /+sin t/r)+ A 2 df,4 pc

(2.25)

V= V05(r —r, ), (2.26}

where Vp is the interaction constant which can be deter-
mined experimentally by viscosity measurements, and r
and r& are the radius vectors of rotons. We construct the
symmetrized pairwise plane waves over incoming and
outgoing rotons as

g(P, P, )= — exp —(P r+P, r, )
1 1

2

where f is the angle between the incident and scattered
phonons (see Fig. 1}.

We shall now examine roton-roton scattering. Since
the character of interaction between rotons is not known,
we may assume the short-range potential given by Lan-
dau and Khalatnikov' and take the roton interaction to
be a 5 function potential.

dw=
~

VIF ~
5(E+E) E' E',—) — dP'dP),

(2.28)

where the matrix element VIF is

VIF= VpS P P& r —r~ P P~ rdr,

=2VoS '~2 f exp —(P'+P', —P—P, } r dr .

(2.29)

Performing integration over P', in Eq. (2.28), we obtain

dt's =
i Vo

~

5(E+E& E' E—I ) d—p' . (2.30)
(2M)'

Dividing Eq. (2.30) by the relative velocity of the rotons
given as

+exp —(P r, +P, r)

(2.27)
BE'=
aP aP,

(2.31)

f(P', P', ) = — exp —(P' r+ P'& r
&

)
2

+exp —(P' r&+P& r)

The differential decay rate from before to after collision is

lk

Y

we can obtain the differential scattering cross section.
As mentioned earlier in the discussion of the scattering

of phonons by rotons, most rotons have a momentum
close to Pp. Thus the change of momentum after col-
lision is very small in comparison with Pp. Let us take 8
as an angle between the incident rotons with momenta P
and P, before collision and introduce the variable f (Fig.
2). Then the roton momenta after collision can be ex-
pressed as

P' =Po+f„cos +f sin —,—0 . 0

(2.32}
0 . 8P', =Po f„cos +f si—n —. —

FIG. 1. Relation between incident and scattered phonons in

two dimensions.

Here, we have made use of P=P, -=Pa and
~

f
~

~&PO.
From conservation of energy we have
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ii
Y az BE i 4v

I
VO

I

'
(2.35)

whre N, is number of rotons per unit area given by

N =
' 1/2

pk~ T Po ~ik zB

2m
(2.36)

III. COEFFICIENT OF
THERMAL CONDUCTIVITY

FIG. 2. Roton-roton scattering process in two dimensions.
The equilibrium distribution function no of excitation

satisfies the kinetic equation

Bn Bn Wf Bn

ar
+ ar ap ap ar

(3.1)

f„cos—+f sin —= —,'(P —Po) + —,'(P, Po)— (2.33)

BE
ap

4J
I

V,

BEi
A' sin8

1

(2.34}

and the average collision time between rotons becomes

To obtain the total scattering cross section, we in-
tegrate Eq. (2.30) together with Eqs. (2.31) and (2.32) over
the momentum of the scattered particles to get the total
scattering cross section

with vanishing collision integral. When equilibrium is
disturbed, we assume that the nonequilibrium distribu-
tion function n deviates slightly from equilibrium. The
stnall deviation can be determined by the first derivatives
of the velocities v„,v, and the thermodynamic variables,
since function can be written as n =no+n&, where
n, &&no. Putting n into the left-hand side in Eq. (3.1), it
is sufficient to keep only the differentiation of no since the
derivative of n, makes higher derivatives which can be
neglected. For the collision integral on the right-hand
side we only keep the terms linear in n, . With the help of
the continuity equation, entropy equation, and superfluid
equation of motion, we can write the kinetic equation
[Eq. (3.1)] as

n'
e — V (j—pv„}+— p+ S e — V

1 BT Be . 1 BT BT Be

VT ST Be+ T Pp„'ap V(p v„) =J(n, ),Be

Bp
(3.2)

where n'= n(n +1)—.
When there exists a temperature gradient in superfluid

He, there is not only transport of heat but also an ir-
reversible heat flow which can be expressed by the
coefficient of thermal conduction given as

The left-hand side of Eq. (3.4) is always zero for a pure
phonon gas, and thus the corresponding thermal conduc-
tivity vanishes.

The thermal conductivity K consists of two parts, i.e.,
the phonon Kph and the roton K„:

q= —KVT . (3.3}
K =Kph+ Kr (3.5)

Keeping only the temperature gradient in Eq. (3.2) gives

n' dT ST Bc(cos8) p —e =J(n, ),
k~T2 Bx pn Bp

(3.4)

where 8 is the angle between p and V T. The phenomena
associated with thermal conduction in bulk liquid He
have aspects in common with thermal transport proper-
ties of ordinary classical liquids. However, there are
specific features of thermal transport which are connect-
ed with the unusual elementary excitations of liquid He.

n —noJ(n}~— (3.6}

Let us first consider the roton part. This is determined
by the roton-roton scattering process. As mentioned in
Sec. II, the roton-roton interaction is not well known,
and we thus obtained the average collision time t, under
the assumption of a 5 function potential. Since we need
only the temperature dependence of K„we replace the
collis&on integral by
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Substitution of Eq. (3.6) in Eq. (3.4) yields f J3pp(n)epdp, f J4pp(n)epdp, fJ5pp(n)epdp
n' ST Bs

n —no= —
2
PT' P E

k T' p„ (3 7) vanish and Eq. (3.4) becomes

f (cos8) p —E p dp
n' BT ST Bc

kg T Bx p„BpSubstituting Eq. (3.7) into the expression for the energy
How

q= f E(P)(n np—) dP,a~

(2iriri)

and comparing this result with Eq. (3.3},we get

, ae
'

ST ae
T3 BP p„BP (2iriri)2

(3.8)

= f [J3pp(n)+ J5pp(n)+ Jph, (n)]pdp,

(3.16)

f n' BT ST Be
(cos8) p —e ep dp

ks T Bx p„Bp
=fJ &(n)sp dp . (3.17)

k~T 3 k~T+-
pka 5 2

(3.10)

According to the scattering processes in Sec. II, the
collision integral J ( n ) becomes

J ( n ) =J3pp ( n ) +J4pp ( n ) +J5pp( n ) +Jph & ( n ) (3.11)

The 4PP do not change the total number of phonons but
have a characteristic temperature T in a given direction,
which is different from the temperature T in the equilibri-
um state. The law of energy conservation yields

J4pp n P P =0.
The total number of phonons traveling in a given direc-
tion is changed by small-angle 3PP and 5PP. Therefore,
the distribution function, which not only depends on tem-
perature T' but also the chemical potential a', can be
written as

n =exp[( 'ap+cl &kT')=1] (3.13)

Expanding Eq. (3.13) as a function of T' T, we can ex-—
press Eq. (3.13) in terms of equilibrium distribution func-
tion

PC T' —T
5n =n np= np(np—+1)—a'—

k~T T
(3.14}

Since the left-hand side of Eq. (3.4) is involved in 8, a
and T' Tdepend natural—ly on 8. To solve Eq. (3.4) we
should take the forms

(3.9}

With the help of n'= nan—d Eq. (1.2), we finally obtain
the roton part of thermal conductivity as

t„hN, 3kaT 15 kaTa„(T)= 1+
AT 5 4 1

X5(sF EI } dpi', (3.18)
(2m%)

where 5n is equal to n n,—and n represents the equi-pol Pp

librium distribution functions for the phonons with
momentum p. Making use of Eqs. (2.12) and (2.13), the
collision integral for the 5PP can be written as

f J5pp(n)p dp =2m' k&Ta'I (3.19)

We now evaluate the collision integral in the scattering
of phonons by rotons. When a phonon with momentum

p changes to momentum p' directed at angle 8' after col-
lision by a roton, the probability per unit length that a
particle undergoes collision is N„da, where N„is the ro-
ton distribution given by Eq. (2.36) and do is given by
Eq. (2.25). Then the collision integral J „„(n)can be
written as

J „„(n)=N„Cpf [n(p—, 8, T) n(p', 8', T—')]de . (3.20)

Here, 8 is the angle of the incident phonon with momen-
tum p with respect to the x axis. Using Eqs. (3.14) and
(3.15) for the difference between distributions, we obtain

J„„„(n)=(cos8)np(np+1) a —P N„
k~T '

afar poco

1 9 Po Po
X —+ A +2A

4 32 pc pc
(3.21)

Substituting Eqs. (3.18) and (3.21) together with Eq.
(3.19) and n'= —np(np+1) in Eqs. (3.16) and (3.17), and
performing the momentum integral, we obtain

1 BT ST 2!g(2)6!g(6}
T Bx p„C 3!g(3)4!g(4)

From Eqs. (2.5) and (2.6) the collision integral for the
3PP becomes

KcpJ p3p( n)= (9 + 1 )' pip2p5n (np —n~ )

a'=a cos8, (T' T)/T =Pcos8, — (3.15)

where a and P are constants to be determined by the ki-
netic equation. Considering the conservation of phonon
numbers in a given direction and conservation of energy,
the integrations and

+ph-r

5!g(5) a aa- + +4.C(4) r3PP 1 5PP
(3.22)
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1 dT
T Bx

ST 6!g(6) 1

p„C 5!g(5) mph,

6!g(6)
5!g(5)

(3.23)

Comparison of Eq. (3.30) with Eq. (3.3) gives the
coefficient of thermal conduction:

1.803k~ T
a. (T)=

Pn

Here r3pp 75pp and mph „arethe characteristic times (see
the Appendix), which characterize each collision process-
es, given by

+ph-r

2.310
0 186 1 1+ +

5PP +3PP

(3.31)

+ph-r

6tg(6) Po(ka T)

3tg(3) gr'p'C'
We note that the coefficient of the thermal conduction in
bulk liquid helium is given by

1 6!g(6)
'r5pp( T) 3!g(3 )4!g(3 )

2MCa
kq

2

9 Pp Pp
XW, —+ + A+23'L4 32 p p,

(3.24)

(3.25)

X

1+0 75rph- /75PP84, T&0.9 K+ mph rrSPP-
7.8, T&0.9 K .

(3.32)

x'(T)=2X 10 —+ T e 1—
T C2

and

2!g(2)6!g(6) (u +1) kB T4
r3pp( T) 4~((4) 8776 pc

8.071
0 186 1 1

ph-r 7 5PP 'T3PP

ST
p„C

Solving Eqs. (3.22} and (3.23) for a and P, we obtain

1 dTa= C-
T ax

(3.26)

IV. VISCOSITY

n +v Vn =J(n.) (4.1)

In this section we investigate the first viscosity through
calculations similar to those used above for the thermal
conductivity. Equation (3.4) vanishes for the case of a
pure phonon gas, and thus the corresponding coefficient
h(T) becomes zero. However, the kinetic equation

1 dT=B- C—
T Bx

ST
p~C

1 BT ST
T Bx p„C

1.372
0. 186 1 1+ +
+ph-r +5PP ~3PP

(3.27)

1 AT ST
T Bx p„C

(3.28)
v Vn =v„. =J(n) .Bn

X
(4.2)

does not vanish for the pure phonon gas near zero tem-
perature. Therefore, we should consider the contribution
of the pure phonon gas to viscosity.

Let us consider the macroscopic motion of liquid heli-
um (which does not depend explicitly on time) with veloc-
ity U and the gradient of U directed along the x axis.
Then Eq. (4.1}becomes

where we introduced A and 8 for simplification. Substi-
tution of Eqs. (3.27) and (3.28) in Eq. (3.14) yields

PC
n no —no—(no+——1)(cosO} A —B

k~T (4.3}

The equilibrium distribution function of rotons in liquid
helium with velocity U can be expressed as

(P —Po)' p U
k~T 2pk~T k~T

1 BT STX—
T Bx p„C

(3.29) where we used Eq. (1.2). Substituting n =no and —the ro-
ton velocity v =(P Po)/p in Eq. (4.2—), we get

[3.290A —7.212B ]p„C ax

(3.30)

and the energy flux [Eq. (3.8)] for the phonon-roton pro-
cess can be evaluated as

clE, 1
q = e(n —n, )(cosO) dp

Bp (2vrfi}

k~3 T2 C-
4m6 C

Po(P —Po) aU
no (cosO)(sinO) =J3(n),

pk& T Bx
(4.4)

(P —Po}Po . aU
n —no= —t, no(cosO)(sinO)

pkg T Bx
(4.5}

where 8 is the angle between the roton momentum P and
the x axis. The collision integral can be replaced by Eq.
(3.6) to give
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0„=fP~v„(n —no) &dP,
1

(2M}
(4.6)

and performing the integral over the momentum space,
we arrive at the expression

po BU
&xy= —tr

8
(4.7)

Substituting Eq. (4.5) into the following stress tensor of
2D liquid helium J' ~, ( n) = ( cos8)(sin8)N„Con o(no+ 1

B

PoP 1 5 ~o
X

8& p2C 2 32 pC
—+

3 ~o
+—A +2A'

4 pC
(4.15)

U
~y Ir ax

(4.8}

we obtain the coefficient of viscosity for the roton part as

Comparing Eq. (4.7) with the general expression of
viscosity

8.071
0. 186 1

aU „,aU
Bx Bx

(4.16)

Here, we note that Eq. (4.15) is slightly different from Eq.
(3.21), because Eq. (4.14) contains an extra (sin8) term.
With the use of similar calculations for Eqs. (3.16)—(3.26),
we obtain a, P, and ~~&

' as

p2
t„X,.

8p
(4.9)

The equilibrium distribution function of the phonon
gas is

spp %3pp

1.372
+Ph-r + 0 1g6 + +

+ph p %5PP VgPP

aU, aU
Bx Bx

r

cp —U pno= exp —1
B

(4.10)
and

(4.17)

no(no+1) (cos8)(sin8)=J(n) .cp aU
ksT Bx

(4.11)

Let us assume the distribution function to deviate slightly
from no, i.e., n =no+5n, which satisfies Eq. (4.1}. Sub-
stituting Eq. (4.10) into Eq. (4.2) we get

6!g(6) pokBT ~ 1 5 po

3!g(3) gg' 'C' " 2 32 p, C

3 ~o
+2A

4 pC
(4.18)

Solving Eq. (4.11) we can obtain the phonon part of the
viscosity. It is necessary to consider J(n) in the various
collision processes. Then the collision integral J(n) in
Eq. (4.11) can be replaced by Eq. (3.10). Through the
same processes that we argued in Sec. III, we obtain the
following two equations:

no(no+1) (cos8)(sin8)p dpf cp aU
ksT Bx

= f )J3pp(n)+ J5pp(n}+ J~a „(n)]pdp, (4.12)

no(no+1) (cos8)(sin8)e(p)p dp
aU

ksT Bx

=fJ's „(n)E(p)pdp . (4.13)

where Eq. (4.18) is not equal to Eq. (3.24). Substitution of
Eqs. (4.16) and (4.17) in Eq. (3.14) yields

5n = no(no+1—) A —B' aU
ksT Bx

(4.19}

Combining Eq. (4.19) with Eq. (4.16) and integrating over
momentum space gives

C
16M

B~
[3.290M

' —7.212B']
C ax

(4.20)

Comparing Eq. (4.20) with Eq. (4.8), we get the phonon
part of the coefficient of the first viscosity:

7.212(k~ T)
Ph 16~2C2

We can express the distribution function by Eq. (3.14},
except that now the dependence of a' and (T' —T)/T on
the angle 0 is given by +ph-r 5PP %3PP

2.310
P"- 0 1g6

(4.21)

a'=a(cos8)(sin8), ( T' T)/T =P(cos8}(si—n8) (4.14)

instead of Eq. (3.15).
In Eq. (4.12) the collision integrals J&pp(n) and J5pp(n)

are given by Eqs. (3.18) and (3.19}, respectively. Using
Eqs. (3.15)—(3.20},we obtain the collision integral J'z(n):

From the theory and experiments on attenuation of ul-
trasonic sound waves, ' we can confirm that at near-zero
temperature the contribution of 3PP to the viscosity
plays a main role, and 4PP establish only the equilibrium
of energy. Therefore, we consider the 3PP contribution
separately from other contributions. The kinetic equa-
tion for 3PP in Eq. (4.11)becomes
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no(no+1) (cos0)(sin8)=J3PP(n) .
aU

k TBx (4.22) [2!g(2)] 6!g(6) k T AU

3!4!g(3)g(4)
(4.24)

5n = n n—o
———no(no+ 1)a',

a'=a(cos8)(sin8) .
(4.23)

With a similar calculation for Eqs. (3.16)—(3.26), we ob-
tain the stress tensor

Since the distribution function of phonons depends on
the chemical potential a, Eqs. (3.14) and (3.15) become

2.645 3 3YIph(T)= 2 2 2k~T r3pp .
mAC

(4.25)

We note that the coefficient of the first viscosity in bulk
liquid helium is given by

From comparison of Eq. (4.24) with Eq. (4.8), we obtain
the phonon part of the coefficient q h near zero tempera-
ture as

(T)= .

1+0.75'7 h p
/'7 h75)(10—8T—i/2 B P P T)0 9 K

1 + 87 ph /7 ph

3.5x10—'T '"e ' (1+2.15x10 'T'"e— '
) ', T~0.9 K. (4.26)

V. RESULTS AND DISCUSSION

In the previous sections we have evaluated the scatter-
ing cross sections and characteristic times for various in-
teractions of the elementary excitations. Using these re-
sults we have obtained the coefficients of thermal conduc-
tion and first viscosity. To investigate the temperature
variation of the coefficients a(T) and ri(T), we adopt the
parameters which are determined from the specific-heat
data of Bretz et al. ' The parameters are listed in Table
I. With this choice we obtained c =84.06 mls, which is
smaller than the value 157 m/s of Hipolito and Lobo, '

but is very close to the experimental value of 76+2 m/s
of Washburn et al. ' The parameters u, A, and a in Eqs.
(2.9), (2.23), and (2.16) for two dimensions are assumed to
be 1.8, ' 0.425, and 1.0X 10 (Ref. 13) used by previous
workers for the bulk case.

The coefficient of the thermal conduction is given by
Eqs. (3.10) and (3.31). We can confirm easily that Eq.
(3.4) vanishes by considering only a pure phonon gas be-
cause of the peculiar excitation of liquid helium. There-
fore, the thermal conduction depends on the interactions
between xcitations, and it is necessary to take into ac-
count the phonon-roton and roton-roton interactions.

The roton part ~, (T) of the thermal conductivity is
proportional to the average collision time t„.When 8=0,
t„is zero, and for small-angle scattering t„becomes very
small. Since Eq. (5.10) is involved in the unknown in-
teraction potential constant Vo and we have only to know
the magnitude of the temperature dependence for ~„we
may take the maximum t„.Taking 0=~/2 and the nu-
merical parameters in Table I, ~„(T) can be expressed as

0. 191)&10 1 1x.„(T)= —+0.221T +0.728+4.743 —+0.362
I

I'0
I

'
1 +28 02

' T —3/2e —(4. 12)/T)2+ T

1+4632. 89T e

(5.1)

Figure 3 illustrates ~T as a function of temperature. The
coefficient increases slowly as temperature decreases and
is proportional to T

The characteristic times which determine the
coefficient ii h(T) are given by Eqs. (3.24) —(3.26).

/k& T
has the temperature dependence of T e, which—5/kg T
is one power lower than T e in bulk liquid heli-
um. This is due to dimensionality, where ~5pp has the
temperature variation of T, which is a lower power than
that of three dimensions. The inverse of ~3pp is ProPor-
tional to T, which originates from the anomalous excita-

p(A )

2.79x10 '

TABLE I. Theoretical parameters.

6/kg (K) qo (A ) p

4.12 1.02 0.75m H,

C (m/s) .

164.4

tion spectrum. Figure 4 is the temperature variation of
the characteristic times. ~5pp is comparable with mph

—1 —1

near about 0.8 K, and thus we can conclude that above
0.8 K the 5PP and the scattering of phonons by rotons
will mainly contribute to the thermal conduction. Since
5PP appear in the inelastic collision process in the tem-
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Figure 6 illustrates the coefficient ralph(T) of the first
viscosity as a function of temperature based on Eq. (5.8).
At temperatures below about 0.8 K, g h increases ex-
ponentially as temperature decreases. However, as tem-
perature approaches absolute zero, the roton density be-
comes zero, and thus the contribution from the roton-
phonon scattering to viscosity vanishes so that the main
contribution comes from the 3PP. Therefore, the tem-

1/2 b/kBT
perature dependence is changed from T ' e to
T '. The coefficient increases slowly, and near zero tem-
perature it increases very rapidly and finally diverges.

In conclusion, we remark that the behavior of the
coefficients of the thermal conductivity and first viscosity
are very much like that of the bulk case. At below 0.3 K,
the contribution to the coefficient of first viscosity is due
to the 3PP, which is shown to have a T ' dependence.
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$3p 2
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32@,'I vo I' '
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16M Co

The authors are very thankful to Professor J. S. Kang
for a critical reading of the manuscript. This research
was supported in part by a Grant to Korea University
from the Korea Science and Engineering Foundation un-
der Contract No. 862-0203-11-2, and in part by the Office
of Naval Research and Air Force Office of Scientific
Research (AFSC), under Contract No. F49620-86-C-
0009, with the Research Foundation of the State Univer-
sity of New York.

APPENDIX

Since the calculations for Eqs. (3.24) —(3.26) are very
similar, we shall derive only Eq. (3.24}. The collision in-
tegral [Eq. (3.20)) can be expressed as

J h„(n)=N,C f [(n' no) —(n —no))do—. (Al)

Making use of Eq. (3.14), Eq. (Al) becomes

Jph „(n)=N„CIno(no+1)P (cos8' cos8)dcr —.
B

(A2)

In Fig. 1 the relation between angles is given by

(cos8') —(cos8) =(cos8}[(cosf)—1+ (tan8)(sing&)] .

13.419+5. 376rph „/rqpp

1 + 5 376 ph p 5pp

T)0.8 K .

(5.6)

(A3)

Substituting Eqs. (2.25) and (A3) in (A2) and performing
the integration over f, we get

At temperatures below 0.8 K, we consider only the
phonon-roton collision process and thus have

2.645qp„(T)= (ksT) r
„„

m6 Co

Jph „(n)=N„C(cos8) —P no(no+1) 3 z zkB T 8$3P2( 2

9 Po Po~ +232

The collision integral may be written as

(A4)

1 7 ~ 10—20T—1 /2 4. 12/T (5.7)

r)ph( T) =5.92 X 10 ' T (5.8)

For temperatures below about 0.3 K, we have another
temperature dependence given by Eq. (4.25):

n —noJ h„(n)=-
rph p

(A5)

To obtain the temperature dependence of r h „(T),we
calculate the following integral:
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g= fJ„,(n)epdp f e2pdp. (A6)

fJ „„(n)spdp = (cos8)N„C —P
B

Performing the integrations over momentum space, we
have

g=P(cos8)lr „„(T). (A10)

6}g(6) N„PokaT 1 9 Po

3~/(3) 8trt'p'C' 4 32 pC

Comparing Eqs. (A10) and (A9), we obtain the charac-
teristic time r~h „(T):

Pp k~T2 7

X», G 6}g(6),
8g3p2C2 C

'I 3
Bno

2
ka T

cp p= —3! 3 C
E C

(A7)

(A8)

PpA +2A'
pC

(Al 1)

In the case of the 6rst phonon viscosity, we should re-
place Eq. (A4) by Eq. (4.15). Through the same calcula-
tion we get

where 6 represents the term on square brackets on the
right-hand side in Eq. (A4), and then Eq. (A6) becomes

(A9)
8RpC

Substitution of Eqs. (A5) and Eq. (3.14) in Eq. (A6) and
integration over momentum space gives Eq. (A6) as

6!g(6) N Poka T
r'h. „'(T)=P"" 3}g(3) 8g3 2C4

5 Pp 3 PpA
X —+ +4 C

+2A
2 32 pC 4 pC

(A12)
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