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Proximity effect of a ferromagnetic insulator in contact with a superconductor
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We propose a model for conventional superconductors in contact with a ferromagnetic (or polar-
ized paramagnetic) insulator. The model is defined by a boundary condition on the quasiclassical
Green’s function for the superconductor at the interface between the metal and insulating magnet.
The specific boundary condition we use describes the interaction of the electrons, which tunnel into
the insulating barrier, with the average exchange field of the local moments. Solutions to the
quasiclassical equations and boundary condition are obtained for thin superconducting films. We
obtain results for pair-breaking effects of a magnetic boundary on the transition temperature and
gap of thin superconducting films. Of particular interest is the Zeeman effect in the quasiparticle
density of states (DOS), which exhibits a splitting of the form 2u,(H 4+ B*) in an external field H.
The excess splitting B* is interpreted here as an internal field in the superconductor resulting from
quasiparticle tunneling into the magnetic insulator, and subsequent reflection into the supercon-
ducting film. We compare our model of the tunneling DOS with the recent measurements by
Tedrow et al. on EuO/Al/AlO; tunnel junctions.
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I. INTRODUCTION

Advances in the fabrication of thin films and artificial
superlattices have led to new investigations into the in-
teraction of superconductivity and magnetism. Wong
et al.! have measured the parallel upper critical field of
magnetic superconducting sandwiches and superlattices
made of V and Fe, and interpret their data in terms of a
crossover from two-dimensional (2D) to three-
dimensional (3D) superconductivity, suggesting the coex-
istence of V superconductivity and Fe ferromagnetism.
SIS junctions made of Pb and Ho(OH); (which is fer-
romagnetic in bulk form) show a threefold splitting in the
conductance versus voltage.> Stageberg et al.? proposed
that this splitting could be explained by a surface bound
state of the pair potential, which is depressed by the mag-
netic Ho(OH); barrier, and a Zeeman splitting of the con-
ventional BCS conductance peak. DeWeert and Arnold?
suggest that this bound state results from the exchange
coupling of quasiparticles to the ions in the insulating fer-
romagnetic layer, although they do not rule out a bound
state resulting from a spatial variation of the pair poten-
tial. Recently, Tedrow et al.® carried out high-field tun-
neling measurements of the density of states (DOS) in su-
perconducting films of Al backed by EuO, which in bulk
form is a ferromagnetic insulator with a Curie tempera-
ture of 70 K and an optical gap of 1.1 eV.* They ob-
served a twofold spin-splitting of the DOS in excess of
the Zeeman energy 2u,B, which they interpret as an
internal field of EuO acting on the Al conduction elec-
trons. This is a remarkable effect given the semiclassical
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picture of conduction electrons in pure Al traveling along
classical trajectories and being reflected specularly by a
smooth interface with an insulator,

The quasiclassical (QC) theory of superconductivity,®
formulated by Eilenberger, Larkin, and Ovchinnikov,
and Eliashberg, is powerful enough to deal with super-
conductivity in restricted geometries such as proximity
contacts. However, in order to deal with the complica-
tions imposed by interfaces between superconductors and
other materials, interface boundary conditions must be
added to the original formulation of the QC theory. The
correct boundary condition depends on the details of the
interface, e.g., roughness, reflectivity, magnetic proper-
ties, etc. The boundary conditions that have so far been
proposed for the QC equations are reviewed in Ref. 6.

In this paper we describe a theoretical model for a thin
superconductor in contact with a polarized material,
which may either be a ferromagnet or a paramagnet in an
external field (see Fig. 1), and calculate some observable
consequences of the theory. The model for the interface
is described by a boundary condition on the QC Green’s
function, the propagator of the theory, and is formulated
in Sec. III in terms of an interface scattering matrix, as
described by Millis et al.” In Sec. IV, we examine the
effects of the boundary condition on the gap and ex-
change field induced in a superconductor near an insulat-
ing magnetic surface. We specialize the discussion to a
thin superconducting film in contact with a magnetic sur-
face (Sec. V), and in Secs. VI and VII calculate the
surface-magnetic pairbreaking effect on the transition
temperature as well as the tunneling density of states of
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FIG. 1. Thin film geometry. A superconducting film of
thickness d << £, is bounded by a magnetic insulator on the left
and a nonmagnetic insulator on the right. The internal field of
the magnetic material is taken to be along the y axis, and p and
P refer to trajectories for incoming and specular reflected quasi-
particles.

the film. In Sec. VIII we compare the results for the thin
film with the tunneling measurements of Tedrow et al.>
Readers less interested in the details of the calculations
can skip to Sec. VI. We begin by briefly reviewing the
relevant equations of the QC theory; for a more complete
discussion see the articles by Alexander et al.® and
Serene and Rainer.®

II. QUASICLASSICAL EQUATIONS

The basic equations of the equilibrium QC theory are
(1) the transport equation,

lie,7,— 6 —A,8(P,R;e,)]_ +ivy-Veg(P,R;e, ) =0,
)

where [K,AB]i= AB+B :\, (2) the normalization condi-
tion,

[g(ﬁ!R;en )]2= —77'2,1\ ’ (2)

and (3) the self-energy equations that determine the (diag-
onal) self-energy, &, and the gap matrix, A in terms of the
QC propagator, g, and the relevant interactions of the
theory. The propagator § is a 4X4 Nambu matrix,
representing both spin and particle-hole degrees of free-
dom, that depends upon P, the direction of the momen-
tum of a quasiparticle on the Fermi surface, R, the posi-
tion variable, and the Matsubara frequencies,
€,=(2n +1)7T. Although it is not a limitation of the
QC theory, we assume a spherical Fermi surface, in
which case the Fermi velocity v is directed along p.

The physical solutions of Egs. (1) and (2) must satisfy
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the self-consistency equations determining K(ﬁ,R;e,, )
and the diagonal self-energy &(p,R;e,). In the weak-
coupling theory the self-consistency equation for A is the
BCS mean-field gap equation,

%%v(f)-ﬁ’)Tz?(f)',R;e,,), 3)

n

AB,R)=

where v(p-P ') is the pairing interaction and T(p,R;e, ) is
the off-diagonal part of the propagator in particle-hole
space,

f(P,R;e,)
g(—p,R;—¢,)" |’

g(p,R;e,)
f( —f”R;En )*

with spin dependence of the diagonal (g) and off-diagonal
(f) amplitudes given by

2P.Rse, )= @)

g=g,+go, f=foio,+fio0o,. (5)

For conventional s-wave pairing, v(p-p')=v, is con-
stant and A(R) depends only on the center-of-mass coor-
dinate R of the pairs. Also the gap matrix is of the form,
iAo,T,, where, by convenient choice of gauge, A may be
chosen to be real, and o; and 7; are Pauli matrices in spin
space and particle-hole space, respectively. Strong-
coupling corrections to the weak-coupling gap equation
are small, down by factors of T, /Qpepy. and T, /Ef, and
neglected here; they may be included if necessary. The
diagonal self-energy accounts for two other important
effects in metals: (1) many-body effects described by
Fermi-liquid molecular fields and (2) finite mean-free-path
effects resulting from scattering of quasiparticles with im-
purities, phonons, or other quasiparticles. At low tem-
peratures, T << Ep, p.py., impurity scattering typically
dominates. However, for our applications we consider
the clean limit in which the mean free path, / =vp7, is
large compared with coherence length &,. In this case the
impurity self-energy may be neglected, so that

AYA A A U(ﬁ’R) 0
o(p,R;e,)=0,4D,R)= 0

o R=T S [ L1455 Rse,)

A A

+A4Pppegd " R;e,)0]. (D

For high-field tunneling, which we discuss in Sec. VIII,
the most important Fermi-liquid correction is the elec-
tronic exchange interaction given by the isotropic part
(A8) of the interaction A%P-p’). The resulting ex-
change field in the superconductor is

dQ A
= Ag3T —8(p,R; ) 8
h ogf%g(pnen) ®)
which also contributes to the magnetization,

M=2N(Ep)u,(1—A§) [u. H+T 3 f%g(ﬁ,l{;en) ,

9)

where p, is the Bohr magneton, H is an external field,
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and N (Ep) is the normal metallic density of states at the
Fermi energy.

III. SMOOTH, PERFECTLY REFLECTING
MAGNETIC BOUNDARIES

The QC equations for the propagator must be supple-
mented by boundary conditions (BC’s) to describe the
effects of finite geometries. Boundary conditions for
smooth, magnetically active interfaces were recently dis-
cussed by Millis et al.” These authors model the bound-
ary as a high-energy potential barrier. Such potentials
are outside the region of validity of the QC theory, and
hence the specific form of the BC’s must be developed
from a microscopic theory. However, many general
properties of the BC depend only on the symmetry prop-
erties of the interface potential. For a smooth, perfectly
reflecting boundary, the scattering states of quasiparticles
impinging on, and reflected from, such a boundary may
be represented in terms of an interface, or boundary, S
matrix which connects the incident “scattering in” quasi-
particle state and reflected “‘scattering out” quasiparticle
state. In particular, if G (F) is the two-component spinor
amplitude for the incoming (outgoing) quasiparticle state
defined by trajectory P(p), then the boundary S matrix is
a 2X2 spin matrix connecting G and F according to
F =SG. Translational invariance of the boundary
guarantees that only quasiparticles traveling along specu-
lar reﬂected trajectories B and P are related. As Millis
et al.” discuss, additional symmetries of the interface fur-
ther restrict the S matrix. Since the interface considered
here does not transmit quasiparticles, the incident
current must equal the reﬂected current, which implies
that S is unitary, sst=s's=1. For a magnetically ac-
tive interface, the general form of the 2X2 S matrix is
S =s +m-o. In particular, if the boundary is magneti-
cally polarized along the direction fi, then m~fi.° The
general form of S, consistent with the unitarity condition,
is

S=e—i¢/Ze—i(9/2)ﬁ-o . (10)

Thus, S has the property that it generates rotations in
spm space, SoST=R ~![©fi]-o, where R[Ofi] rotates a
spin vector about fi by the angle ©. The S matrix also in-
troduces an overall phase factor, ®, between the incident
and reflected states; however, this phase does not enter
the QC boundary condition, so we drop it from here on.
The angle © that parametrizes the S matrix has the sim-
ple interpretation as the spin mixing angle. In particular,
assume the boundary magnetization is polarized along
the § direction as shown in Fig. 1, and consider an in-
cident quasiparticle with its spin aligned along the +2
axis (G=|o,=+ >). The outgoing quasiparticle am-
plitude is a superposition of states with o, ==1 given by
F=cos(©/2)| +> +sin(©/2)| — >. Thus the spin is
rotated by its interaction with the internal field of the
boundary. This spin rotation occurs only as a result of a
tunneling by the quasiparticle into the classically forbid-
den region of the boundary.

The spin mixing angle © depends on the conserved
momentum parallel to the surface. Thus for a metal with

8825

a spherical Fermi surface, © depends on (p),=p —(p-2)Z.
Quite generally we expect quasiparticles with trajectories
that just graze the surface to exhibit the smallest spin ro-
tation upon reflection. An explicit form for the depen-
dence of © on the conserved momentum may be obtained
from a microscopic model of the magnetic boundary; we
provide such a model in the Appendix. However, O is
perhaps best regarded as a material parameter to be de-
rived from experiment, although one expects that the mi-
croscopic model will provide some information on the
qualitative dependence on (p); and the order of magni-
tude of ©. It is important to note that the S matrix given
in Eq. (10) assumes the magnetic boundary is adequately
represented by a potential that couples to the conduction
electrons at the surface. The S matrix does not describe
dynamical spin-flip interactions between conduction elec-
trons that tunnel into the insulator and local moments in
the boundary. However, it does represent, and this is the
particular model we discuss in the Appendix, the interac-
tion of the conduction electrons with the mean exchange
field, or the magnetization if relevant, of the magnetic
ions in the insulator.

The BC connecting the QC propagators for momentum
directions related by specular reflection (i.e., p and P in
Fig. 1) takes the form of a unitary transformation be-
tween §(P,R;€,) and (P, R;€, ) at the surface,’

g(ﬁ’Rsurface;en )=S§(§’Rsurface;€n )S ! ’ (11)

where the 4X4 matrix S is simply related to the 22
spin matrix S. In particle-hole space

3 S(p,a) 0
- 0 S*(—p,—p)
e —i0/2)0
= 0 e —i(0/2)ia" (12)

The bottom right-hand element of S is the S matrix for
quasiholes reflecting from the boundary. Quasihole states
are constructed from quasiparticle states by complex con-
jugation; this operation reverses the direction of propaga-
tion P, and for magnetic surfaces the quasiholes experi-
ence a magnetic surface potential obtained by fi— —fi,
which accounts for the relation between the quasihole S
matrix and the quasiparticle S matrix. These differences
in the scattering amplitudes for normal-state quasiparti-
cles and quasiholes are particularly important for a
description of the elementary excitations in the supercon-
ducting phase interacting with the magnetic surface, be-
cause these excitations of the superconductor are super-
positions of normal-state quasiparticle and quasihole
states.

IV. BULK SUPERCONDUCTOR BOUNDED
BY A MAGNETIC WALL

We first consider a superconductor occupying the
half-space z > 0, bounded by a magnetic wall at z=0. The
wall is assumed translationally invariant in the x-y plane,
so that the QC differential equation is effectively one di-
mensional (we do not consider broken translational sym-
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metry states near the surface). We introduce dimension-
less units by scaling energies in units of Ty, the bulk su-
perconducting transition temperature, and lengths in
units of the zero-temperature coherence length,
Eo=%vp /2wky T,y In terms of the trajectory coordinate,

s=—tm = (13)
_UL(A.A) 21T§0(p.z)
TcO

the QC differential equation (neglecting Fermi liquid
effects for the present discussion) becomes,

[ie,?,+A,8]+id,8=0 . (14)

Since z >0, s has the sign of p-Z, and extends from — o
to 0 for p-Z2<0, and from O to + o for p-Z>0. The
propagators for the trajectory P and its specular reflected
partner ﬁ are connected by the BC at z=0 [Eq. (11)].
Thus we can calculate g(p,z;€,) and 8(P,z;€,) by
defining B

=24

(p,z;€,), s>0

g(s;e,)= (15)
(p,z;€,), s<0,

09>

o>
4=

where we choose PZ>0, and solving the differential
equation (14) in the full space — « <s < o subject to the
BC of Eq. (11) for s=0. In addition, the physical solution
must satisfy the asymptotic condition

~
ien?s—'Ab

— (16)
(€ +4})172

lim g(s;e,)=8,=

|s|—o

where A, is the bulk equilibrium gap at the specified tem-
perature.

We solve Egs. (11)-(16) numerically on a computer.
Care must be taken to obtain the physical solution of Eq.
(14) since this equation has exponentially exploding solu-
tions in addition to the physical solution that is bounded
everywhere. Numerical integration of Eq. (14) is unsta-
ble, since even a tiny admixture of the exponentially ex-
ploding solution will always dominate the bounded solu-
tion. However, we construct the physical solution of Eq.
(14) by implementing the observation of Thuneberg
et al.,'® that the physical solution can be constructed as

Bls,e,)~[8,(s,€,),8_(s,€,)]_, (17

where g.(s,€,) is the exploding solution for s —+t .
The overall normalization is fixed by the asymptotic
boundary condition. The solutions g.(s,€,) are easily
computed numerically by starting the integration at some
large value of |s |, where the solution is fixed by the
bulk gap, and integrating forward (backward) to obtain
g, (s)[E_(s)]. It is important to note that the magnetic
boundary condition on the physical solution g(s,€,) at
s=0 is satisfied simply by imposing the BC in Eq. (11) on
the unphysical solutions g4(s,€,). Finally, to complete
the half-space solution for g(P,z;€,) we must solve Eq.
(14) with the self-consistently determined gap A(z). This
self-consistency requirement is implemented by a Newton
iteration procedure to update A(z) after §(P,z;€,) has
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FIG. 2. The normalized order parameter A in units of T, as
a function of distance z /&, from the magnetic insulator. The
different curves correspond to A(z) for several values of the spin

mixing angle ©: ©6=0.2 (solid), 0.6 (long-dash), 1.20 (short
dash), 7/2 (long dash-dot), and 37/4 (short dash-dot).

been computed. !

Figure 2 shows the suppression of the gap function
A(z) in the vicinity of the magnetic surface. The gap at
the surface A(z=0) decreases monotonically as © in-
creases from zero, and as the spin mixing angle © — 7 the
gap A(z=0)—0. As expected A(z) heals to the bulk
equilibrium gap on the length scale £, Figure 3 shows
the exchange field [Eq. (8)] induced in the superconductor
by the magnetic boundary. The exchange field extends a
distance of order &, into the superconductor, with the
penetration depth increasing slightly with increasing ©.
Note that the induced field at the wall passes through a
maximum as © increases. Such a maximum occurs be-
cause at sufficiently large © the magnetic surface scatter-
ing destroys the superconductivity at the wall, forcing the
exchange field to vanish at z=0.

5
z

A

FIG. 3. The induced exchange field in the superconductor, in
units of A§T .y, as a function of distance into the superconduc-
tor. The different curves correspond to the same values of ©
given for Fig. 2.
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V. THIN SUPERCONDUCTING FILM BACKED
BY A MAGNETIC WALL

We now specialize to the thin-film geometry shown in
Fig. 1, in which the thin superconducting film of thick-
ness d is sandwiched between a magnetic insulator (a per-
fectly reflecting magnetic wall) and a perfectly reflecting
nonmagnetic surface. This geometry was used by
Tedrow et al.> for their tunneling measurements on
EuO/Al/AL,O;, films. Of course the oxide barrier,
Al,0;, is weakly transparent, but to a good approxima-
tion we may assume it is perfectly reflecting. The walls
are also assumed to be translationally invariant in the x-y
plane, and for simplicity we assume the internal field of
the magnetic insulator is along the § direction. Further-
more, the thickness of the film d is assumed small com-
pared to the coherence length, §y=7vy /27mky T, ; the gap
A is then taken as constant. The transport equation be-
comes

[M,2]_ +ivp(p2)0,8(P,z;€,)=0, (18)

where M=ie,7,—A.

For the nonmagnetic surface at z =d, the propagator is
continuous along the classical trajectory defined by p and
its specular reflected partner P,

@(ﬁ,d):@(ﬁ,d) . (19)
For the magnetic wall at z=0, we have from Eq. (12),
25,00=88p,08", (20)

where §=cos(©/2)—i sin(6/2)o,7;, and by convention
we take p-Z>0, p=p—2Z(p-2). Equations (18)-(20) are
solved in the thin-film limit, d << &, with the ansatz

£8(D,2)=8(P)+(z —d)g,(P) , (21)

with 8, and §, independent of z, and ||dg, || << ||8ol|- "
The boundary condition at the nonmagnetic wall
(z =d) implies

2o(P)=2o(P) , (22)

and together with the two transport equations for E(p),
this implies

2iP)=—8:(P) . (23)
The boundary condition at z=0 is then equivalent to
[8(5).S)_=d[&:($).8], . (24)

By taking the anticommutator of the transport equation

(18) with S, we eliminate g,(p) to obtain the following

equation for gy

ivp | P2 |
d

Using the explicit form for S from Eq. (12), we obtain

[[M,8]_.S], + [8,8]1_=0. (25)

i

[M’gO]-"'" 2

tan(6/2)[[101,§o]-,§]+

+vF|ﬁz|

5 tan(©/2)8,2]_=0, (26
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where 2 =0,T;.
Equation (26) and the normalization condition suggest
that g, is of the form

Bo=4(M—a2)+Boy (M—al) . (27)

We then obtain the solution for g, with

a= vFiiszi tan g
T 2d 2 |’
A+B=—7|—— ,
T | Bx2ie,a
where
B=¢€:+A2—a?. (29)

We discuss some of the properties of this solution in Secs.
VI and VII.

VI. PAIRBREAKING EFFECT ON T, AND A

Magnetic scattering by a boundary is destructive to
conventional spin-singlet superconductivity. The gap pa-
rameter A is suppressed near a magnetic surface; for very
strong pair-breaking A is forced to zero at the magnetic
wall. For the half-space model described in Sec. IV,
A(z =0)=0 in the extreme limit in which the spin mixing
angle © = (for all p). In this limit an electron with tra-
jectory P and spin projection o, = +1 is reflected into the
trajectory P and spin projection o, = — 1 with unit proba-
bility. The wall is then a perfect pair breaker; it is simple
to show that if © =, then only solutions for g§ with A=0
at the wall satisfy the transport equation and boundary
conditions. This limit of perfect pair breaking is the
boundary condition often employed in phenomenological
Ginsburg-Landau theories of magnetic and supercon-
ducting proximity contacts formed from strong fer-
romagnetic materials like Fe, Gd, Ni, etc."'!> However,
the more interesting limit occurs for © <, in fact for
O << 1, in which case the magnetic boundary is not cap-
able of completely destroying superconductivity at the in-
terface. This limit is relevant for rare-earth-oxide mag-
nets in proximity contact with superconductors.>

The pair-breaking effect of the boundary magnetism on
the gap and T, can be calculated from the weak-coupling
gap equation obtained from Egs. (3) and (27)-(29),

[3+(3Z+46i02)1/2]”2
(B2 +4€2a?)!?

1
2 T el 30
vo V279 4nm zn" 39
In the limit a—0 (i.e., no magnetic scattering), we obtain
the standard BCS gap equation,

1 dQ T
v d am 2@ A oD
This is the well-known result that specular reflection
from a nonmagnetic wall is not pair breaking for conven-
tional s-wave superconductivity. Since the frequency sum
is logarithmically divergent and must be cut off at a high
frequency Qpepye>>27T,, we eliminate the unphysical
cutoff and the pairing interaction in favor of the bulk
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transition temperature T, of the clean superconductor in
the standard way, by defining,

1En I <9Debye 1
" L€,

We thus have 1/vy=K(T,)), and the gap equation
defining A for the thin film in contact with the magnetic
boundary can now be linearized to obtain an equation for
T, of the film in terms of T,, and the magnetic surface
pair-breaking parameter a,

K(T)=xT ~In(1.13Qpe,e/T) . (32)

alu)?

€ | Len+aw)?]’

(T, /T,o)=—nT, 3 fo‘du (33)
where a(u)=vgp/2d |u |tan[O(u)/2]. In general, the
spin mixing angle ©(u) depends on u =(Z-p). However,

assuming © is constant, we obtain the following equation
for T./T.,=t:

In(t)=—f(t/p),

1
)=
Sl ,EO (n+3)
1
1—(n 41 Ll [ 34
X (n 4+3)y tan Y+ D) ], (34)
(S)
t —_—
vF tan 2)
P= 1" 4mdr,,

The dimensionless surface pair-breaking parameter is p
=£,/2dtan(©/2); thus even if © << 1, p need not be
small since we have assumed £,>>d. Nevertheless for
small p << 1 we obtain

7603)
3 P

Thus, for fixed magnetic-surface scattering the transition
temperature of the film decreases with the film thickness
as (T,—T.)/T.o~(&,/d)®. Equation (35) also suggests
that magnetic-surface pair breaking is capable of destroy-
ing superconductivity in thin films (d <<&;) even if the
spin mixing angle © <<1. As shown in Fig. 4, T, is
suppressed to zero as p approaches a critical value p,,
which can be calculated from Eq. (33) in the limit
p/T.(p)— . For an interface with ©(u) independent of
u’

T,/T.o~1— (35)

p.=exp[1+9(1)]=0.3816,

where ¥(x) is the digamma function.

The effect of magnetic scattering on the gap can be cal-
culated from Eq. (30). The zero-temperature gap as a
function of p is shown as the insert of Fig. 4, and follows
qualitatively the form of T.(p).!> The temperature
dependence of the gap also changes as a result of magnet-
ic surface scattering. Figure 5 shows the deviation of the
scaled gap A(p,T)/A(p,0) from the universal BCS gap
function Agcs(T)/Apgcs(0).

In the Ginsburg-Landau region, A(p,T)/T.(p)<<]1,
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FIG. 4. The transition temperature of a pure superconduct-
ing film as a function of the magnetic surface pairbreaking pa-
rameter p. The inset shows the temperature-dependent gap
function A(p,T)/T,, for temperatures T/T.,=0.5 (solid), 0.5
(dash), and 0.95 (dash-dot).

the temperature dependence of A(T) retains the conven-
tional mean-field form,

A(T,p)=G(p)T (p)[1-T/T.(p)]'*, (36)

where G (p) increases from the BCS value of G(0)=3.06
to G(0.8p.)=3.47. Finally, we conclude this section
with a discussion of the order of the phase transition in a
thin superconducting film in contact with a magnetic in-
sulator. It is well known that the order of the phase tran-
sition in a thin superconducting film in an external mag-
netic field depends upon the temperature, as well as the
purity of the metal. Sarma'® and Maki and Tsuento!’
showed that the superconducting transition is first order
for temperatures below 0.56T,, with critical field at T=0
given by the Chandrasekhar-Clogston limiting field
u, H.(0)=A(0)/V'2; at temperatures T > 0.56T, the tran-
sition is second order.!® For a superconducting film in
contact with a magnetic insulator, the magnetic-surface
pair-breaking parameter, a=v;/2d |p-Z|tan(©/2),
plays a role similar to an external magnetic field. In fact,

a(pT)
A(p0) 1.0

0.8 1
0.6 1
0.4 1

0.24

0.0 T T T T T T T T T +

0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
T
Te(P)

FIG. 5. The normalized gap A(T,p)/A(0,p) as a function of
reduced temperature T/T,(p), for p=0 (solid), 0.1 (dash), 0.38
(dash-dot).
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the QC transport equation [Eq. (26)] for the propagator
£, has precisely the same form as the QC transport equa-
tion for a bulk, homogeneous superconductor interacting
with a uniform field ¥, only via the quasiparticle elec-
tron spin. We might, therefore, expect the transition
from the superconducting to the normal state to be first-
order at low temperatures provided the surface pair-
breaking field a was sufficiently large. This turns out not
to be the case; in zero external field the transition is al-
ways second order, independent of the strength of the
surface pair-breaking field a. The reason that a super-
conducting film which is in contact with a magnetic insu-
lator differs from a thin superconducting film in an exter-
nal field is that the surface pair-breaking field a depends
upon the quasiparticle trajectory; in particular a—0 as
|P-Z| —0. Thus there is always a set of trajectories for
which the surface pair-breaking field is relatively weak.
This dependence of a(u) on u =P-Z leads to a softening
of the transition to second order even at T=0. We
demonstrate this fact by considering the Ginzburg-
Landau (GL) region in which the gap function A is
presumed small. The GL free-energy functional has the
conventional form

AQ[A]=a(T,p)A*+1b(T,p)A*+ -+ - . 37

The gap parameter becomes
A’=—a(T,p)/b(T,p), (38)

where a(T,p) and b(T,p) are the GL coefficients for a
thin film in contact with a magnetic insulator. This re-
sult presumes the transition is second order, and there-
fore that the coefficient b(T,p)>0. Otherwise, if
b(T,p) <0 the fourth-order GL functional does not have
a stable minimum and consequently the sixth-order term
which stabilizes the minimum of A(} also forces the tran-
sition to be first order. We calculate b (T,p) from the ex-
pansion of the gap equation to third order in A; the result
is

3

T 5 B du Re (39)

n>0 €,+ia

For a constant external magnetic field we set a=u,H (in-
dependent of u), so that

€ —3e,(u H)*
b =7T 3 — 55
nso L€+ (p H))

Thus for an external magnetic field the fourth-order
coefficient is negative for sufficiently low temperature and
high field, thus signaling a first-order transition.
However, for a=a| u |, appropriate for a magnetic-
superconducting proximity contact, we find

(40)

rox Tr ’ (4 1)
b n§>:0 (€] +a0)2

which is strictly positive, thus implying a second-order
transition for any temperature and surface pair-breaking
parameter ay=vy/2d tan©,,.
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VII. INTERNAL FIELD, FERMI-LIQUID EFFECTS,
AND THE DENSITY OF STATES

In addition to pair-breaking effects, scattering of quasi-
particles by a magnetic surface polarizes the supercon-
ducting film. This polarization is responsible for the in-
duced exchange field discussed earlier for the half-space
superconductor. For a thin superconducting film the po-
larization may be inferred from Eq. (26) for the propaga-
tor §,, which, as mentioned before, has the same form as
the QC transport equation for a bulk, homogeneous su-
perconductor interacting with a uniform magnetic field
ay, only via the quasiparticle electron spin.

In addition to the field a¥y resulting from electrons tun-
neling into the insulating magnet, there is an exchange
field induced in the superconductor which is calculated
from Eq. (8), and is shown in Fig. 6 as a function of p for
T/T,,=0.5, or equivalently the average effective field

a=(2m/3)T,p. For small & the exchange field is linear
in @,
Fi(1—y)
_ | Loty 42)
1+yF§

where Fi=A§/(1— A§) is the Fermi-liquid parameter
representing the exchange interaction of the metal, and y
is the Yoshida function, .

2

l—y=nT E‘W (43)

Near the transition temperature (T ~T,~T,) the ex-
change field

F§ 2
ha | — |81 A 5 (44)
1+F§ || 47 T

is small; however, at low temperatures,
h~Fja, (45)

which may be comparable to the field @ if the Fermi-
liquid exchange interaction parameter F§ is sizable.

%-_T“ 0.06 1
0.05
0.04 -
0.03 A

0.02 4

0.01 4

0.00 T T T
0.0 0.1 0.2 0.3
p
FIG. 6. The exchange field, calculated self-consistently, for a
thin film in contact with a magnetic insulator is shown as a
function of p, for 4§=0.23 (representative of Al) T/T,,=0.5.
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Tedrow et al.'® have determined F§ using spin-polarized
tunneling techniques in Al films and find F§~0.3 to 0.4.
This Fermi-liquid effect should be included in making
quantitative comparisons with tunneling data to extract,
for instance, the parameter a. Finally, for large values of
p the exchange field is no longer linear in @, and in fact
vanishes as p—p, (see Fig. 6).

The field a has an important effect on the DOS of the
superconducting film; a spin-splitting of the DOS results
from the tunneling of electrons into the polarized insula-
tor. We calculate the DOS of the film in the standard
way by analytically continuing the Matsubara propagator
to the real axis to obtain the retarded (R) propagator ac-
cording to gR(E)=g,(ie, —E +in), where g, represents
the upper left 2 X2 matrix (in particle-hole space) of g.
Choosing fi as the quantization axis diagonalizes g, with
diagonal elements g for the two spin bands. The result-
ing angle-resolved DOS, calculated from

N, B)=— T imig A BB o=%, @6
is shown in Fig. 7. Each curve has essentially the form of
a BCS square-root singularity. For the spin-up (o =+)

band displaced highest in energy,
) E—a
[E+(A—a)][E —(A+a)]’

where N(0) is the DOS in the normal metal.

The angle-resolved DOS depends on the trajectory P,
through the surface field a~ |Pp-Z|. Indeed for quasi-
particle trajectories grazing the interface there is no
spin-splitting at all if we neglect Fermi-liquid effects. To
include Fermi-liquid effects, as well as an applied field H
parallel to the interface (which we assume will orient the
internal field of the insulator parallel to H), we replace a
by a+h., +h, where h,,,=pu,H is the external field, and
h is the exchange field [Eq. (8)] of the metal film resulting
from both a and h,,.?° In this case even the DOS for
quasiparticles with trajectories nearly parallel to the sur-
face will exhibit a spin-splitting given by the field
(hey+h). Nevertheless, the maximum spin-splitting

N, ($,E)=N(0

(47)

NGAE)
N(o) 61

FIG. 7. The spin-resolved density of states as a function of
energy E /A measured from the Fermi level. The figure assumes
the internal field of the insulator to be a;=0.3A.
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occurs for quasiparticles following trajectories that are
normal to the interface. This is also the spin-splitting
that will be observed in a tunneling measurement of the
DOS because the tunneling matrix element falls off ex-
ponentially with the oxide barrier thickness; thus, any
tunneling measurement will preferentially select quasi-
particles moving perpendicular to the interface.

Finally, we note that the magnetic surface does not
influence the DOS of the normal metal [see Eq. (47)].
The film is essentially bulk metal for d >>k; !, and is well
described by bulk metal quasiparticles; so long as
a << Ep, the normal state DOS is unchanged, to high ac-
curacy, by magnetic surface scattering.

VIII. EuO/Al/Al,O;/ELECTRODE TUNNEL JUNCTIONS

Tedrow et al.’ recently measured the tunneling con-
ductance of thin (d <<§&;) superconducting Al films in
contact with films of EuO, which in bulk form is a fer-
romagnetic semiconductor with a Curie temperature of
70 K and an optical band gap of 1.1 eV.* The tunneling
conductances of these junctions show a spin splitting of
the Al DOS in excess of the splitting observed for Al
films in contact with nonmagnetic substrates. In particu-
lar, the spin-splitting between adjacent peaks in the
DOS—as inferred from the tunneling conductance—is
2u,(H +B*), where H is the applied field (aligned paral-
lel to the EuO/Al interface) and B* represents the excess
spin splitting. In a field H=0.44 T Tedrow et al. find
B*=1.73 T for an Al film 40 A thick in contact with ap-
proximately 50 A of EuO. The excess spin splitting is
field dependent, vanishing at H=0 and saturating at
B*~20T for H>0.8 T. The fact that B*(H =0)=0
implies that the EuO is not ferromagnetically ordered in
the proximity contact even though the operating temper-
ature, T ~0.4 K, is 2 orders of magnitude below the Cu-
rie temperature of bulk EuO. Thus there is a strong
effect on the magnetic properties of the EuO film when
prepared in the EuO/Al proximity contact. Below we re-
late the excess splitting B* to the average exchange field,
produced by the aligned Eu’>* moments, acting on the Al
conduction electrons that tunnel into the insulator.

Tedrow et al. interpret the excess spin splitting B* in
terms of a coupling between the Al conduction electrons
and the EuO magnetization. In particular, they argue
that B* is close in magnitude to the magnetization of
EuO measured by Shapira et al.,?' thus suggesting the
coupling of the Al conduction electron magnetic moment
to the EuO magnetization. We first consider this possi-
bility in the context of the QC boundary condition and
model S matrix discussed in Sec. III and in the Appendix.

If the tunneling electrons, described by Eq. (54), couple
only to the magnetization M of the insulator, then the
corresponding internal field of EuO is h,=—4mu M.
The magnetization of EuO in an external field H in a
mean-field approximation is, M =M B;[M ;H,T], where
My=N,u is the saturation magnetization of local mo-
ments of total angular momentum J and magnetic mo-
ment u= —g (LSJ)u,J, B;[M;H,T] is the Brillouin func-
tion, and N, is the number of moments per unit volume.
For Eu’* ions, J=S :%, and thus we estimate
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M SMy~0.19 T at low temperature and high fields. *

The Zeeman splitting that appears in the Al DOS is
calculated from the model for the spin mixing angle ©
(©6=0)=06, described in the Appendix. From Eq. (A10)
we have

2h,/Ep
 14(E,/2E; )

where h;=4mu,M. With the bulk values for the EuO
band gap, E;~1.1 eV, and the Al Fermi energy of
E;~11.7 eV, we obtain the following estimate for the
maximum Zeeman shift in the Al DOS:

172
2E
£, (49)
Eg

0 ’ (48)

4™

B*=
kpd

which attains a maximum value of 0.17 T in high fields
and low temperatures. This result is a full order of mag-
nitude smaller than the maximum excess splitting ob-
served by Tedrow et al. for their EuO/Al film. We have
also modified the model interface Hamiltonian [Eq. (54)]
to allow for differing carrier effective masses in EuO and
Al and find that it is not possible to account for the ob-
served splitting B*~1.7 T by coupling the tunneling
electrons to the EuO magnetization, unless the band gap
of EuO in the proximity contact is roughly 2 orders of
magnitude smaller than the optical band gap in bulk
EuO.

The exchange coupling between an itinerant electron
and the local moments in EuO typically dominates the
coupling to the magnetization. This is certainly the case
for a conduction band electron in EuO interacting with
the mean exchange field produced by the Eu** moments.
We now consider a model for the interaction between a
tunneling electron with the exchange field from the local
moments of EuO near the preximity contact. The Ham-
iltonian is

ions

Hex= zJex( IX_RI | )Ji'se ) (50)

where S, =(#i/2)o is the tunneling electron spin opera-
tor, J; is the total spin operator of the local moment at
position R;, and J, (| x—R; | ) is the exchange potential.
In an applied field H the spin-flip processes described by
the above exchange interaction are suppressed, and we
replace J; by its average value in the field H, which may
be represented as

pH o

(L)zﬂh-;jf i, (51)
B

where i is the direction of polarization. We also approx-
imate J, (| x—R; | ) by a constant exchange interaction
for x within the unit cell surrounding the ionic spin at R;.
The resulting effective Hamiltonian becomes,

uH,,

J

HexngJ Jex ﬁ‘O’ ’ (52)

which has the same form considered in the Appendix for
obtaining a model S matrix for magnetic scattering at a
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perfectly reflecting interface. The exchange interaction
for a tunneling electron interacting with local Eu®* ions
is not known. However, assuming the exchange interac-
tion J, in the EuO/Al proximity contact is small com-
pared with the band gap E,, we can relate the maximum
Zeeman shift B}, to the maximum exchange field,
h.,=1J.,, acting on a tunneling electron,

2Ep 1/2

E,

1

ex

He

B = (53)

Taking B}, =1.7 T from the measurements by Tedrow
et al., we infer an exchange field h, ~1.4X 1073 eV.
This exchange energy for a tunneling electron interacting
with the Eu’* moments at the interface is roughly 2 or-
ders of magnitude smaller than the exchange energy for
band electrons interacting with Eu?’* moments in bulk
EuO, as measured by Penney et al. 23 Again there is no
simple way to account for the observed magnitude of
B*=1.7 T in terms of bulk material parameters of EuO
and Al; this is not surprising given that EuO is not fer-
romagnetic in the proximity contact even at temperatures
of order 1 K. Clearly, the exchange interaction between
Eu?* moments is severely reduced by the geometry of the
interface and the neighboring metallic environment.

In summary, the observed maximum excess Zeeman
splitting B*=1.7 T in the EuO/Al proximity contacts
measured by Tedrow et al. cannot be explained in terms
of a coupling of the Al tunneling electron spin to the EuO
magnetization unless the band gap of EuO in EuO/Al is
at least 2 orders of magnitude smaller than the optical
gap of 1.1 eV in bulk EuO. However, if we assume that
B* reflects the coupling of the tunneling electrons to the
average exchange field of the Eu?* spins at the interface,
we obtain an exchange energy of h, ~107° eV. This
value is 2 orders of magnitude smaller than the exchange
energy of a conduction electron in bulk EuO, and is not
necessarily unreasonable given the distinctly different en-
vironment for the Eu?* spins in the EuO/Al proximity
contact compared to bulk EuO.
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APPENDIX

Here we calculate the interface scattering matrix
S(E,p",ﬁ) in a model that describes the reflection of elec-
trons, with excitation energy E <<Ep and conserved
momentum parallel to the interface P, incident on a
smooth interface between an insulating magnet, with an
average internal field h; directed along fi, and an average
band gap E,.

The Schrodinger equation describing the low-energy
electronic states is assumed to be
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-3 b V2 (Ep+1E, +h-0)0(—2) |y
m

=(E+E), (Al

where (E,+h,) is the bottom of the (empty) conduction
band for spin * excitations in the insulator (z <0), and
Er is the Fermi level of the metal (z>0). For simplicity
first we assume the effective mass m * is the same for both
materials.

The interface is assumed smooth so that

v=e"1"¢(2), (A2)

where p, is the conserved momentum parallel to the in-
terface. The general solution to Eq. (A1) on the metallic
side is

b=(Fe+Ge 7)e ™™ (A3)

where F and G are spinor amplitudes for the “scattering
out” and ‘“scattering in”’ solutions, and
p=|pZ|=prcos(?)>0. The quantization axis is con-
veniently chosen to be fi, the direction of the internal
field of the insulator. Using the notation X for eigenspi-
nors of fi-o with eigenvalues +1, and F, as the corre-
sponding amplitudes of F in this basis, we can match the
solutions for z> 0 to the physical solution in the insulat-
ing region for E <E, —h,, i.e., excitation energy below
the bottom of the lowest band in the insulating region. In
this case the allowed solutions for z <0 decay exponen-
tially into the insulator, and electrons incident on the in-
sulator are totally reflected. The solution for z<0 and
E ~0 (i.e., electrons on the Fermi surface) is,

9+ ‘ze ipH-x

Yo(x)=A.e , (A4)
q. =[pfsin’(3)+2m*(E,+h,)]'"?, (AS)

and |p,| =ppsin(d). Note that the decay lengths qz!
differ most for normal incidence (¢#=0); for grazing in-

cidence (¢~+m/2) the decay lengths are ¢3! ~p7'~1
A, which is expected to be short compared to the mag-
netic penetration length, (2m*h;)~!, if the energy
h; <<E ,.-,Eg.

The S-matrix elements are obtained by matching wave
functions and derivatives at z=0. We then eliminate the
amplitudes A4, to obtain the matrix equation F=SG
connecting the ‘‘scattering out” amplitude (F) and the
“scattering in” amplitude (G); S is diagonal in the X,
basis with eigenvalues

1—iq, /p

Si= .

(A6)

It is convenient to express S, in terms of the dimen-
sionless parameters r =(2m*E, /o), A=h, /E, <1,
and the scattering angle cos(3)= | 2P | :

cos(3)—i[sin®(3)+r}(1+A)]'"?
S, = - )
T cos(d)+i[sin®(3)+r2(1£1)]12

(A7)

This result is related to Eq. (12) as follows. The upper
left (particlelike) 2 X 2 spin matrix in Eq. (12) is

S=e ®PVko—5 (14f-0)/2+S_(1—fi-0)/2.
(A8)

Thus the spin mixing angle © depends on the interface
parameters (r,A) and the scattering angle ¢ as

2Im(S,.S*)
tan |2 |=— — . (A9)
2 IS, +5_|
For A << 1 we have O << 1 and
2r2 cos(4})
~ . (A10)
1+r? [sinz(ﬁ)-}—rz]l/2
For r>>1, this result further simplifies,

O ~2(A/r)cos(), in any case we expect that © « h;.
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