
PHYSICAL REVIEW B VOLUME 38, NUMBER 13 1 NOVEMBER 1988

Field-dependent transport properties in paramagnon systems
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We examine, theoretically, the low-field dependence of certain transport properties in nearly mag-
netic itinerant-fermion systems which exhibit strong spin fluctuations describable by the paramag-
non theory. We study more precisely the viscosity g(H) of partially polarized normal liquid 'He at
low field H and low temperature, and also the magnetoconductivity 0(H) of exchange-enhanced
metals. We find analytical expressions relating these transport properties to the field dependence of
the magnetization M =g(H)H. We find that g(H) and 0 (H) increase or decrease when H increases,
depending upon whether g(H) becomes smaller or larger than g(0). Comparison of our results with
up-to-date experiments for g(H) in liquid He is quite satisfactory as far as the sign and magnitude
of the effect are concerned.

I. INTRODUCTION

There has recently been some controversy about the
experimentally observed variation of the viscosity g of
normal liquid He, as a function of the polarization, in a
finite magnetic field. The experiments of Ref. 1, together
with the nearly metamagnetic picture of Ref. 2, show
that, for increasing polarization, q first decreases, reaches
a minimum, and then increases again. In contrast, Ref. 3
exhibits an initial increase of g instead of a decrease.

The authors of Ref. 3 suggest that their observed in-
crease of g would be, on physical grounds, in qualitative
agreement with the paramagnon description of the mag-
netization in liquid He. In the nearly magnetic picture
of the paramagnon model, the magnetization has been
shown to deviate from the initial linear field dependence
from below, in absence of band-structure effects, when the
applied magnetic field increases. In other words, the rela-
tive variation of the field-dependent susceptibility is nega-
tive, i.e., [X(H)—X(0)]/X(0) &0. Instead, in the nearly
metamagnetic model of the nearly localized picture for
liquid He, the magnetization deviates from above the ini-
tial linear law, i.e., [X(H)—X(0)]/X(0) & 0, and so strong-
ly that a metamagnetic transition is expected. The results
of Ref. 3, 5il /rl & 0, is qualitatively consistent with
5X/X &0 of the paramagnon theory, while the one of Ref.
1, 5g/q~0, is rather compatible with 5X/X~O, of the
nearly metamagnetic picture. Further experiments will
have to definitely settle which one of the above experi-
mental results is correct.

Motivated by these observations, we have computed
the viscosity rl(H) as a function of the field-dependent
dynamical spin-correlation functions, starting from the
Boltzmann equation and examined more specifically the
paramagnon model. As the mathematics will be shown
to be quite similar, we compute also the magneto-
conductivity cr(H) in a nearly magnetic metal. We show
that r)(H) and o(H) can be explicitly expressed in terms
of the spin-dependent static susceptibility X(H). We
compare our results with previous theoretical ap-
proaches. We compare also more particularly our formu-

II. PREVIOUS ZERO- AND FINITE-FIELD
THEORIES FOR TRANSPORT PROPERTIES

IN A FERMI LIQUID, RECALLED

A. The zero-field expressions of g(0) and cr(0)
in the paramagnon model

The zero-field expression for i)(0) has been computed
long ago in the paramagnon model for a nearly magnet-
ic Fermi liquid. It may be expressed as follows [see, in
particular, formula (B 10) in Ref. 8(b)]:

n is the Bose factor

X f "ImX(q, co)n(l+n)codcu . (1)
0

n =(e ~ —1) ', ImX(q, co)

is the imaginary part of the paramagnon propagator

X(q, co)=X (q, co)/[1 IX (q, co)—];X (q, co)

is the bare-particle —hole spin-correlation function in ab-
sence of interaction, whose small frequency co and small
momentum q( =2kFq, kF the Fermi momentum) expan-
sion is well known for a parabolic band (we use atomic
units throughout the paper):

la for rI(H) with the experimental observations of Refs. 1

and 3 in He. We point out that while the nearly
metamagnetic nearly localized result of Refs. 2, 5, and 6
support consistently the strong decrease of g when H in-
creases, observed in Ref. 1, the paramagnon approach
considered here, agrees with the small increase with H
found in the experiments of Ref. 3. Thus, if a clear-cut
conclusion could be reached on the experimental side,
one would thus, as well, know which one of the theoreti-
cal approaches could better describe the field-dependent
properties of normal liquid He.
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X (q~O, a)~0)=N(eF)[1 —q /3+i(mo)/(8eFq)]. . . .

N(EF ) is the density of states for one spin direction at the
Fermi energy c.F; I is the Hubbard-type strong contact
repulsion between opposite spins, supposedly strong
enough, in a nearly magnetic Fermi liquid, so that

IN(eF) =I=—(3I)/(4eF )-1 . (3)

The Stoner enhancement of the T =0 mean-field static
susceptibility is

X(q =O, co =O, H =0)
X (q =O, co=0,H =0)

1 )) 1
1 —I (4)

q is related to the scattering angle 8 between the particle
and the hole by q =sin(8/2). The mathematical expres-
sion (1) for il(0) is very similar (apart from a different q
integral) to the one for the conductivity o (0}due to the
scattering of s electrons on the paramagnons formed in
the d band of nearly magnetic transition metals, as com-
puted in Ref. 10. If only one (parabolic) band would be
responsible both for the scattered electrons and the
scattering paramagnons, the magnetoresistivity
p(0) =cr '(0) would read, analogously to (1):

p(0)cc T 'f q dq f Im X(q, c)on(1 +n) oidai. (5)
0 0

One writes: con(1+n)/T=TBn/BT; then with (2) and
changing co into co = Tx and using"

x x e"—1 =m 6
0

one gets for the lowest T dependence of either ri '(0) or
p(0):

(i} '(0),p(0)) T'f F(q)
2o q (1 I+Iq /3)

(6)

where

[q (1—q )] in i) '(0),

q in p(0).
(7)

Then, the coefficient of T in (6) depends on whether, in
the denominator of (6), the q is negligible or not com-
pared to (1 I ). This was di—scussed in Ref. 12; more pre-
cisely:

(a) If S=(1 I )
' is moderat—e (I 8 0.75). Then the q

term is negligible since (Iq /3) & I I in the whole —q
range. In that case,

T2
(i} '(0),p(0)) ~ ~X (T =O, H =0)T

(1 I)—
I (0.75 . (8)

Note however that (8) holds for moderate S (say for
0.5 &I%0.75) but does not apply for vanishing I~O.
Indeed, as usual in the paramagnon calculations, one only
retains the leading terms in S=(1 I) ' and one drops—
less divergent ones which would be important when
5—1, i.e., I~0;

(b) Or if S is large 0.75 &I 8 1, then the q term in the
denominator of (6) must be taken into account. In that
case one gets

T2
(i) '(0),p(0)) ~ ~X' (T =O, H =0)T

&I I—
I ~ 1 . (9)

In either case, it is tempting to suggest that, in a finite
field (H+0), formulas (8) and (9) might still hold if one
replaces X(H =0) by X(H&0}. This was already conjec-
tured' for p(H). We will show, later in this paper, that
this is indeed so.

B. Previously found field dependences
for g(H) and cr(H) in Fermi liquids

(a) On general grounds, the theory of transport proper-
ties in metals is well known and has been much reviewed
in the past, ' in particular, for conduction electrons scat-
tered by localized impurity spins.

(b) As far as the scattering in finite fields is concerned,
p(H), due to scattering of electrons on local paramagnons
formed on nearly magnetic impurities in metallic alloys
has been computed in Ref. 15. p(H) due to scattering on
uniform paramagnons (the ones of interest for us here}, in
uniformly enhanced nearly magnetic metals, was con-
sidered in Ref. 16. The result, however, was given under
the form of formal integrals so that the H dependence of
p(H) was not clearly extracted. Besides, only the mean-
field "effective" field SH was mentioned and has been
misleading for various experimentalists, while the
effective field, including Auctuation effects, is rather' '

(S ~ H}. In other words (in appropriate units), the
characteristic field is H,f eF!S ——and not e+/S. This
remark can be quite important in cases involving large S
values. For these reasons we rederive p(H) explicitly in
the following.

(c) As far as the viscosity in an applied field is con-
cerned, Ref. 17 derived the transport coefficients of dilute
He- He solutions in finite fields. Such solutions imply

very small interactions between the He spins. The study
of Ref. 17 appears complementary to ours since it thus
corresponds to I~0, a case which is excluded from our
present calculation for the reasons explained in case (a) of
Sec. II A. Reference 17 gives, without much detail, how-
ever, a formula for g as a function of the polarization
whose expansion is easy to perform yielding an increase
of g with H. Therefore, Ref. 17 for vanishing I finds the
same qualitative tendency that we are going to derive
here for moderate or strong I.

(d) Finally Ref. 2 (already mentioned in the Introduc-
tion), using the field-dependent Landau parameters of
Ref. 5, in the framework. of the almost localized model of
Ref. 6 for liquid He, provides with little detail a result
for g which first decreases when H increases at low polar-
izations. Reference 2, however, recalls that, for fully po-
larized He, the authors of Ref. 18 calculated that the
viscosity is increased compared to i)(0). Consistently
with this last finding, the authors of Ref. 2 finally find
that ri(H}, after initially decreasing, passes through a
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minimum at finite polarization and increases at large po-
larizations. The question to answer is, thus, whether at
low polarizations, rI decreases as in Ref. 2 or increases
when the polarization increases.

III. CALCULATION OF cr(H) AND q(H):
APPLICATION TO THE PARAMAGNON MODEL

Bf~
+

Bt
=0. (10)

The first term in (10) is the "drift" term, the second is the
"collision" one (t is the time).

For the magnetoconductivity in metals, the whole Fer-
mi distributions are shifted under the influence of an elec-
tric field F supposedly applied parallel to the x axis; then
one gets (in atomic units)

~'

r}t e/. fiefd Bs+

with the Fermi distribution function foz(s~) given by

foz (s+ )= t exp[(sz —sF )lT]+1) (12)

T is the temperature and

c~——k /2+DE . (13)

k„ in (11) is the projection of the momentum k on the x
axis. trsE in (13) is the "Zeeman energy" AE=B. B
identifies with the applied field H in the case where local-
ized impurity spins are the scattering centers "" but 8

A. Comparison of the formal expressions for a(H) and g(H)

We follow the usual procedure of Refs. 14(a) and 14(b)
writing separately the general transport equations, for
spins up (+) and down ( —) of the scattered particles.
We treat on the same footing the magnetoconductivity
cr(H) and the viscosity rt(H). The scattered particles, in
one case, are the conduction electrons of a metal, while
they are the He nuclei in the other case. In both cases
the Boltzmann equation follows from the general condi-
tion that the fermion distribution functions for up and
down spins f+, under the influence of the appropriate
perturbation, are determined in a steady-state situation:

may be a more complicated object containing both 0 and
the interaction in the paramagnon case, ' as will be seen
later in Sec. III B, formula (32).

For the viscosity in He, we suppose (see for instance
the Steinberg's paper in Ref. 8) that the fermion system is
in a shear motion with a constant local velocity v„ in the
x direction and a uniform velocity gradient Bv /By =a in

the y direction; then,

ref+

dt shear

df 0+= —ak„k"«Bs+ (14)

In both cases one supposes, as usual, ' that the scatter-
ing processes entering in the collision term of (10},may
be described by relaxation times ~+ so that

Bf

f+ fo+—
(15)

Then the magnetoconductivity is a(H)=o+(H)+o (H)
with 0 z given by the ratios of the current densities to the
applied field I, :

1 djEo~(H)= J 3k„(f+ fo+) . —
(2m )

(16)

Similarly the shear viscosity is rt(H)=rt+(H)+rt (H),
with g+ given by the ratios of the kinetic shear stress due
the velocity gradient of the fermion flow, to the trans-
verse flow velocity gradient a, with

1 d krt~(H)= —I,k„k (f~ —fo~) .
(2~)'

(17)

As is clear from the comparison of (16) and (17), the
mathematical difference between the expression for o (H)
and rI(H) will arise from the different angular integrals
involving k„ in one case and kzky in the other, which wi11

be simply related to the scattering angle 8 as will be seen
shortly.

If one calls P(k, k& } the probability per unit time that
a particle in state k with a spin a( =+—,

'
) makes, a transi-

tion (due to collisions with the scattering agent) to a state
k' with spin p(=+a), one has, separating the processes
without spin flip (p=a) from the processes with spin flip
(p= —a),

B

8
d k+ —P k+ ~k+ k~ 1 — k+ +P k+ ~k+ k+ 1 — k+

Jd k'+ I P(k+~k'+ )f—(k+)[1—f(k'+ )]+P(k'+ ~kq)f(k'+ )[1 f(k+)]I . —(18)

At equilibrium, in absence of external perturbation, a detailed balance condition imposes that

P(ktt, k )fo(kp)[1 —fo(k }]=P(k,ktt)fo(k )[1 f (kp)]—
in spin-flip and nonspin-flip cases.

Putting altogether (10), (11),or (14), (15), and (18), one gets for the relaxation times r+.
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1

(k) fd It'+P(k+ ~k+ )F(k, k') '
1 —fo(k) 1 —exp

8m.

s(k+ ) —e(k+ )

E(k'+ ) —c,(k+ )+, f d It'+P(k+~k'+ )G(k, k') '1 —fo(k) 1 —exp
8m'

(20)

where, in the magnetoresistivity case,

F„„,)~( k, k') = 1 — = 1 —cos8,
X

P(k ~ktt)
=2~ g [ ~

M(k ~ktt ) 5(Es„,) —E;„;„,) )] .
in, fin

G„„,)~(k, k') =1—

while for the viscosity,

k'k'

x y

k' =1-
k„

+ cos8,
(21)

(22)

(24)

Ez„,~ [;„;„,&]
is the sum of all the energies involved after

(before) the collision, M(k ~k&) is the matrix element
describing the transition from the initial to the, final state,
and the sum g has to be done on all the states. All the
above is known, but we find it pedagogical to recall it
here, first to compare the mathematics of g and 0. and
also to follow more easily what comes next.

G,„„„(k,k') =1—v+ k,'k'
=1-

~+ kk (1——'sin 8),
2

B. Expression for cr(H) and g(H) in the paramagnon model

F ] fi ]Q(k, k')sin8d8=
~ =8q dq
F

(23a)

F,z„,( k, k')sin8 d 8=— 1—3qdq q
2 kF 4kF

=24q 'dq(1 —q ') . (23b)

We now turn to the transition probabilities P (k, kit ):

with 0 the scattering angle between k and k', the momen-
tum transfer q (with q =

~ q ~
) between k and It' is related

to 8, as already noted, by q=q/(2kF)=sin[8/2]. The
relations between k„',k' and 8 may be extracted from the
Steinberg's paper. We will use later

We now examine the transition probabilities P(k
~k&) and thus the matrix elements M(k ~k&) in the
specific case of the paramagnon model. We only give one
of them; the others follow similarly (such calculations are
found in Refs. 8 and 10):

~
M(k+ k' )

~

=
(

(final
~
S+(k—k')

~

initial) [

(25)

where a fermion k with spin up and energy c.+ is scat-
tered by a particle of spin S and finds itself in a final state
k' with spin down and energy c, while the scattering
fermion goes from a spin state down (S, = ——,

'
) to a final

spin-up state (S,'=+ —,'). The energy conservation in-

volved in (24) thus implies 5(s, ,
+s'

z

—s+). Calling c' —s+ ——co and using the definition of
the function 5(s ) = J e'"dt /(2~) we get

P(k ~k' )=f dt e' 'e ' ' '"
(

(final
~
S+(k —k')

~

initial)
~

If @fan is the Hamiltonian describing the scattering Particles, we have by definition (and with q=k' —k),
' C ' C

S+(q, t)=e S+(q)e

and S (q, O) =S (q). Finally,

P(k+~k' )=f dt e' '(S ( qO }+S(q,t)) =S +(q, co)= ImX +( qco)=2[1 +n(co)]Imp +(q, co) .
2

(26)

(27)

S +(q, cu) is a dynamical structure factor of the scattering fermions (which interact among themselves to form
paramagnons); n(~) is the Bose factor defined after formula (1); ImX +(q, co) is the imaginary part of the transverse
spin-correlation function (transverse paramagnon) of the system of interacting scattering particles. Transverse
paramagnons are involved in spin-flip processes. Similarly we have also nonspin-flip processes which will imply, in-
stead, longitudinal paramagnons, P++(q, co) or P (q, co) (their expressions are given below}. [Note that the multiplica-
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tive constant entering in the previous formulas will play no role in the relative variation that we wish to compute
5o (H)/o (0) or 5n (H)/rl(0). Therefore, in the following, we do not mention them anymore. ]

Putting all the previous ingredients together, we get, gathering nonspin, -flip as well as spin-flip processes,

1 ~ f f k+de+. ' [1+n(co)]ImX+ (q, cu)
sin8 d 8F (k, k')

r+( k) 1 —f(e)(1—e )

+ f f k'+de'+ ~r' [1+n(co)]ImX (q,—co) .
1 —f(E)(1—e ~

)
(28)

The I'"(k, k') and G(k, k') are given in (21)—(23), depend-
ing on the physical property that one is interested in.

The longitudinal and transverse paramagnon propaga-
tors are, respectively,

1 IX++(q, r0) ~—
2 1 I'X *+—(q, co)X (q, co)

I
Im

1 I X +—+X

lm(I'X'+ +X'-=)

[1—I Re(X +X —+—+)] +[I Im(X ' X '- —)]

(30)

X +—
(q,~)~,++

1 IX'+ +(q—,~)—
(29)

Irn- + =II Im(IX + —+)

1 IX +—— [1 I ReX +—- ] + [I ImX +-]

The 7 's are the field dependent noninteracting spin-
correlation functions. One could, in principle, as usual,
take care of not counting the first terms twice, (~I), in
the expansions of (29); however, the subtracted terms will
not matter as they will not be enhanced when I~1. We
indeed, at this stage, make an approximation which will
greatly simplify all further calculations, at least which
render them tractable analytically.

We suppose that we are only interested by the cases of
moderate or strong enhancements, so that only leading
terms in (1 I )

' will be —retained in the following. Thus,
only the field dependences of the ImX's in (28) will be
enhanced and we may drop the field dependence of k+
and c.z, both in dc, + which will reduce to dao, and in the
denominators in (28) involving the Fermi functions. This
will yield the important consequence that we will be able,
at the end, to express ri(H) and 0(H) in terms of the
field-dependent overall static susceptibility X(H). This
would not be so for a very weak interaction, ' (I~O) in
which case all the field dependences appearing in (28)
would be equally important. This is not so either if the
scattering centers would not be pararnagnons formed
from itinerant interacting ferrnions but localized mo-
ments in dilute alloys of noble hosts with magnetic irn-
purities. There the moments are well defined, no
"enhancement" is involved and all field dependences
matter equally. En such a case the expression for the
magnetoconductivity, in first' "and second' order in
the Born approximation, including the well-known Kon-
do contribution, is not just a function of the magnetiza-
tion but implies a mathematical mixture of the magneti-
zation and some other functions of the ratio H /T arising
from the field dependences of f0~ [corresponding to the
denominators in (28)].

From (29) we have

The remaining calculations are still intricated. We ex-
tensively use the procedure, ingredients, and tricks of
Ref. 4. In particular, for any function L(q, co, h), we

write the identity

L(q, co, h ) =L(q, co, O)+[L (q, co, h ) —L(q, co, O)],

which, although trivial, allows the avoidance of a number
of complications when integrals over q and co, in the vari-
ous co and q ranges, will be performed later.

Recall' ' that, in appropriate units,

h =(B/TF) = —(H +IM/2)/TF . (32)

TF is the Fermi temperature and M is the magnetization.
As announced after (13), B is a "dressed" Zeeman field
containing the applied field H and the fluctuations con-
tained in M. The sign in (32) follows from the definition
in Refs. 19 and 4 and will play no role since, to lowest or-
der at least, only h will appear. Also, as well as in Ref.
4, the most important terms turn out to involve small q
and co values.

We are, in this paper, interested by the modifications
brought by a finite magnetic field to the zero-field depen-
dences ' of i) '(0) or p(0) recalled in (8) and (9), which
is proportional to T to lowest order in T. Therefore, in
(30) we neglect co in the denominators and only retain the
co dependences of the numerators, responsible for the T
dependence of (8) and (9). We thus write

I I lm(I'Xo+ ~X' ')--
1 I X X —— [1—I Re(X X —+—)]

(31)

I I Im(IX + —')
1 IX'++ [1——I ReX'++]'. ,
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C. The particular case of strong enhancement I 5 1

In this paragraph we study explicitly the case where I

is very close to 1, which was the one considered in Ref. 4.
Let us recall here the small q, co, and h expansions of
some relevant quantities:

—2 2

Im(X P +—+-)-N(sF) (ReX +++Re+ ——} o-2N (eF) 1 — — (1+q )+ . (33)

—2

Re(X + +X ——)„o=(ReX + +
) o(ReX ——

) o N-(eF ) 1— 2q
2

'
3

+ 0 ~ ~ (34)

—2
Q

2
1

—2

(ReX +
) o=(ReX +) o-N(e~} 1 — — —+ + I ~ ~ (35)

We thus obtain

I —
2 N 1

Im + =III2yo+ +go++ k q ( 1 I 2[1 (2q 2/3)])2
I A

[1 I [1—(2q—/3)]]
(36)

{1 I[1 (q /3)]]

(37)

Im =III — co 1

1 IX + —— kFq I 1 I[1 (q—/3—)]I

As announced earlier, it is clear that the h dependences of (36) are strongly enhanced when I—1 and q -0, which
justifies our approximation of retaining only the field dependences of the P's in (28) and neglecting all the others.

Putting all the above formulas back in (28) we obtain

1 1 2 1—h 5
'r+(k) 1o(k) 1

to leading order in (1 I )
' and t—o lowest order in h, r+' r', the——n 6 reduces to F in (21) and (22), and (37) reads

1 —
k

sin8 d 8 F(k, k') rodeo1+n co
&o(k) 1 —f(s)(1—e ) q

I 1

[1 I +2(I /3—)q ] [1 I+I(q /—3)]
(38)

5 — II k f f i 6 OF(kk')
[ ( )]

rodeo

1 —f(s)(1—e" ) q

I 1

[1 I +2(I /3—)q ] 12[1 I+I(q 2/3)]—3
(39)

With the forms (23) put into (38) and (39), one verifies that the most important terms in the viscosity, when
(1 I) '&1, will—arise from the q term of (23b), while the q term will be negligible in comparison and may be
dropped (this can easily be seen by comparing

and

q dq & dq
(

— & dq (1 I)q & dq
o (1—I+ ')" o (1—I+ ')" ' o (1—I+ )" ' o (1—I+ ')"

with n =2 and n =3). Therefore, the condition (1 I ) ~ 1 will allo—w to reduce F,„„,to 3F,
& „,~d in (23) and one will

have, for the magnetoconductivity as well as for the viscosity, the same forms of ro '(k) and 5(r '), namely (with
ct)= Tx ),

1 Tq
~ x[1+n(x)]dx & 2 I 1

&o(k) o 1 f(E)[1 e "] o —— [1 I +2(I /3)q ] —[1 I+I(q /3)]—

and

15vr&3 T f x [1+n(x)]dx
(1 I)' o 1 f(s)[1—e ]— — (40)
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1 2
~ x[1+n(x)]dx & 2 I 1

1 —f(e)[1—e'] o [1 I—'+(2l'q '/3)]' 12[1 I—+I(q '/3)]'

5m&3. T f x dx[1+n(x)]
(1 I—) ~ o 1 f(—E)[1 e—"] (41)

~x 1+nx x
1 f +f—e"

1 f — xdx xdx
x+f 0 (1 f)/f—+e" o e"—1

(42)

Ultimately in (16) and (17) with (15) and (10), one will
have to consider essentially the various quantities at the
Fermi level through (11) and (14). Keeping that in mind,
we write

1 f —1 f-
f=1+ —1 =1+@) (43)

and we consider c.z as a small quantity compared to 1.
Then one expands Fin c.~:

X dX X dxY=(1+sr) f —sr fe"+ 1 o (e"+ 1)'

It then remains to compute the integral over x which we
write

af,
[o(H), 7)(H)] ~ —

—,
' f r+

+
de+2+ye+

(47a)

15~&3
8

1—
V'I I » (I —I)

fo Y(f) ' (47b)

df 1 ln2

»(f) (m. /4) —21n2 (n /4) 21n2—

+ln —1
4 ln2

where Y(f) is given by (45). The integral over f is thus a
pure number of no importance for our purpose but we
give it here anyway:

=1.202 . (48)

f~ xdx
e"—1

The various integrals in (44) are known" and one gets

(44) Let us consider p(H) and g '(H) rather than o (H) and
ri(H). The essential ingredient is given in the bracket of
(47b):

m m 1Y- +c.zln2= + ——2 ln2 .
4 " 4 f (45)

1 T
'

rl(H) Q I I
1 —— +, I-1 .1 A

2 1 —I
(49)

Then (37) with (40)—(42) reads

1S~v'3

(1—I)'" » 1 I—
I-1, (46)

which, combined with (32) is the key result of this paper.
Indeed it remains to invert (46) and integrate over the en-
ergies

To simplify the reading we recall here that, from (32),

h =8 /TF=(H+IM/2) /TF,

we recall also for completeness the result obtained in Ref.
4 for the magnetization M, where we separate, on pur-
pose, the zero-temperature contribution, i.e., the mean-
field Stoner result, and the T-dependent one containing
paramagnon effects. ' Note that the result below has
been obtained for a parabolic band:

M(TH)=SIp, „iH 1 ——,'S
TF

T2 H—S a, —(p +'a )S' +,H((TF/S' ), T((TF/S) (50)
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with

Xp ]
=2N( EF ) (51)

and S the Stoner enhancement given in (4), S =(1 I—)
a, and P, are pure numbers, slightly different depending
whether H & T or H & T as indicated in Ref. 4. We em-

phasize here again the existence of the characteristic field

K,f S —— TF =(1 I)—TF. Then to lowest order in T
and H in (49), M reduces to its first zero-temperature
Stoner result:

2N(sF )H
M(T =O, H~0)

1 —I
so that

(52)

(h) H(T=0,H ~0)=
1 I — (1 I)— (53)

p(H), ccX'~ (T,H)T, I Sl'
ri(H)

(54)

with

Putting this back into (49), it turns out that the
(T =O, H&0) coefficient of T is just

[M( T =O, H&0)/H ]' =X' ( T =O,H&0),

i.e., involves the T =0, lowest H expansion of the square
root of (50). We cannot, at this stage, consider the T
dependence of M since then one should take into account
equally the co (and thus T}dependences in the denomina-
tors of (30) which we have dropped. This would increase
considerably the degree of difficulty in the calculation.
However, we believe that the above analytical result con-
cerning the (T =O, H&0) coefficient of T in p(H) and

'(H) proportional to X' (T =O, H&0), together with
the previously found' '

( T =O, H =0) coefficient of T in

p(0) and ri '(0) proportional to X'~ (T=O,H=0) and
recalled in formula (9) allows us to write, as conjectured
after formula (9) [and in Ref. 13 for p(H)]:

X( T,H) =M( T,H) /H

the low-field, low-temperature dependence of the static
susceptibility, including paramag non eft'ects, where
M( T,H), computed in Ref. 4 is recalled above in formula
(50) (for a parabolic band of fermion}.

Formula (54) is the key result of this paper applicable
for strong enhancements S && 1 or I—1.

D. The case of moderate enhancements, 0.5 &I & 0.75

We just showed that (54) generalizes the zero-field re-
sult (9) of Sec. IIA, case (b) valid for strong enhance-
ments. It would be interesting to compute the generaliza-
tion of the other zero-field result (8) of Sec. II A, case (a)
when I is moderate, i.e., to provide the analog of (49)
where I-0.75, for instance. We do not perform such a
calculation here, it would be much more complicated
since we would not be able to retain only the most diver-
gent terms in (1 I) '. —Furthermore, even if we would
do it, one would also have to recompute M(T, H) for
moderate enhancements since Ref. 4 only considered the
cases when I-1. However, encouraged by the generali-
zation obtained above from (9) to (54), we assume that
similarly the generalization of (8) to finite H would read

p(H), ccX (T,H)T, 0.5 (I&0.75, (55)'
i}(H)

i.e., when (1 I )
'

& —l.

IV. DISCUSSION AND COMPARISON
WITH EXPERIMENTS

A. Discussion of the theoretical formulas (54) and (55)

It was shown that, depending on the strength of I, (54)
or (55) read

[p(H), il '(H)] ~X"(T,H)T

where n is a pure number either —,
' of 2. Let us consider

here the relative variations:

b p(H) p(H) —p(0)
p(Q) p(Q) X( T,H) X( T, O) bX(—H)

b rI '(H) il(H) —i}(0) X(T,O) X(0)
q-'(0)

(56)

From (56) and whatever is n, it is clear that
(a} the resistivity will increases or decrease, when H in-

creases, depending whether 7 itself increases or decreases
as conjectured previously

(b) the viscosity will increase or decrease, when H in-
crease, depending whether 7 decreases or increases.

In this paper, we have only considered a unique para-
bolic band of fermions (responsible both for the scattered
and scattering particles). In particular, the variation with
T and H of M in formula (50), i.e., the sign of the various

terms, have been obtained under such an hypothesis.
However, it has been emphasized elsewhere' that on
general grounds the various coefficients entering into M,
or X(T,H), depend on the band structure and involve
combinations of the density of states at the Fermi level
and its successive derivative N(sF}, N'(sF), N"(E~) (in

particular the sign of the band curvature at c.F is very im-
portant). That is why, more generally, depending on the
band structure, AX(H) may be positive or negative, and
thus according to (56), bp(H) and [ Ari(H)] will conse-—
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quently be positive or negative.
Remark (b) is qualitatively well obeyed by both the op-

posite theoretical tendencies of the nearly metamagnetic
nearly localized picture for liquid He of Refs. 5 and 6,
and the paramagnon picture of Ref. 4. In the former case
indeed,

'
X( T,H) increases above X( T,O) when H increases

(although not for band-structure reasons) and so strongly
that a metamagnetic transition could occur, while in the
latter case, He is regarded as remaining paramagnetic
(although strongly exchange enhanced) but X(T,H) de-
creases compared to X(T,O) when H increases. Conse-
quently, in the former case, Ref. 2 calculates a decrease of
ri(H) compared to i}(0) in agreement with (56) (and also
with the experimental finding of Ref. 1), while in the
latter case, that we consider here, we expect rl(H) to in-
crease with H following (56) together with (50} (in agree-
ment with the experiments of Ref. 3 as will be discussed
in detail below).

As far as remark (a) is concerned, a discussion of some
experiments was presented in Ref. 13 where the result
(56) for bp(H) was conjectured.

Let us now go back to the particular case of a parabol-
ic band for which (50) is valid.

Let us consider (56) and b,X(H)IX(0). From (50) this
expression reads, at T =0 (the Stoner result):

M'(H)IX(H =0)T o —— SH /(6—TF)

Therefore, in low fields and at T =0,

(57)

bp(H) lg(H)
p(0) , , &(0)

(58)

[Note that the coefficient of proportionality in the last
terin of (58) contains the enhancement S=(1—I) '.]
This is very similar to the theoretical result of Ref. 17 for
dilute He- He solutions where the lowest field expansion
of their Ref. 5.3 also gives Ai}/ri ~M . This has also to
be compared with the lowest field expansion of the mag-
netoresistivity in the localized moment case of dilute al-
loys' where

b,p/p cr —[gp+HIT] cc —Mi„, ,„

which may be replaced as well [still using (50) and with
Xp i =2K(eF) =3/(2TF)] by

T

hX(H) 2= 2 2

X(H 0) 6 3 toner 27 toner
= —-S(-Ms } = ——SMst

T=O

directly proportional to a power of the impurity spin
magnetization, for the reasons explained just before for-
mula (30}.

B. Comparison of the theoretical variation hg/g
with the experiments of Ref. 3(a)

We wish now to compare the results of our formulas
(50) and (56) [which include (54) and (55)] with the latest
observations of i}(H) in Ref. 3(a), measuring the viscosity
of partially polarized normal liquid He. The result of
that experiment was that at T=45 mK and under a pres-
sure of p =30 bars, with a frequency v =317.528 )& 10
Hz which produced a partial polarization m =3.9%, a
small relative increase of viscosity was observed of
hei/ri=(3+1. 5)g10 in disagreement with the strong
initial decreases of Ref. 1, and this in disagreement with
the theoretical prediction ' ' for the occurrence of a
metamagnetic transition in liquid He.

Let us first note that our formula (50) applies as such to
liquid He since, in that system, a parabolic band is strict-
ly valid, i.e., there is no band-structure effect to expect.
For a meaningful comparison with experiments, we use,
to render our formulas quantitative, the same liquid He
parameters as those used in Ref. 3(a). From the value
of v used in Ref. 3(a) one gets H =97.798 KG. On the
other hand, the theoretical ratio H/T is actually equal to
(2mvfi)I(2ktt T'), so that, at T =0.045 K we get
H/T=0. 17. Therefore, we take in (50) the values of a,
and P, derived in Ref. 4 for H & T, i.e., a, =n/6 and.

P, =23m. /(24) . The bare Fermi temperature is comput-
ed from pF/(k&2m) with pF given in Ref. 22 at 30 bars,
yielding TF ——6.271 K. Then there is the correspondence
between the characteristic temperature of Ref. 22, T',
and our (1 I)TF whic—h is (1 I) 'TF ' ———2/(3T')
with T' in Ref. 22 to be T'=0. 185 K at 30 bars. This
yields S= (1 I )

' —22. 59—8 and I—0.956. Such a value,
strictly speaking, is closer to I-1 (strong enhancements)
than to I-0.75 (moderate enhancements). However, we
find it reasonable to still compute b, rile} from (56) from
both cases (i.e., n = —,

' and n =2) to examine whether the
experimental value lies in such a range or not. [Note also
that there is a number of uncertainties: for instance the
measured g contains the full T dependence while we re-
strict here only to the lowest T dependence; moreover we
use (50) (derived for strong enhancement) also in the
moderate enhancement case but, this, we believe, intro-
duces only a minor error. ]

Putting the above quantities in (50) gives us a polariza-
tion m:

(g the g factor of the impurity spin, }Mtt the Bohr magne-
ton). In that case though, Mi„,~;„obeys to a Curie law
adequate for local moments, while Ms„„„above is a
Stoner law characteristic of itinerant fermions. In either
case (local moments or fermions in a band) the lowest
field relative variation of p(H) or g(H} can be expressed
in terms of the square of the appropriate magnetization.
However, as already emphasized, in our present strongly
enhanced itinerant fermion system, p(H) or rt '(H)
themselves are proportional to some power of X(H), while
in the Kondo alloy case of Ref. 19, p(H) is not itself

[m(H, T)],b„,-3.957x10

in good agreement with

[m(H, T)],„ t=3.9X 10

Secondly we find from (54) and (55):

1.15 X 10
theor

&4.62X 10

and the experimental result of Ref. 3(a) being

(59)

(60)

(61)
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expt

=(3+1.5) X 10 (62)

lies in the range (61) of possible theoretical values.
Therefore, we believe that the agreement between the

present paramagnon approach and the experimental re-
sult of Ref. 3(a) is quite satisfactory. It would remain to
have more experimental data in order to allow a plot of q
versus X(H) and decide whether the exponent n is closer
to —,

' or to 2, but at present this is not possible.
Even within the experimental and theoretical uncer-

tainties, both Ref. 3(a) and our present result cannot be
compatible with the closeness of a metamagnetic transi-
tion at least for the involved polarization which imposes
that X(H) &X(0). It is not excluded though, that, at
much higher fields, X(H) crosses X(0) and becomes
larger, but this seems very unlikely or at least would re-
quire a physical explanation which is not obvious.
Indeed in metals the metamagnetic transition is an-
nounced by a X(H) & X(0) which reflects a band-structure
effect. But in liquid He such an effect cannot be in-
voked; therefore, if more experiments confirm the results
of Ref. 3(a) the idea of a metamagnetic transition in
liquid He ought to be dropped or the proposed field
dependence of the Landau parameters in Ref. 5 ought to
be revisited.

Nonetheless, the fact that the paramagnon approach
accounts rather well for the spin properties of liquid He
is not in conflict with its nearly solid (or nearly localized)
behavior as emphasized in Ref. 24. It so happens that for
the time being, the paramagnon remodel better describes
the spin-dependent properties of He while the nearly lo-
calized model better describes the spin-independent prop-
erties. This is quite reasonable given the ingredients put
into each one of these models to start with (for instance,
the Hamiltonian of the paramagnon model only contains
a spin-dependent interaction and no spin-independent
one). At present only the Landau phenomenological
theory accounts for both types of interactions. It would
be most fruitful to be able to find as well a unified (and
simple to handle) microscopic theory, since we believe
that the nearly magnetic (paramagnon) character of
liquid He and its nearly localized one do not exclude
each other but, on the contrary, are quite complementtt

24
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