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Fermi-liquid theory for the periodic Anderson model: Response functions
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We present here a reformulation of the Fermi-liquid theory for the periodic Anderson model (for
the particular case of the simplest type of Anderson Hamiltonian) in a basis in which c and f elec-
trons are explicitly distinguished. We show that provided the system is normal, i.e., the f-electron
self-energy is analytic in momentum and frequency near the Fermi wave vectors and Fermi energy,
respectively, all quasiparticle parts of the response functions of the system reduce to the form as ex-
pected from our usual understanding of a Fermi liquid. In doing so we also show the validity of a
kinetic equation, and are able to obtain formal formulas for the physical quantities that a quasiparti-
cle carries when the corresponding quantities for the original electrons are given. We point out
however that the value of these quantities, and also the nonquasiparticle part of the response, can in

general be rather different from a too naive understanding to a single-component Fermi liquid.

I. INTRODUCTION

There is a 1ot of interest recently in the so-called
heavy-fermion compounds. ' On the phenomenological
side, it is quite often assumed, for sufficiently low temper-
atures, long wavelengths, and low frequencies, that the
Landau Fermi-liquid theory (FLT) applies so long as the
systems remain normal with perhaps the complica-
tions of (i) many branches cutting the Fermi surface, (ii)
nonspherical Fermi surface, or (iii) possible (pseudo-)
spin-orbit interactions. On the microscopic side, the
essential ingredient is widely accepted as the periodic An-
derson model, describing a conduction (c) electron
band(s), localized f electrons (f), a hybridization ( V)
among these, and an interaction ( U) among the f elec-
trons.

Historically, Fermi-liquid theory was put forward for a
genuine liquidlike He by Landau first phenomeno-
logically, '" ' and then justified microscopically" by
demonstrating the applicability of the Landau-Boltzmann
kinetic equation for the description of collective modes of
the system, by considering the divergence of the two-
particle Green's function (see also Refs. 5 —7).

The theory was subsequently extended to and justified
in other more general cases, especially the case of in-
teracting fermions (electrons) in a periodic lattice. Lut-
tinger has emphasized the role of the Fermi surface and
has discussed static properties, and his work is valid even
for the case of multibands of electrons in the solid. Dy-
namics of the system was also discussed by making an ex-
plicit definition of quasiparticle distribution function in
terms of the Green's function, first introduced by Ka-
danoff and Baym and subsequently developed by various
people (e.g., Ref. 10), initially in the case of a liquid, and
finally extended to the case of a lattice by Jones and
McClure. " This latter work is valid for the multiband
case, with the identity amang electrons of various bands
taken into account.

The dynamics of the Fermi liquid can also be discussed
by considering the response function of the systems. ' '

k, cr l, O
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with only one c, one f band, a hybridization V among c
and f with the same spin and a local interaction U among
f's of opposite spins. s,

„

the conduction electron ener-

gies and Ef the "bare" f level. There has been various
discussions in the relevant regime (e.g. , Refs. 14—17). We
shall assume that the system is "norma1" at zero temper-
ature, and as a result we have two hybridized bands
(defined as poles of single-particle Green's function) and
for simplicity we assume that the Fermi level crosses only
one of the bands, as depicted qualitatively in Fig. 1. Not-
ably in (1.1) is the explicit introduction of two ' types" of
electrons (in contrast to all the above work on Fermi
liquid mentioned in the previous paragraphs). One may
ask whether this model will reduce to the Fermi liquid al-
ready discussed in the relevant regime, and it would be
valuable to demonstrate this by starting directly from the
Anderson model itself (rather than arguing that the An-
derson model can be deduced from a starting point of a
single "type" of electron and then resorting to the exist-

It was, in particular, shown that the response function
can be separated into a quasiparticle part and a non-
quasiparticle part. The former is precisely the form one
would get by the use of the Landau kinetic equation, and
the latter, in general, always exists unless due to conser-
vation laws in the system. All these works are valid in
the presence of the lattice but are done explicitly only for
the case of a single band of electrons or when the identity
between the core electrons and the conduction electrons
can be ignored.

Let us now go back to the periodic Anderson model.
Consider for definiteness the simplest periodic Anderson
model (this in no way restricts the generalities of the dis-
cussion below)

kck.ck,.+ g &ff.f;.
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FIG. 1. Schematic representation of the two "hybridized
bands. " Fermi level is at zero energy.

ing work in Fermi liquid to argue the validity of the
Fermi-liquid picture). To this end we may still adopt two
strategies: (a) find the relevant operators for the "band"
electrons in Fig. 1, and then directly resort to the existing
works, in particular those of Luttinger and Jones and
McClure, " or (b) stay within the basis of explicit c and f
electrons and directly demonstrate the Fermi-liquid be-
havior from here. The former approach has the advan-

tage of being rather economical, for not much work is re-
quired. In this paper we shall, however, adopt the second
approach because we would like to have explicit formulas
in terms of the c and f electrons, which may be con-
venient for future approximate calculations starting from
(1.1) itself. The equilibrium properties, in particular the
Luttinger theorems, has been discussed by Ohkawa' and
shall not be repeated here. We shall simply concentrate
on the dynamics. We shall in particular consider the
response functions, the procedure of which is particularly
presented rather systematically in Leggett's work on
superfluid Fermi liquid, ' partly because of its simplicity
if we want to stay within the c-f basis. The use of the Ka-
danof and Baym method starting from the c fbasis re--
quires us to make unitary transformations, which would
automatically lead us to the band electron basis and
reduce us to the Arst strategy and is inconvenient for our
present purposes. However, we do make a brief discus-
sion along these lines in Sec. V, to make connection with
existing work on the Fermi liquid, in particular, that of
Jones and McClure.

Before we begin the investigation we would like to
warn against some simple-minded, intuitively appealing,
but incorrect statements. One would tend to think that
we can take a unitary transformation from c,f, to a, P
such that the G matrix is diagonalized, 6 &

——G&
——0, in

a way that 6 and G&& will have poles only at the lower
and upper bands, respectively, and then the problem can

r)5n BE B5n

Bt Bp Br
'+ 85n Bs =0,

Bp Br

where c is itself a function of 5n

0
spa =aper+ g fpp'acr'5np'n'

p

(1.3)

All physical quantities (more precisely the deviation from
their equilibrium value) 5Q can be expressed as

5Q=QQ 5n
p

(1.4)

An often discussed quantity which is also directly related
to experiment is the (linear) response function of the sys-
tem. ' ' In this case one is interested in perturbing the
system by an external probe which adds a term Ah (q, co)
to the Hamiltonian where A is an operator on the system
given by A = Apa a (see Sec. III for more precise sub-
script labels} and h an external field. One is then interest-
ed in measuring a quantity S (another operator on the
system). The response function is, roughly speaking, the
8 (now a quantity) one would measure per unit of h. It
usually consists of a nonquasiparticle part Rpqp not
within the Landau theory, and a quasiparticle part
R qp". ' The latter is of the form (we shall drop the spin
indices when convenient)

T

R =+8' 1 F—
qp p 0—v q

pp'0 —U,qp p p

(1.5)

be trivially solved. However, this is not true (perhaps
with the U=O or V=O cases as the only exceptions). If
we do that then both 6 and 6&& will have poles at the
lower band, one still has to show various contributions to
the response function to add up to the form of the single-
component Fermi liquid (SCFL). One convenient form,
perhaps, is the form introduced in Sec. V, which with
6 as the only element has poles at the lower band, but
the matrix 6 is not diagonalized. This is the basis which
diagonalizes the g„„,introduced in Sec. III, but not g it-
self. This difficulty, precisely speaking, should arise
whenever there is hybridization among the interacting
electrons and not necessarily confined to the periodic An-
derson model (e.g. , when the identity among the core and
conduction electron is taken into account). The large hy-
bridization here just prevents us from making an expan-
sion and regarding the corrections as small. Therefore, if
one starts from the Hamiltonian (1.1}, it is actually not a
priori obvious that the result will reduce to a single-
component Fermi liquid. '

More precisely, perhaps, the questions that we shall
address can be stated as follows. [We shall ignore the
possible complications (i) and (iii) listed previously to
avoid complications in the discussion —i.e., we shall as-
sume that the Fermi surface has only one piece, but not
necessarily spherical]. In Landau's single-component
Fermi-liquid theory one can describe the Fermi liquid by
the quasiparticles occupation numbers 6np at momen-
tum p and spin cr, which obeys a kinetic equation (linear-
ized) (in the collisionless regime)'
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cise conditions are given below). We find that the A~*,

etc. (and hence indirectly Q ) are well defined and we

shall give explicit expressions for them in terms of the c
and f electron vertices. Specifically, for a physical quan-
tity B whose operator form is B = g (B, c~ c~

+Bf f f ) [for precise definition see (3.2)] we find

B~"=a,B,~ +af(R2iB, ~+R22Bf p ), (1.6)

where R,. are renormalizations operators; a, and af are
the weight of the pole of the c and f electron Green's
function at the Fermi energy (quantitative statements
given below). We shall then identify (indirectly) the Q~

's

by comparing the response functions with those of SCFL.
It is of interest to compare these results with the naive
idea of hybridization, where we say that the quasiparticle
a~ at the Fermi level is given as a linear combination of
the original electrons [e.g. , obtained by diagonalization of
an effective mean-field Hamiltonian of the form (2.8)
below]

(1.7)

which would give the physical quantity B* carried by a
quasiparticle as

(1.8)B —upB, p+UpBf p
.

Since R; in (1.6) are operators, (1.6) and (1.8) will never
agree on all physical quantities B, whatever u and V we
choose (as shall be shown explicitly in examples given
below). Too naive an interpretation of the linear com-
bination found from the effective noninteracting Hamil-
tonian of the effective mean field theories (e.g. , I/N ex-
pansion at the 1/N level or Gutzwiller ansatz) will be
entirely misleading.

The difference is, in retrospect, not surprising since we
are dealing with a true many-body system. A quasiparti-
cle excitation consists of excited c or f electrons, as well
as two c electrons and one f hole, etc. This fact is not
reflected in (1.7).

The organization of the paper is as follows: In Sec. II
we shall review the zero-temperature Green's function
for the model (1.1), which shall be used extensively below.
In Sec. III we handle these Green's functions in matrix
form and consider the low q, Q limit. Our procedure here
is closely parallel to that done by Leggett' for superAuid
Fermi liquid (see also Refs. 7 and 13) and the intermedi-
ate procedure looks, in many cases, rather similar. We
shall show there that the collective modes of the system is
describable by the kinetic equation as in SCFL. This fact
can actually be demonstrated more easily by extending
Landau's argument "for SCFL. This is shown in Ap-
pendix A. We shall also show there explicitly how the
quasiparticle part of the response is reduced to the form
of the SCFLT in static as well as dynamic cases, except
appearances of "effective quantities" (vertices). In Sec.
IV we shall apply this formulation to calculate some
quasiparticle responses in the static limit, calculate the
effective quantities, and identify Q of (1.4) in some
cases, where we shall also compare our results with
simple-minded hybridization results. Our ability to cal-
culate these responses, despite the fact that R are opera-

where B' and A' are "renormalized vertices, " and the
denominator gives the many-body renormalization ex-
pressible in terms of Landau parameters. For example,
for the static magnetic susceptibility of He, i.e., the
spin-spin response function, B'=A'=B =A =pz is
the He nuclear magnetic moment, and the denominator
is (1+Fo ) '5~~ . For nonconserved quantities, e.g.,
the spin-current, 3 ' =(1+Fi /3)(p/m )o &3 =(p/

)
7, 12, 13

The questions in the present case are the following.
(a) Given that we start with Eq. (1.1) with c and f elec-

trons, can one find a distribution function only for a sin-

gle kind of quasiparticle which describes the system [like
(1.4)] and obeys the kinetic equation as in a single-
component Fermi liquid [(1.2) and (1.3}]?

(b) When we look at the response function of the sys-
tem, which is now a bilinear form in A, and Af on the
one hand and B, and Bf on the other, can we separate a
quasiparticle part and non-quasipart&cle part as discussed
above, and for the former, can they be put in the form of
(1.5) as expected for single-component FL with well-
defined effective vertices B', A ' despite the fact that the
external fields usually couple to two types of electrons;
in particular, we note the following questions. (i) Can
effective vertices B* and A * be defined for given opera-
tors in terms of c and f electrons —that, e.g. , B' is in-
dependent of which particular external probe A ~ we ap-
p]y and vice versa. ' (ii) Given that the many-body in-
teraction itself determines the "composition" of the "hy-
bridized particles" in terms of the original c and f elec-
trons, will, so to speak, the external field change the con-
stituent of these hybridized particles (cf. Ref. 21) so that
the hybridization depends on q, Q of the external pertur-
bation such that the effective vertices B', A ' above are
q, Q dependent? [Note that it is not sufficient to argue
that q/pF «1 and Q/EF «1, where pFEF are the Fermi
momentum and energy, since we also have to worry
about possible pole of the form 1/Q —v', q, where vr" is
the group velocity BE„'/Bp,of the "quasiparticles"]. (iii)
What are the effective vertices in terms of the known bare
interaction in terms of the c and f electrons?
(Equivalently what is Q when the corresponding physi-
cal quantities in terms of c and f electrons are given?}

Our aim is to answer the above questions. In this pa-
per we shall not find the correspondence between 5nz
and the matrix distribution function in the c fspace, but-
we shall show that the collisionless collective modes are
indeed determined by solving equations of the form (1.2)
and (1.3). Equation (1.4) is trivially valid (if we can iden-
tify 5n~ ) since it is just a variational equation, but since
we are not identifying explicitly 5n we shall not find
and show the well-definedness of Q directly [nor can we
show explicitly that 5n~ always satisfy the usual
modified form of (1.2) and (1.3) when an external field is
present]. However, we shall concentrate on the (in prin-
ciple physically measurable} response functions. We shall
show that, under the special case of (1.1) and assuming
that the Fermi level cuts across only one of the two quasi-
particle eigenvalues (one of the two "bands" ) that our re-
sult can be cast into a single-component Fermi-liquid
theory (provided the system remains normal: more pre-
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tors [see (1.6)], relies on the existence of some Ward type
of identities, which we discuss in Appendix B. We
present a discussion on the periodic Anderson model
with the Kadanoff and Baym method in Sec. V, and final-

ly summarize in Sec. VI. In Appendix C we discuss the
physical current, in particular how its SCFLT result is re-
stored.

zf k:[sf +X(k,O)]

-2Vk=V 1—
Bco

The roots of (2.6), or the quasiparticle energies, are

(2.7)

(2.8)

II. REVIEW OF GREEN'S FUNCTION RESULTS ~k+~f kE, 2(k)= ' +
2

~k ~f k
+Vk (2.9)

Our discussions below are in terms of Green's function,
which has been discussed in some detail by Yamada and
Yosida. ' We briefly summarize their result and define
our notations. In this paper we shall exclusively deal
with reactive phenomena and all dissipative terms shall
be ignored. (In accordance to this we confine ourselves to
T=O.} We shall not assume spherical symmetry, except
occasionally when we want to compare our results with
the more familiar situation.

First we consider the case without magnetic field.
Since the basic Hamiltonian (1.1) conserves the spin all
Green's functions are spin scalars and we shall omit
the spin indices. Since there are two kinds of
electrons, we define four Green's function G„G,f Gf„
Gf, where, for example, G, = i ( T—cc ) and G,f

i ( T—cf ). We obtain easily

Equation (2.10) can be trivially diagonalized with the
"quasiparticle operators"

k ukfk+Uk k ~k Ukfk+ k k

where

(2.11a)

and is thus the same form as the Gutzwiller ansatz re-
sult' or the mean-field level result of the 1/N expres-
sion, ' with 'Ef k, Vk playing the role of effective f level
and effective hybridization of the "equivalent (nonin-
teracting) mean-field Hamiltonian"

Hect= g [Ekckck +Zf k fkfk + Vk(ck fk +fkck }]
k

(2. 10)

G, (k, co) = co —ek—
V2

(2.1) E1,k ~f, k
(2.11b)

Gf(k, co) = co —sf —X(k, a~)—
V2

(2.2)

and

G,f(k, co) =Gf, (k, co)

—1= V(co —sk ) co sf —X—(k, co)—
V2

(2.3)

X(k, co} is the "true" f electron self-energy, i.e., all f self-
energy diagrams which are not one particle (neither c nor
f ) reducible.

The quasiparticle energies are given by the poles of
these Green's functions, i.e.,

[co—sf —X(k, co)](co—sk ) —V =0 . (2.4)

X(k, co) =X(k, O)+co
aX(k, ~)

Bco
(2.5)

We shall be interested only in the eigenvalues near the
Fermi level, chosen to be the zero of the energies. We ex-
pand X(k, co }around co =0 (Refs. 22 and 23}

The quasiparticle energies are as sketched in Fig. 1.
[Equations (2.6)-(2.11) shall not be used below, whereas
(2.5} shall be used only near the Fermi level: hence we
are not making any approximations. Here we also define
new operators f, to which we do not attach physical
meaning at present, for the convenience of discussions
below. ]

We assume that the Fermi level is at one "band" of
(2.7), for definiteness taken to be the lower band 1 and
shall siinply write E, (k) =E'(k). We are thus assuming
that X(k, co) analytic in k and co for k =kF and co=0
(which is our definition of the systems being "normal;"
these assumptions are used implicitly throughout this pa-
per). Here kF =kF(k) is the Fermi wave vector which by
definition is

E'(kF)=0 . (2.12)

But for convenience we often keep E*(kF) explicitly
below so that the formulas shall be of more familiar form.

Of particular relevance below are the residues of the
various Green's functions at E* (k=kF). They can easi-
ly be found from (2.1)—(2.3) by noting that the energies
are the zeros of the denominators. The results are' for
co=E'(kF )

~

c}X/c}co
~

is expected to be a large number from our
knowledge of the single-ion Kondo effect, due to the
many-body nature of the problem. If we use (2.5) for all
co then we can rewrite (2.6) as

af k
Gf —— ' +Gf"',

co —E*(k)
ack6, = ' +6,'"',

co —E*(k)
(2.13)

(&—Zf k )(&—Ek ) —Vk =0,
where we have defined

(2.6) (a,af )'~
+Gf

ai —E'(k)
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with III. RESPONSE FUNCTIONS: FORMULATION

V
2

V
af k

—— 1 — X(k, co)+
(Ct) —Ek ) co= E [k)

(2.14}

We shall formally discuss here the response function
(at zero temperature it can be easily extended to finite
temperature as in Ref. 12}. More precisely we consider
an external perturbation, of the form

H'(t)= A(t)e '"'h (q, Q),
and 6'"' as the "incoherent" parts.

Note the useful identity

X
a, +af 1— (2.15)

P

+ Af, cpa a fp e &p o

(3.1)

[We shall omit the ki5 convergent factors in (2.13).
They shall be added below and be clear from the context. ]
The quasiparticle velocity Uk, is by definition

where p~ =p+q/2, and q and Q are the external wave
vector and frequency, respectively.

We shall be interested in measuring" the quantities B,
of the form

BEk

k
(2.16)

8(t)= g(B,&~ cz c
P

and can be found by differentiating the equation for Ek
[or more conveniently (2.4) after divided by (Ek' —ek )]

Uk =a, kU. ,k+af, k Bk
X(" c0}

m=Ek
(2.17)

where the last derivative is on the k variable only. On the
other hand, the effective f level ef k, given in (2.7), has
the velocity [ignoring second derivatives of X, in contrast
to (2.17), which is exact]

ax
Bk

(2.18)

so

BX fkUk=a U+ 1 —
B

af
Bk

(2.19)

p, f(c0)= g p, f (k, co),
k

(2.20)

The density of states of the c and f electrons are dis-
cussed in Ref. 17 (defined from IrnG, and ImGf), and
obeys

p, f (k, ni) =a, f k5(cu —E'(k)),

+ f;- - f' - f. - }(') (3.2)

per unit h. ' As is well known, this (Fourier-
transformed) retarded response function is obtained by
evaluating the Fourier transformed of the commutator of
Band A,

((B:A ))(q, Q}= i f —(B(t)A (t'}—A (t')B(t) )

X 8(t —t')e'"" —' 'd (t t'), —

(3.3)

where 8 is the step function. Equation (3.3) is most con-
veniently evaluated by considering instead the Fourier
transform of the time-ordered product (TS(t)A(t')) at
Q & 0 and then put Q~ Q+i 5. We are then led to evalu-
ate the various "bubbles" as shown in Fig. 2, where the
solid lines for electrons can either be c, f, or mixed (cf or
fc). The bare vertex A (where solid lines meet wavy
lines) is A, or Af simply according to whether these
solid lines are c or f (note both lines must be of the same
electron type ). Similar discussion hold for the vertex B.
We shall use the simple notation of p—:(p, co) and (GG)

P
as the pair G(p+, cu+Q)G(p, co) for any Green's func-
tions [i.e., (G,fGf, ) =G,f(p+, co+Q)Gf, (p, co)] and

p, + g 1 — '
p f(k, co)=v&(ni)/2,

BX(k,cu)

Bco

where vz(0) is the density of states (for both spins) that (or
more precisely its angular average) enters the specific
heat. This is of the form

( quasiparticle quantity)

= (c-electron contribution )

ax+ 1 — X (f-electron contribution), (2.21)
Bco

Eq. (2.21}(in particular its validity) shall be discussed re-
peatedly below [cf. (1.8)]. Note that the approximate
equation (2.19) [but not (2.17)] has this form.

A

FIG. 2. Diagrammatic representation of response functions.
Intermediate lines can be either Gf, G„Gf„orG,f except it
must end as f electrons in the f electron interaction vertex I f
denoted by the solid square.
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shall simply use summation (integration) over repeated
dummy momentum, frequency, and spin indices when no
confusion arises. The "empty bubble" is then

f de . [B,p(G, G, ) A, +B, (G,fGf, ) Afp
1

+Bfp f, f —,p+ f,p f f~p f.p] '

0

as similarly for 8,
0 0r,= 0 If—,fpp'

(3.8)

(3.9)

(3.4) The above response function is then

(Throughout this paper we suitably reabsorb i in the fre-
quency integrals so that they do not appear elsewhere ex-
plicitly and allow easier comparison with Ref. 12.)

For the bubble with the interaction vertex, we notice
that in our model only f electrons interact. Therefore, all
possible four-legged diagrams that cannot be cut into two
parts by cutting a single line must have all external legs
being f electrons, i.e., the two f-electron vertex I f.
Therefore, all diagrams of the type shown in Fig. 2(b) are
automatically included by including only I f, and letting
the solid lines be of various types (including G,f and

Gf, ), except it must end as an f electron on I f. Thus the
contribution is

B~p(G~fGf~) If ,(Gf-, G,f—) .A, p

+Bop(GgfGf, ) I f , (GfGf ) Afp-—
+ ( terms with Bf's ), (3.5)

(Gf Gf ),A (3.6)

similarly for (3.3). (The integration over intermediate fre-
quencies J dcol2mi shall be implicit, as for summation
over p and tr. ) The above can be collected in simple no-
tation by defining the following matrices [we shall name
the space as c-f space: note all quantities are matrices in
spin-space and spin-matrix multiplication as in (3.6) is
implied]:

where I f pp
is defined as in Fig. '3 and the spin and fre-

quency sum is as in the following example:

fdic f1'' B,p (G,fGf. )pl, .
1

K "(q,Q)=Tr[B(g+glg)AP], (3.10)

where

1 1P=

I f =I f +If (GfGf)I f (3.11)

where we suppress all momentum, spin-matrix indices.
In our c fmatrix space-

Here Tr is trace over the matrix c-f space, spin-space [as
in (3.6)], momentum space fd p [I/(2n ) ], and frequen-

cy space fde(1/2mi) We. shall use implicit matrix nota-
tion as far as no confusion arises.

The crucial step in making connection with a Landau
theory is the separation of the response E into quasiparti-
cle part Eqp and nonquasiparticle part Epqp This is done
elegantly by Leggett' for the superfluid Fermi liquid by
decomposing the Green's function and vertex function
into parts near and far away from the Fermi surface. Our
procedure below is an adaptation of his procedure into
our case.

One starts with writing down the Bethe-Salpeter equa-
tion for I f and subsequently for I [see also Ref. 4(c)].
The equation for I f is as shown in Fig. 4, which is quite
analogous to the case of SCFL. Here I'" denotes the
vertex part irreducible with respect to pairs of particle-
hole lines of total momentum q and frequency Q. From
the discussions preceding (3.5), one easily convinces one-
self that in the second term of the right-hand side, one
only needs to include diagrams with intermediate f elec-
tron lines. Thus in simplified notation

( G, G, ) ( G,fGf, )

gP ( Gf, G,f ) ( Gf Gf )
(3.7)

I =I'"+r"'gl,
where

(3.12)

[1) 0'-0 0
I (&)f

One then, for any pair of Green's function (GG),

p —y,Qf;
q q

P —2, QJ;cT

f,pp;a+a:a~cr
~ ~

p+ y, QJ+Q;o~q IP+ p ~~+&'&+

FIG. 3. Variables entering the f electron interaction ver-tex
I f a

FIG. 4. Bethe-Salpeter equation for I fp =(p, co). The open
square, I I" is the particle-hole irreducible part of I f (with
respect to q, O).
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(G, G, ) =(G,G, )„„,+(G,G, )r„,
where

(G, (p +q/2, co+A)G, (p —q/2, co))„„,

(3.13)

2nia, vF q5(co)5(E )

(3.14)0—vF q

separates the "near" and "far" parts. By standard argu-
ments as in Ref. 4(c), or Sec. 17 of Ref. 5, Sec. 18 of Ref.
6, or Sec. 6.4 of Ref. 7(b) (the last reference in particular
points out that we have not assumed spherical symme-
try), one obtains, for example,

K "=Tr[B"'g„„,(1—I g„„,)
' A "P), (3.25)

where the superscript t denotes the transpose, the precise
meaning of which is just that the various indices should
be in the order depicted in (3.22). (It turns out that by a
manipulation below we can be rather careless about the
transpose in c fs-pace. ) Equation (3.24) represents the re-
normalization of the bare vertices by what occurs in the
system far away from the Fermi surface. Consistent with
the low-frequency long-wavelength limit I ",g&„aretak-
en to be constant (i.e., independent of external probe,
q, 0, and temperature). Using the form of I one sees
that R has the form

( GG)t„——( GG) (3.15)

where the superscript ai means the "ai limit" (n o1~™o).
(We use standard notation, but note it is not co, but 0,
that approaches zero. ) We use a similar notation as for
I . Standard arguments then yield from (3.11)

(G,G, }&„is regular as q and/or II approaches zero, and
can be regarded as a constant (independent of q and 0).
a, is defined in (2.14) [and evaluated from now on at
pF =pF(p}],and a useful relation is

R» 0
R=

explicitly

R» ——1,
R21 I f(Gf G f)
R22 ——1+I f(Gf Gf )" .

Thus

(3.26)

(3.27)

I f ——I f +I f (GfGf ) If
J" f+~f Gf J" f '

or, in matrix space

(3.16)

(3.17)
A "P= R»A, 0

R2] Ac R22 Ay 1 1

—:A'P,
22 22

(3.28)

where I "is of the form

0 0
0 I"f

(3.19)

w~ere

and

A» 0
I

0 A 22
(3.29)

One then notes the matrix identity

g+gIg =fr„(1+I "gr„)

A» =—R»A, ,

A 22 R21 Ac+R22 Af
(3.30)

+(1+gr„I )g„„,
(3.20)

Substituting (3.28}back and using the cyclic invariance of
the trace, we move P to the front and note

P(RB )'=(RBP )'=(B'P )'=PB',

K„„"=Tr[Bg&,„(1+I gr„)&P],
K "=Tr[B(1+g„„I")g„„,(1—I g„„,)

(3.21)

Substitution into (3.10) yields the desired separation,
where

K "=Tr[B'g„„„(l—I g„„,) 'A'P] . (3.31)

where we defined B' as in (3.29). Note A' and B' are di-
agonal in c fspace. We -again move P back to the end of
the trace and finally obtain

Or, defining the matrix

R —= (1+I g„,)
and

(3.22}

(3.23)

We need to evaluate the inverse operator in (3.31).
With the help of (3.14) we can evaluate the intermediate
frequency sums. %'e also sum over the magnitude of p
(i.e., E for fixed p) by using

A"=RA,

and so for 8",we get

(3.24) Here v =[pf(p)] /~ vF'~. Note v =v(0), the density of
states if we assume spherical symmetry. One simplified
(3.31) to
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v v

" vp

simply look for divergences in the response functions, or
solve (3.34) for finite g with A =0. Hence we are solving

v,v, .q5,—I", a,
P PP PP'Q —V-', q P

P

A', P
P

Vp q
1 —I ",a. , v,

PP JP P Q v, -n
P

or, with g:—aI (0—v, .q) 'l1

h, =O,

(3.32) (Q —v' q)v u —v (a. I,a, , )v-g-, =0,
P p p P fp pp fP P P

(3.35)

where only trace over c-f space, integration over momen-
tum direction ldQ /4m and spin sums are left. Here

P
from Ref. 27,

a 2
c acaf

2afafac

(3.33)

Explicitly
I

&»,-,= A», y

We showed the momentum indices explicitly, and due to
the 5(E) factor in (3.14), all momenta are to be evaluated
at the Fermi surface and we have therefore shown the
momenta directions only. v':—vp is the group velocity

P PF
of the excitations. One is therefore led to evaluate (
defined by

which is just the collisionless kinetic equation for a
single-component Fermi liquid (1.2} when we notice
5n =5(E)g and integrate over the momentum magni-

P p
tude. We thus have shown that a SCFLT kinetic equa-
tion does describe the collective modes of the system, and
we identify v as the group velocity for the quasiparticles
(a very natural conclusion) and a& 1 .a&, as the Lan-f.p Pp' f P'

dau parameter f, . (Note our choice of g above makes
PP P

this symmetric as it must be. If we have spherical sym-
metry then F,=v(0)a&I', . ) One can obtain the above

PP PP
result perhaps more directly by considering the diver-
gence in I using the Bethe-Salpeter equation (3.17}.
[This is more analogous to Landau's original approach 1'
and shall be discussed in Appendix A (our procedure is
essentially the same thing due to the use of Eq. (3.19))].
Note that we have not identified what g in (3.34) is in

P
terms of the c and f electrons, and questions (b) and (c)
raised in the Introduction still need to be answered. This
shall be done below.

With the g defined in (3.34) the quasiparticle response
function is

(12=0

v "q
pp' fp' cp' p' g V . 11,p

P

(3.34) V V

P0—v q

which simplified to (with (,2
——0)

v~
K "= (a,811+aI822)

Gl 2
v "q I

1 —I -,a .-,v, (22 -,= A 22
- .

PP fP P g —v "qp 1

Before we solve (3.34) for g, we note that we can obtain
the equation for the collective modes of the system: we

I

v qx
&

[a,0»+af(41+42)],
P

(3.36)

where we have performed the trace in the c-f space.
We directly obtain by multiplying suitable factors to

(3.34) and adding the equations, to get

v, q
1 —a I,a,v,fp PP fp P g —v, .qP

Ill+ f021+af(22)p' ( A 11 + IA22)p ' (3.37)

(Note the labels on the a, and aI's. ) Thus

gBA Ppe
2 P 0—v qP

v, .q
1 —a I,a,v,

f~P PP f~P P Q v .qP

(3.38)

where

A*=a, A11+af 322

=a, A, +aI(R2, A, +R22AI), (3.39)

with an identical formula for 8'. ' The result (3.38) is
exactly the same form as a SCFL [(3.32} when all c-f ma-
trices reduce to scalars], with the Landau parameter fPP
as a&I ",af, as discussed previously, and moreover we

P PP' f p'
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IV. EXAMPLES OF STATIC RESPONSES
AND EFFECTIVE VERTICES

We have just seen that the quasiparticle part of the
response function does look like a SCFL. We shall now
evaluate the various effective vertices and identify the
physical quantities Q~ a quasiparticle carries [in the
sense of Eq. (1.4}] is this section. It turns out that in
some cases the value of Q is surprising at first sight
from a simple-minded understanding of formation of the
Fermi-liquid state through hybridization, but is in fact
rather natural in a more microscopic picture, for example
that discussed here. Since as shown in the last section the
effective vertices (and hence Q ) are independent of q, 0,
we shall mostly confine our discussions to the static limit.
Since the calculation involves Green's function far away
from the Fermi surface, calculation of the vertices are
feasible only when Ward's identities can be found. We
shall discuss these identities in Appendix 8, but only the
result here.

A. Density-density response

The external field couples to the system via
A =(c c +f f ) and we are measuring the

+
same quantity (except q ~—q). Thus

A, = Af ——B,=Bf——1 . (4.1)

have shown that we have well-defined effective vertices
(in the sense discussed in the Introduction) B& and A&,
the expression for which is as in (3.39) (Note that there
are still intermediate integrations due to the operators R
which involve both kinds of electrons even in the a,P
basis). We have thus achieved one of our main aims of
this paper [the answering of questions (a), (b i) and (b ii} in
the Introduction]. The low-frequency limit of the Hamil-
tonian (1.1), provided X(k, oi) has the desired analytical
properties, does behave as a SCFL. What remains to be
done is to answer question (b iii}. We shall do this in the
next section.

to the q=O, Q~O limit of the response of a conserved

quantity, is identically zero, as can be shown directly
from (3.3).

Ac p~ Af p~ Bcpg Bfp0 0 (4.4)

Note that spin is conserved in our system, and a Ward
identity (88) enables us to get results similar to the last
case, in particular,

A' =Bp ——a . (4.5)

The static spin-spin response is thus (for spherical sym-

metry)

v(0)
QP

1 +Fa
(4.6)

Again K„„=O.Similar results apply for any auto-
response functions for any conserved quantities. We now

turn to some (in general) nonconserved quantities.

C. Current-current response (related to the conductivity)

The external field (in the real case this is related to the
vector potential) couple to the system via
A =J=v, c +c +vf fz+f, where v, , vf are the
bare particle velocities, i.e., A, =v, =Be, /Bp and

Af ——vf ——0 in our case, see Eq. (1). Although the
current is not conserved, we can find a Ward identity by
the analogous procedure of the SCFLT. We find (812)

BX m, s
(~2iv )k +~kk'uf k'vk'vk'

Bk
(4.7)

where vk is the quasiparticle velocity as defined in (2.16).
Thus

B. Spin-density —spin-density response

We consider then A =cz ice &+fq if' t
—(1'~L)

and similarly for B (again with q ~—q}. We have, there-

fore,

The identity (87) then shows that the corresponding
quantities (3.29) should be given by A i i

——B i i
——1,

A&2
——822 ——1 —(BX/Boo), the renormalized vertices are

then, by (3.39) and (2.15)

BX
A I ——a, v, +af k

+ I"&&,af &,v&,v

+( f k kk' f k' k'] k' (4.8)

A =B =1, (4.2)
The quasiparticle response is

(4.2) just reflects the fact that we are considering a con-
served quantity, each quasiparticle carries one particle.
The static density-density response function is then of the
familiar form

v*-q
K =A'v' 'n —v*q

P

v*-q
1 f', v . —

P 0—v'-q
P

(4.9)

(4.3a)

which reduces to

v(0)
QP ) +Fs

(4.3b)

for the case of spherical symmetry. EP~z, corresponding

The result for A * is completely the analogous to that of a
SCFL. For spherical symmetric case A *=(1+F', /3)v

The current that a quasiparticle carries is the Fermi-
liquid correction factor times its group velocity, as in a
SCFL. Note that the physical current also consists of the
diamagnetic current, and the nonconservation of current
implies that Epqp+0 We shall discuss these in detail in
Appendix C.
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D. Spin-current- spin-current response

We consider external field coupling to the system via

cvl A ( v~ pcp ~cp ~+ vf pfp ~fp 0 )a

i.e., A, =v, o., Af ——0. Analogous Ward identity
can be found as in the last case except with o. indices at
appropriate places and we find [for spherical symmetry; it
is obvious that the result for general case is (4.8) and (4.9)
with I "'instead of I' ']

Ak' ——(1+F
&
/3)uk'o (4.10)

thus each quasiparticle carries a spin-current of vk 0 with
the Fermi-liquid interaction correction of (1+F,/3), as
in a SCFL.

E. Magnetic-moment-magnetic moment response
(magnetic susceptibility)

The external (magnetic field) couples to the system via
A = (p, c~ cz +pf fz fz }cr, and in general p,
&pf. First we consider p„pfindependent ofp. Thus

Ac p~=PcO', Af p =Pf0 (4.11)

When p, &pf, the magnetic moment is not conserved.
We do not have the Ward s identity of either kind dis-
cussed, and therefore have no general quantitative result.
But generally we expect (by symmetry) A *=p'o which
defines an effective moment for the quasiparticles (by
comparing the resulting response with SCFLT},where

p'o =a,p, cr+af(R2/p, ,a+R22pfo),
and thus p' is a function of both p, and pf

p'=p" (pc~pf ) .

(4.12)

(4.13)

Moreover, the non-quasiparticle part of the response is
expected to be nonzero. K™has the Fermi-liquid form,
whereas E

qp is q, 0-independent by definition. In
noninteracting systems and 0=0 q ~0 they correspond
to the (static) Pauli paramagnetism and Van Vleck
paramagnetism, respectively. The results above thus give
the natural generalization of the Van Vleck contribution
to the interacting case (and q, 0&0): it is simply the
non-quasiparticle part of the magnetic susceptibility, and
arises only when the magnetic moment is a nonconserved
quantity (as in the noninteracting case): otherwise K„q&
would vanish by argument as noted below Eq. (4.3). This
non-quasiparticle response of course, has no analog in a
SCFL.

To avoid a misconception we make one more com-
ment. For a SCFL if p=p(p), then the magnetic mo-
ment does not commute with the interaction term of the
Hamiltonian of the system and thus It.'„&0.In our
case if pf depends on j, this very same contribution will
arise (but not for p, ). This contribution is not within the
conventional Van Vleck paramagnetism since it is purely
due to the interaction. Our E„Minclude both this and
the generalized Van Vleck contribution, and is not easily
separated [cf. Ref. 16(b)].

F. Magnetic-moment-current self-response function

This response function does not seem to be directly
measurable, but may be relevant indirectly, since we are
able to infer from this the magnetic-moment-current a
quasiparticle carries. We imagine an external field cou-
pling to the system, via

A—:Jkt=(p, u, c c+pfvff f)a=p, , u, c ccrc

since vf ——0. Since p, is just a numerical factor, our
desired result can be directly read off from example (4),
e.g. , for spherical symmetry

A kir ( 1 +E1 /3 }"k pc o (4.14)

i.e., a quasiparticle carries a magnetic moment of p, cr

[with Fermi-liquid correction factor of (1+F,/3), which
we shall omit below]. Note that it is not p'v*, as one
would at first sight expect. Our result is physically
reasonable, as all electrons that move and transport the
magnetic moment are the c electrons: pf simply will not
play a role in JM. (It is clearest when we consider the
particular case of p, =0 but pf&0. It is obvious, espe-
cially when we consider the diagrams as in Fig. 2, that
the system has no response, since then p, v, =pf vf —0.
The naive guess is obviously incorrect since p'&0 and
v'&0, in general. )

The above example nicely illustrates a point. For any
quantity A '", the quasiparticle response vertex A "' is a
functional of A,'" and Af". A""= A'""(A,"', Af"),
and similarly for A ' '. When, however, we are interested
in the physical quantity A"'A' '=—A' ' then we should
consider the renormalization of A ' '—:A,"'A,' 'c~c
+A"'A' 'ftf and we have A' '—:A' "(A'"A' 'f f c c
Af" Af '), and in general we do not expect
A' "=A'"*A' ". In the language of physical quanti-
ties, if a quasiparticle carries the physical quantities Q~",
and Q' ', for the physical quantity which corresponds to
Q'"XQ' ' when expressed in terms of the c and f elec-
trons, is in general not given by Q"'Q' '.

One naturally asks if there is any other (directly or in-
directly} physically relevant quantity that we should also
take this particular care of. In particular, one may be in-
terested in the energy or momentum current that a quasi-
particle carries since these occur in thermal conductivity
and viscosity. Since neither of these quantities are con-
served, nor is it obvious which variation of the self-energy
we should consider, we cannot find any Ward identities to
assist us to give explicit expressions for the renormalized
energy current or momentum current using this method.
However, once we accept that a Landau kinetic equation
(1.2) describes the quasiparticles, and each quasiparticle
carries an energy Ek and momentum (in the ith direc-
tion) k, , we can consider the time derivative of energy
and momentum density using this equation as in a SCFL,
the forms of which (a continuity equation) allow us to
identify the energy current and momentum current of the
quasiparticles as Ek vk and k,.v,', respectively, as in SCFL
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(with appropriate Fermi-liquid parameters, if any}. Simi-
lar argument holds for the transport of all conserved
quantities. Thus among the transports, the "surprises"
mentioned are to be found in transport of nonconserved
quantities only. (Compare the results for the spin-current
and magnetic-moment current. )

V. RELATION TO BAND FORMULATION

We here discuss the Hamiltonian (1.1) with the method
of Kadanoff and Bayrn, and make connection with the
paper by Jones and McClure. We write the Green's func-
tion in matrix c fsp-ace [cf. (3.7)]

G(k, co) =
fc ff

[(co—ek )(co ef —Xf ) —V']

co —ey —Xy(co )

V

V

1 — [co—E,(k)][co—E2(k)]
X

Bco

ax
1 — (co E&)—'

Bco

V (5.1)

where we have expanded around m =0. By partial fraction we find

6(k, co) = l

Ei(k}—Ei(k)
1

co Ei(k)—

1 — [Ei (k) —'E~ ]
X

Bco

V

V

Ei(k}—ek
(5.2)

and so the spectral function is

A(k, co)= . , 5[co—E, (k))
1—

1 — [E,(k) —'E~]
c)X

Bco
J

V E, (k) —e„ (5.3)

We diagonalize the matrix proportional to 5[co—E, (k)],
the part that have poles near the Fermi level, by a unitary
transformation, with the resulting matrix proportional to
(0 i). This transformation is equivalent to go to the new
operators defined by

r r

uk Uk

(5.4}
CXk

C

"k fk

where uk, Uk can be chosen real and positive with
' 1/2

ar1—
uk Bco V

uk+Uk = 1
2 2

(5.5)

(5.6)

[compare (5.5) with (2.11)]. ' Now only G has poles
near the Fermi level. Note however that 6 is not diago-
nalized (cf. Ref. 20). By first writing down the matrix
Green's function 6 of Kadanoff and Baym in cfbasis-
and then going to the new a„,Pr, basis, one can easily see
that the new 6 matrix has exactly the same properties
as that of Jones and McClure" in their Bloch wave multi-
band 6 matrix. Thus ak, Pk are legitimate electronic

operators for the bands. All the results in Jones and
McClure can be taken to our case trivially, in particular,
(i) in general it is necessary to define four (16 if counting
also spin) distribution functions, however, (ii} at equilibri-
um only 6 ~ is nonzero (only "lower band" is occupied},
and (iii) in nonequilibrium the distribution function
defined from 56 ~ does form a complete representation
of the low-lying states of our system (i.e., the distribution
functions defined from 56 ~&, etc. , can be eliminated in
favor of that defined from 56: but they are in general
nonzero even in the q, 0~0 limit). Physically the
nonzero 56~&,56&~ rejects the changing "composition"
of the quasiparticles (cf. above and Ref. 21). Note that
uk, Uk involves U implicitly.

We can, of course, use these band operators instead of
the c and f electrons in the previous sections. Since we
would not produce new understanding of the physics we
shall not do that (cf. Ref. 27}.

VI. CONCLUSION

We summarize our results. We have shown that,
within the simple version of the periodic Anderson Ham-
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iltonian (1.1), provided the true f-electron self-energy
X(k, co) is analytic (in k and co, but it can be nonanalytic
in V or U) at least near kF determined by the Luttinger
theorem and ~ is the chemical potential, and the Fermi
surface only intersects one "band" of the energy eigenval-
ues, at q, Q~O we indeed have a (almost) usual Fermi
liquid. We have, however, seen that due to "the second
band, " or more precisely that we have two types of elec-
trons to start with, that the renormalization of the ver-
tices and hence the physical quantities associated with a
quasiparticle is more subtle than one would naively ex-
pect.

The way that the original particles hybridize (in the
sense of a linear combination [like (5.4)]) to form the
quasiparticles actually depends on the external perturba-
tion, but they do so in a way that these only appear in the
non-quasiparticle part of the response and the quantities
that the quasiparticle carries (the effective vertices), but
without changing the form of the quasiparticle response
(cf. Ref. 21).

Our discussion can be regarded to some extent, as a
particular case of the Landau theory in which we take
into account the identity of the core electrons and the
conduction electrons.

The directions along which we would like to generalize
our results are numerous. Of particular interest include
the case where c electrons also interact, spin-orbit cou-
plings, different multiplicity of c or f levels, finite temper-
ature, and scat terings.
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where we are left with only integration over k and sum-
mation over spin: all momentum magnitudes are at Fer-
mi surface. By the standard argument of noting p' is the
dummy, ignoring the inhomogeneous term, and
I l,~h(p) give the two equations before (3.35) andf.w
hence the kinetic equation.

APPENDIX B

5u(t)=5ue '"', Q~O .
(B1)

Since the total number is conserved, the Hamiltonian can
be diagonalized simultaneously with (Bl) when Q~O.
The change in any Green's function is

5G = — 5u,BG

Bco

which can also be directly evaluated from perturbation
theory, e.g. , for Gf

5GI(t, t'}=—( Tf (t)f (t'}[ck (t")ck.(t")

+fkt (t")fk-(t")])5u(t")

(B3)

Passing to the limit Q~0, we have from (B2) and
(2.1)-(2.3)

1 — (GIGf ) +(Gf G f )" 5u, (B4)

whereas (B3) yields

56I——[(Gt Gt ) + ( 6 ' 6f

Here we show the various Ward identities used in Sec.
IV.

(1) Number conservation. We consider an external
perturbation of

H(t)= +5u(t)(ckck+fkfi, ),
k

+(Gf Gl) I "(GI G f +Gf Gf )"]5u (B5)

APPENDIX A

Here we discuss the derivation of the kinetic equation
for the collective oscillations of the system analogous to
Landau's original argument. "' The collective excita-
tions are by definition the divergence of the two-particle
interaction vertex. There are various kinds of these ver-
tices according to the type of electrons involved. From
the property of these vertices as discussed below Eq. (3.4),
we know that any of these divergences either correspond
to the divergence of I f or single-particle excitations.
Therefore, we need only consider the divergence of (3.17)
at q, Q~O. Substituting (3.14) into (3.17) yields an equa-
tion rather similar to that of Landau. '" Carrying out
the intermediate frequency and momentum magnitude in-
tegration

I f I f +I f Qaf /vs I f
V& g

[note again that we have absorbed the ( —i) factor in the
term involving I in the frequency integral fdc@(1/2mi)
as in text] and thus by comparison [note both (B4) and
(B5) are matrix multiplications in momentum and spin]

=[1+I"( G,t6, I+6 IG t)"]1 (B6)

=(R~, +R22)1 . (B7)

(2) Spin conservation: We just carry over our results
for case (1) by considering instead the external perturba-
tion 5u (t)(ck~ck~+ fk~fk~)cr. Hence, we have

o =[1+I' (GI, G f+GfGf) ]cr' (B8)

(where we have shown the spin indices explicitly to avoid
confusion).

The above argument can be extended to any conserved



38 FERMI-LIQUID THEORY FOR THE PERIODIC ANDERSON. . . 8797

quantities by considering the appropriate external pertur-
bation, i.e., for any conserved quantity A (necessarily
A, =Af ——A)

ar
1 — A =(R~)+R~2)A,

Bco

and

=I "(Gf,G,f)"v, and then obtain the relation between
the k limit and cv limit as done for SCFL in Ref. 7(b).

Almost identical treatment can be made for the spin
current by considering a shift in the diagram of X& as
k ~k +q for all up spins and k ~k —q for down spins.
Note this is legitimate since both spin and momentum are
conserved.

A*=a, A +af(R2) +R~2) A APPENDIX C

a, +af 1— (B9)

Srf, =
rf[ "SGf, (Blo)

where I f" is again the f-electron interaction vertex irre-
ducible with respect to the particle-hole lines of momen-
tum q (frequency 0=0). Direct evaluation of 5gf
=Gf I, +q

—Gf I, yields

5k (Gf~g f )v +(GfGf )
BX

and passing to the k=O limit yields

A quasiparticle carries the same (conserved) quantity as
the bare particles themselves.

(3) Current vertex —The Ward identity for this is of a
different type. We consider the momentum derivative of
the self-energy Xf, or 5X= Xf k+q Xf k Our method
follows Sec. 6.5 of Ref. 7(b) closely. Noting the property
of the interaction vertices as discussed following Eq. (3.4),
we find

In this appendix we discuss the physical current. The
current operator for the unperturbed system has been
given in the text, namely

Jq = vc, kck ck (Cl)

which satisfies the continuity equation

Ipq = [pq, H] =q'Jq (C2)

where p =cz+ c& +f& f& is the destruction operator
q

for a density of wave vector q, and H is our basic Hamil-
Af

tonian (1.1). Under the perturbation H, =J A [here we
restore the usual notation of A as the vector potential,
(except a sign and proportionality factors): all vertices
concerned are shown explicitly] the correct definition
for the current J"' should be such that i p
=[pq, H+H, ]=q J"'. One may easily verify that the
operator form should be

(C3)
Ad

where J, the diamagnetic current, is given by the opera-
tor

r(1) (g g )kv +(g g )k
Jd

q, i vc, k
' A(ckck )

l

(C4)

where the k superscript denotes the k limit. Using (3.13)
and (3.14), we get, e.g. ,

(Gf Gf )"=(GfGf ) 2qriaf5(co)—5(E& ),
we can rewrite (Bl 1) as

[I—r"'(G,g, )"]

According to the fact that we only need linear response,
c~cI, can be replaced by the equilibrium expectation
value.

For simplicity of discussion we confine ourselves to the
case of spherical symmetry. If we further assume
s, k ——k /2m„(C4) reduces to

=r"'(Gf, g,f) v,

BX V
kk' f,k' k' gk

+ U

(CO —Ck )

J"=K A

with

K =
m,

(C5)

(C6)

ar
~k

——I (Gf, g,f) v, —I kk' f, k' k'v(V- )k, (B12)

where in the last term but not the rest, we have per-
formed the magnitude of momentum sum and frequency
integration: we have sho~n explicitly the k' to remind us
of this fact. We invert the operator on the left-hand side
and use (3.11) to resum the series to yield

Here N, is the equilibrium expectation value of the num-
ber of c electrons. Equation (C6) can in fact be obtained
also easily by writing the c electron kinetic energy term in
(1.1) in real space, i.e., 1/2m,

~
(V+i A)P,

~

and noting
no other gradients are involved. The gauge current is
then trivially

where we have also used (2.17) for the quasiparticle veloc-
ity with the help of (2.14). Equation (B12) is then (4.7) in
text.

Alternatively we can invert (B1 1) to yield BX/c)k

P, 1(, A= A.

We, therefore, have
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Jtot g tot gi ij j
where

(C7) K„K— (q O, Q=O)= (1+F'/3) .
nqp

(C13)

~tot g JJ+~d
&J 'J

Explicitly, we have '
(C8) Thus

K "=KJJ;,+ (1+F;/3)5;,IJ qP U
(C14)

(Jq, )o„(Jq, )„o
0—Ct)nP+ 1'g

(Jq, )o„(Jq, )„o
+nO+ '9 (C9)

where n is the complete set of exact many-body states,
co„ois the energy of that state over the ground state 0.
Note that in general K;J &K 5; . " However, for either
qvF »Q or Q »qvF, K;, =K 5 J' the former reduces to
a gauge transformation and the latter is the response to a
uniform field. In these cases one can then calculate I(

easily by considering the longitudinal response. In par-
ticular using (C2) one gets, with q along i,

(J ) i 2co
KJJ( ()) ~ I qi no I no

2
~no

, 2 I (p,' }.o I

'2~.o
n

(C 10}

which can be evaluated by an argument parallel to the
derivation of the f-sum rule (Sec. 2.2 of Ref. 13) except
noting that now pq involves both c and f electrons
whereas J only involves the former. One easily gets, for
the case of quadratic energy spectrum of the c electrons,

N,
K (q, o)=—

PPl

where N, is the total number of c electrons. Thus

K"'(q Q)=K"(q Q) K "(q O)5— (C 1 1)

This form is expected since as 0=0 the effect of the vec-
tor potential on the system reduces to a gauge transfor-
mation and thus J"'=0 (and hence the validity of this
cancellation is independent of the assumption on s, k ).

For q=O the quasiparticle response vanishes:
K (q =O, Q)=0. Applying (C9} with the help of (C2)
again and using the corresponding spectral decomposi-
tion of KPP(q, Q) [cf. (C9)] we easily verify (i not summed)

Note that this result is entirely in terms of parameters
which specify the quasiparticles. Here N is the total
number of c and f electrons in the conduction band
determined by the generalized Luttinger sum rule (Ref.
14).

To illustrate the significance of this, we recall that as
discussed in the Introduction we can consider an alterna-
tive coupling of the vector potential to the system
(k /m)(c t +c„+fk+f„)A, imagine both the original
c and f are free, and it is the result of lattice potential
that results in the effective Hamiltonian of (1.1). This
changes both K„andK, but the physical result (C14)
is left unchanged. The change in I( „andE cancels ex-
actly due to particle conservation. Therefore, one can
have the freedom of choosing the starting points for the
"bare particles" (i.e., the "high energy" physics), the
"low energy" physics, i.e., the Fermi liquid, can neverthe-
less be the same provided we yield the same set of quasi-
particle properties (e.g. , our method directly adopted to
the SCFL case would yield, e.g. , K =N/m„and renor-
malization RJ for the current are all different from that
of Leg gett, ' but all physical results, in particular
K ",RJJ are the same). This is because of the relation
(C13) (which is implicit in Ref. 12) (cf., however, the mag-
netic moment auto-response discussed in Sec. IV of text).

Equation (C14), for example, gives us the uniform con-
ductivity cr(Q) and zero-temperature Landau penetration
depth A,L, respectively, as (both related to K~" by setting
K"=O)

o (Q ) = — „(1+F',/3)
N

iQm*

and

0
K;, (q, Q) K(q, Q =0—) = K~~(q, Q),2

(C12)
( I+F', /3),m'

where E]'~ is the density-density response. Evaluating
the q~o limit of both sides yields' [recall K„ is q, Q
independent, thus I( „qp j E qp5 j by the argument
below (C9))

which are the usual SCFLT results (with the unit where
electronic charge and velocity of light equal 1) [despite
the fact that our intermediate result (C6) is different from
the SCFL (e.g., Ref. 12)].
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raised doubts on the validity of FLT for the periodic Ander-
son model, though reasoning along rather different lines. He
argued that the noninteracting system is to be taken as V=O,
and from our knowledge of single-site Kondo problem, one
does not expect analyticity in V, and there is no one-to-one
correspondence between his noninteracting system and the
real system. We shall see that analyticity in the parameters V
or U is at least not directly relevant, in contrast to what is
often stated in the literature.

'9We shall drop the occasionally spin indices and momentum
indices when there is no danger of confusion.

2 The question is nontrivial by going to a new a and P for in

general all G,G &, . . . has poles at the lower "band, " "bub-
ble" diagrams involving them are still needed. This is still
true for the more sophisticated procedure of forming a 2&(2
matrix G in terms of the two types of electrons, and then di-
agonalize it by an co dependent unitary transformation: both
diagonal elements still have poles at the "lower band. " If we
use the transformation in Sec. V, then only 6 has poles at
the lower band and contributes to g„„„,but 6 is not diagonal-
ized.

'This is not a priori obvious: consider adding extra particles to
the system. As discussed in Ref. 15 the effective f level Zf in
Fig. 1. rises in such a way to keep the number of f-electron
almost constant. As a result, (i) the whole "band" in Fig. 1

changes completely, even for states quite far away from the
Fermi surface, and due to this (ii) the "composition" of the
quasiparticles is also changing. At first sight at least this
casts doubt on a SCFLT description. The resolution of this
"paradox" is simply that the "band" (new band) is just the en-

ergy difference between the ¹1 (N'+1) particle states over
the N (N') particle ground state. The change of the shape of
this curve has nothing to do with the validity of FLT. But
this example does, however, speak against naive
"justifications. " Other examples can be easily found. Consid-

er two noninteracting bands a and P as in Fig. 1 (as the U=O
limit). If the original c and f electrons have nonequal mag-
netic moment then a magnetic field introduces mixing among
them (Van Vleck paramagnetism): the "hybridization"
changes. Similar argument applies to other external pertur-
bations of the system, or internal interaction among electrons
within the system. The interaction U and the fact that Fig. 1

itself is a result of solving the Hamiltonian (1.1) make it not
a priori obvious why the response of the system is just like a
SCFLT, especially at finite q and Q.
We are ignoring the damping and collisions of the quasiparti-
cles, and thus have taken X(k, co) real. This is justified for the
quasiparticles near the Fermi surface at suSciently low tem-
perature and q, O. The failure of this assumption for the
quasiparticles far away from the Fermi surface is of no conse-
quence in the discussions below.
Precisely speaking, (2.5) is invalid for E] 2(k) far from zero for
then the approximation (2.5) breaks down (also the imaginary
parts become large). Our discussion below for the FLT shall
precisely avoid talking about those states; the fact that (2.7) is
invalid there shall therefore not concern us.

24This hybridization is used to obtain the quasiparticle interac-
tions in the 1/N-expansion interactions from the interaction
vertex of the c and f electrons [Refs. 16(c) and (e)]. It is not
clear to the author whether this "effective hybridization" can
be so taken seriously. Both the Gutzwiller ansatz and the
1/N order in the 1/N expansion are minimization and sad-
dle point evaluation of the energy of the ground state (or the
statistical average of the free energy at finite temperature) of
the system as a whole. The methods are not designed in any
aspect to reflect the structure of excited states or quasiparti-
cles of the system (cf. Sec. V).

2~One may consider also terms of the form c f or f c. Since
this greatly complicates the treatment below and not neces-
sary for most quantities within the possible FLT we shall sim-

ply not consider them.
This relation is perhaps much clearer if we directly consider
the response (3.9) in terms of diagrams. One expands (3.9) in
terms of I'",g„„„andgf„,and recollect terms with the help
of (3.18) (or rather its series form). The geometric series in-

volving I g„„,is resummed to give the inverse operator in
(3.20).

~70 and hence g„„„canbe diagonalized by a unitary transforma-
tion so that the only nonzero matrix element occurs at the
lower right corner. This transformation is the same as the
one discussed in Sec. V. In fact, using this property and the
observations in the last reference, one easily sees that the final
result of the response functions can be put in the form (1.5),
thus partly answering the question (b) raised in the paragraph
below that equation.

Evaluating the inverse operator in (3.32) is equivalent to solv-
ing the (matrix) kinetic equation for the c and f electrons.
We are thus showing indirectly that this matrix kinetic equa-
tion can be effectively replaced by a scalar one, even when we
consider the response to an external field. [Compare the pro-
cedure here with (2.104)—(2.111)of Ref. 7(a).]

This factorization must work because the formula above (3.36)
has the same form as a U=O system, except with external
perturbation g. Since Landau theory is trivial for this system,
8* must be well defined. By symmetry, this also holds for
A . This observation allows us to see many trivial generali-
zations of the present justification for FLT to many other
slightly more complicated periodic Anderson Hamiltonians.
Yamada and Yosida (Ref. 17) have also calculated the spin
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susceptibility. The result, however, is of quite different form
and we have not been able to find Green's functions identities
to relate the results.

'The above is, of course, equivalent to the procedure of di-

agonalizing (3.8) of Jones and McClure.
It can be easily checked that the part proportional to
5[co E—2(k)] is not diagonalized, and also the lower right ele-
ment is not zero. Thus only the lower band operator is "well
behaved, " in contrast to (3.8) in Ref. 11. Their work, howev-
er, is not affected since this property is only needed for the
bands intersecting the Fermi surface.
It is easy to find examples of nonlinear response of the system
where the reduction to a simple-minded SCFLT fails. In text
we have seen that in the linear regime responses are of the
form B A (we shall leave out the intermediate "quasiparti-
cle propagator, " i.e., terms involving g„„„for simplicity of
writing), with B* and A independent of each other, despite
the fact that it is a linear combination of 8, A„B,A f BfA„
and B& Af. A simple extension of this result to the nonlinear

case is obviously false. As an example consider the system
with p, &pf under a static magnetic field h along 2 axis. By
conservation of spin it is obvious that we just need to add spin
indices in Sec. III. E~~ is then of the form (3.38) with ap-
propriate spin indices, with A, B in (3.39). Both A *, B
depends on h through (i) a„afand (ii) I and gf„in the re-
normalization factor R„-.This dependence is through JM, and

pf, and cannot be described by p alone. [To make the ex-
ample even more clear consider A being also a magnetic mo-
ment, thus we are measuring a quantity k to second order in
h. Then B* in (3.38) is a function of p„pf.If for some other
hypothetical magnetic field h' coupling to the system through
some other hypothetical magnetic moment p,', pf, then B
for this measurement will be different from that of the last. ]

34Yamada and Yoshida have also considered the current vertex.
They have shown the correct relation in their calculation.
However, they have not shown the various limits of I kj,

{which of course is crucial) in their formulas explicitly.








