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Evaporation and quantum tunneling of electrons from a helium surface
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We have measured the escape rate of electrons from two-dimensional surface states of bulk heli-
um. These measurements were made through a range of densities, external field, and temperature
where thermal activation dominates (T & 0.6 K) into the range where quantum tunneling dominates
(T(0.6 K). Both processes are sensitive to electron-electron correlation effects. The thermal ac-
tivation rates depend only on the barrier height for which a relatively simple approximation of the
correlation is adequate. However, observed tunneling rates are many orders of magnitude greater
than would be predicted by this same approximation.

INTRODUCTION

Evaporation and tunneling from a well-characterized,
quantum-mechanical, many-particle system are processes
that have a bearing on a variety of real physical systems. '

A theoretical description of these processes requires a
solution of many, seemingly simple, quantum-mechanical
many-body problems which, nonetheless, cannot easily be
solved by perturbation theory2 or the use of classical
concepts. The infiuence of dissipation (phonons) on the
tunneling is an example.

Very little progress has been made, although some
work has been done on simplified models. Extensive
analysis of simple two-level systems with linear coupling
to a heat bath has revealed the great difficulty of the
problem. Simplified model potentials for other systems
have been considered and a number of papers utilizing
Wentzel-Kramers-Brillouin —type (WKB) methods have
appeared.

On the experimental side, there have been numerous
investigations of a variety of physical systems including
heterojunction tunneling, ' tunneling through metal-
insulator-metal junctions, ' p-n tunnel diodes, ' and
Josephson junctions. ' For such systems it is difficult to
specify precisely, or to change systematically, the vari-
ables which govern the tunneling. In this paper we
present measurements of evaporation and tunneling of
electrons from the two-dimensional (2D) electron liquid
formed on the surface of liquid helium at temperatures
near 0.5 K. In contrast to the other systems, this one is
unusual in several ways:

(1) It is extraordinarily clean in that it is free of the de-
fects and impurities which complicate experiments in the
other systems.

(2) The interaction Hamiltonian which fully describes
all of the microscopic detail of the system is known. It
consists of the coupling to the helium substrate, the
Coulomb coupling to other electrons in the plane, and the
external applied electric field. This system is an almost
perfect physical realization of a quasi-2D liquid coupled

to a background of excitations (ripplons).
(3) The fields required to produce tunneling are very

modest (tens of volts/cm).
Although a previous experiment studied the escape

rates in this system, it was performed at higher tempera-
tures where only very rapid thermally activated escape
over the barrier induced by sudden reversal of the exter-
nal electric field could be observed. ' In this work we
have measured slow escape rates (10 —10 per electron
per second) in both the tunneling and the thermally ac-
tivated regimes. We will show that the simplest theory,
using a one-particle potential, is in serious disagreement
with the experimental results for tunneling. We make
some general suggestions regarding a correct theory of
this tunneling process.

THE PHYSICAL SYSTEM

Ao ——(e, —I )/4(e, +1)-=0.01, (2)

where e, = 1.05 is the dielectric constant of liquid helium.
The negative of the electron affinity Vo-1 eV is the ener-

gy required to force an electron into the liquid, assuming
no bubbles are formed. The bound states of the electrons
thus have a hydrogenlike spectrum,

The system we are investigating consists of an approxi-
mately uniform layer of electrons at density n —= 10 /cm
on the surface of bulk liquid helium at a temperature
—=0.5 K. An external, variable, "pressing field, "Ez, nor-
mal to the surface, is used initially to force the electrons
onto the surface. Later, electrons are allowed to escape
by reducing E . Near the surface of the liquid the elec-
trons are attracted by an image potential of the form

2—Aoe /z, 0&z & 00
V(z) = .

Vo, z(0.
The squared "effective charge" for the He-vacuum inter-
face is
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UB(z) = V(z)+
~

e
~ E,z+ V, (z) . (3)

V, (z) is the potential due to other electrons on the sur-
face so that if there were no correlation among the elec-
trons, the charge would be uniformly distributed on the
surface and

V, (z)= —2mne z . (4)

Eiv = E—B/N (%=1,2, . . . , ) .

The corresponding Rydberg energy EB A——ome /2' is of
order 10 K and the Bohr radius az ——A /Apme is of or-
der 100 A.

Thus, the electron potential has three terms for z ~ 0:
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However, there are two reasons why V, (z} fails to de-

scribe the system. Since the ratio of the electrostatic po-
tential energy to the thermal energy is large,

I =(mn)' e /kBT=100, (5)

UB(z)= —Aoe /z —(1 5)z(2mn—e ) .

The maximum in this potential occurs at

(6)

there are strong correlations among the electrons. " In
addition, the tunneling process cannot be correctly de-
scribed by any static potential. As an electron tunnels
from the surface the remaining electrons rearrange them-
selves. With these limitations in mind we use the preced-
ing potential to estimate the magnitude of some of the
physically important parameters of the system.

When the surface is "fully charged" E =2mn
~

e ~, but
in order to allow electrons to escape, E is reduced such
that E~ =52m n

~

e
~

with 5 & 1. Then, in terms of Eq. (4),
Eq. (3) becomes

FIG. 1. Potential of an electron as a function of position, z,
above the surface of the liquid helium. Curve A is the hydro-
genic potential alone with 5=1. The remainder of the curves
are for 5=0.45 and n=1.35)(10 cm . B is the potential in

the presence of a uniform charge distribution (without any
"correlation hole" ), C is with the correlation hole as used by Iye
et al. , and D is for the "frozen" hole in the charge distribution.

tempt to account for the electron correlations by simple
static approximations. Iye et al. ' did this by assuming
that when an electron is in the plane, the other electrons
are excluded from a disc surrounding it of radius Tp ~ For
I &50, ro—- 1.38(nn) '~. As the electron moves up-
ward the hole shrinks and disappears when z=ro The.
authors compute this potential as a function of z using a
number of plausible assumptions and find (see Fig. 1)

and

z ax aB(e)

UB = —4m.ne (1—5)e '~ aB,
max

V, (z)= 2nne (z /—2ro), z &ro,

V, (z)= —2nne (z —ro/2), z & ro .

This reduces the contribution from the charge sheet so
that the potential barrier is higher,

where

e= (1—5)2m'naB /Ao « 1

UB(z,„)=m ne r05

and wider,

(10)

(see Fig. 1}. If this, or any other one-particle potential
correctly described the system, then at high temperatures
one would observe an activated rate of charge loss,

IV-exp[ —[UB(z,„)—E, ]/kBTI .

At low temperatures there would be a ternperature-
independent tunneling rate given approximately by the
WKB formula (8=1, and all rates in sec '),

V, (z)= 2nne [(ro—+z )' ro], —(12)

z~ = [aB /e+ ro/(1 —5)]/2,
for 5&0.5.

If, on the other hand, we think of the tunneling as an
instantaneous process, we can think of the charge distri-
bution as being "frozen" in place during the tunneling
process. In this case

(g) and the barrier is even higher and wider (see Fig. 1).W =-(E, /2)exp 2 f +—2m [UB(z) E,]dz-
z

I

The limits of integration are those values of z where the
potential energy UB(z)=E&. For the potential in Eq.
(6},z, =—2aB and z2-=aB/2e. For UB(z) E, -='10 K, —

+2m [ UB(z} E& ]= 1.5 X 10 cm—

There are a number of ways in which one could at-

KXPKRIMKNTAL TKCHNIQUK

Sample cell

The experimental cell (Fig. 2) has two horizontal paral-
lel capacitor plates 2 crn in diameter, separated by 1 cm.
The upper plate has a small hole through its center. A
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D

FIG. 2. Diagram (cross section) of the cylindrical experimen-
tal sample container. A is the upper capacitor plate, B is lower
plate, C is the ring plate that provides the radial containing
field, and D is the point of discharge for generating free elec-
trons.

point electrode located just above this hole is charged to
about —400 V to initiate a discharge. The discharge is
performed at a temperature of about 0.98 K where the
gas pressure is sufficient to sustain the discharge. The
bottom plate is held at dc ground potential. During the
discharge the (negative) potential of the upper plate, Vz,
is gradually decreased so as to provide the pressing field
that forces the electrons onto the surface. Values of V~

ranging between —15 and —300 V have been used.
The space between the plates is filled approximately

half way with liquid helium. A cylinder surrounding the
plates, but insulated from them, is held at a negative po-
tential, V„so as to provide a radial field to prevent the
electrons from reaching the walls of the container. In
this geometry the charge forms a circular disc with max-
imum density, no, at its center. The diameter of the disc
depends on V~, V„and the total charge, Q, as described
later. The electrons move in the plane of the liquid sur-
face in response to the horizontal components of the ac
field used to measure the capacitance. If the diameter of
the charge disc is close to that of the retaining cylinder,
the capacitance between the plates is substantially re-
duced by the shielding effect of the electron layer. As the
diameter of the disc decreases, its shielding effect de-
creases so that the capacitance between plates increases.
Thus the capacitance can be used as a measure of the disc
diameter and, consequently, of the total charge on the
surface.

The capacitance is measured using a 1 kHz drive signal
with amplitude of 0.5 V. The detector is a General Radio
capacitance bridge with a lock-in amplifier. In order to
be certain that the bridge drive does not heat the elec-
trons, measurements were repeated at higher and lower
drive voltages at severa1 temperatures. Anomalous be-
havior was observed at 2 V drive but 0.5 V was well
below the level where the problem could be observed.

(13)

The quantitative determination of the total charge, as
well as the charge distribution over the surface and the
electric fields on the surface, requires numerical computa-
tion. A computer code similar to one used by Lambert
and Richards' ' is used.

The code is run several times to give tables of
b C( V, V„,R, d), Q( V, V„,R, d), and no( Vz, V„,R,d),
where R is the radius of the charge disk. It also gives the
complete density profile as a function of radius r. Typical
examples are shown in Fig. 3. Inverting these tables gives
the more useful forms of Q (hC, V, V„,d ) and
no(b, C, V~, V„,d). In all of the preceding computations
we neglected the small dielectric constant of the liquid
helium, tilt of the sample cell, and deviations of the sam-
ple cell from ideal geometry. We estimate the total error
from these approximations plus numerical errors in the
computation to be less than 5%.
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FIG. 3. A typical density profile for three different values of
the pressing voltage V~, in V;, V~ = —80; ~, V~ = —75; and 0,
V~ = —70. In all cases the radial potential V, = —97.

The initial reading of the capacitance bridge, before de-
positing the charge, was about 0.40100 pF. This was re-
duced to as 1ow a value as 0.3100 pF by the charge, but
the working range has normally been between 0.38000
and 0.40000 pF. The resolution of the measurements
was 0.00002 pF.

With no charge on the surface of the helium, the ca-
pacitance between the top and bottom plate is
C= —dQs/d V~, where Qa is the charge on the bottom
plate resulting from the applied voltages V~ and V„.
When charge Q is present on the surface of the helium,
an additional (image) charge, Qb, is induced on the bot-
tom plate. Its value depends only on the distribution of
Q over the surface and the level, d, of the surface. The
capacitance then becomes

C = dQ&—/d Vz (r)Q—b i& Vz )~,
so that the difference between capacitance with and
without charge on the helium surface is
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The results are strongly dependent on the helium level,
d. Since our level sensing capacitor was unfortunately
not working during the run, the code was also used to
determine the level (which was not changed during the
entire run). This was done by measuring hC for various
values of V but fixed V„and fixed, but initially unknown,

Q in a regime where
~ V~ ~

& V„a critical voltage above
which no charge escapes and the radius is a reversible
function of Vz. Since Q was constant, the calculated
Q(b, C, V~, V„,d ) should also be constant if the correct d
is input. Thus, by stipulating constant Q and using mea-
sured values of b, C, V, and V„, the helium level d was
determined to be approximately 0.44 cm.

In principle, the code allows us to compute the vertical
component of the electric field, E, at the center of the
charge pool. In practice we have adopted an approxi-
mate procedure. The code computes the contribution to
E from the external potentials. We then approximate
the contribution from the induced image charge on the
top and bottom plates by assuming that Qb covers the
bottom plate uniformly so that the density is nb

——Qb/
e A p] $ and that the plates are infinite and parallel. The
corresponding charge on the top plate is then
n, =ns [d /(D —d)] (where D =1 cm is the spacing be-
tween plates) and the field from both charge densities is
2m(n„.n, )

~

e ~. Ou—r stated values of E include this
field. Although this is a crude estimate, the contribution
to the total field is always less than 10% so that we have
no need for greater precision.

Thermometry

The primary thermometer was the vapor pressure of
He contained in a separate chamber. It was used to cali-

brate a germanium resistance thermometer.

Procedure

After charging the surface, the system is cooled to the
desired starting temperature. Then V is reduced in steps

DESCRIPTION OF RESULTS

Activation energy

Figure 5 shows the results of a series of measurements
on a single charge pool. The escape rate (per electron) is
shown as a function of temperature starting at tempera-
tures below 0.5 K. Initially there is little or no tempera-
ture dependence. We have interpreted this to be the
quantum tunneling regime. At higher temperatures the
escape rate approaches an exponential dependence,
characteristic of thermal activation over a barrier. When
the temperature was well into the region of thermal ac-
tivation, the pressing field was temporarily increased to
stop the escape and the system was again cooled down
below 0.5 K. Subsequently, the field was decreased again
so as to allow a tunneling rate comparable to that of the
previous data sets. The temperature was then increased
to measure a new curve. On each successive warm up,
the total charge was smaller. Consequently,

~

V
~

is re-
duced so as to obtain comparable escape rates on all data
series. '

The solid lines in Fig. 5 are fits to the data of functions

IV= A [Bexp( E~/T)+1]—. (14)

A represents the tunneling rate (per electron), B the ratio
of thermal activation rate to tunneling rate, and Ez is the
computed activation energy using the simple model of Iye
et al. , i.e.,

until a small but measurable escape rate is observed. The
temperature is then raised in steps. The rate of change of
the capacitance bridge output is determined from the raw
data by linear regression to the data between steps in V
or T. Figure 4 is an example of the output signal from
the capacitance bridge. It shows both the stepwise, re-
versible changes due to reductions of V and the changes
in slope that measure the escape rates.
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FIG. 4. The capacitance bridge output as a function of time
showing the reversible changes (steps) due to reductions of V~

and the drifts due to escaping electrons. The escape rates in-
crease as the pressing field is reduced.

FIG. 5. The log of the escape rate vs 1/T at approximately
constant charge. The solid lines represent the function in Eq.
(14). The values of the parameters are shown in Table I. The
curves are for four different values of the pressing voltage V~ in
V; Cl, V = —38; o, V = —37; 0, V = —34; &, V = —29.5.
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TABLE I. Values for the solid curves shown in Fig. 5. The parameters E~, A and B are those of Eq.
(14). V~ is the voltage on the top plate and n is the electron density.

Vp (V)

—38.00
—36.99
—34.08
—29.50

Eq (K)

14.4
14.4
13.7
12.8

A (10' sec ')

1.21
0.971
1.60
2.99

10 "8
3.25
2.60
0.95
0.32

range of n (10'/cm )

1.51-1.47
1.45-1.43
1.43-1.40
1.40-1.34

Es = Uq (z,„) E, .—

These data are summarized in Table I.
The activation energy, E~, is a function of two in-

dependent variables, E~ and no. Experimentally, Ez was
determined by a linear regression of ln(W) versus 1/T
(K ') in a regime where the escape rate W is dominated
by thermal activation. For comparison the computed ac-
tivation energy Ez, using the simplified model of Iye
et al. , has been computed for the corresponding values of
E and no. A complete listing of the data is presented in

Table II. Agreement is generally good, indicating qualita-
tive agreement with the static potential description of the
thermal activation process. '

Tunneling

Measured tunneling rates are shown in Table III. The
rates are a rapid function of the density and of E so that
the data shown are for approximately constant no. Fig-
ure 6 shows the rate W (W:—Q 'dQ/dT) as a function
of the parameter 6=E~/2irn

~

e ~. Over the narrow
range of E, for which the tunneling was measurable,
ln(W) is proportional to E . A linear regression to the
data yields the following relations

ln( W) = —0. 12E&+10.73, 4. 54& no &4.52,

ln( W)= —0. 141E +2.70, 2.74& no &2.73,

In( W) = —0. 145E +4.06, 1.44 & no & 1.38,

(15)

when E is in V/cm and no is in units of 10 cm
We have also computed tunneling rates by the WKB

method using the same static potential used to compute
the thermal activation energies in Table II. The ground-
state energies used in these calculations incorporate first-
order perturbation corrections due to the electric field
term and V, (z) in Eq. (3). These results also obey a linear
relation between ln(W) and E; however, the coefficient is
10 to 20 times larger than for the data. This means that
the (negative) exponent in the calculated tunneling rate is
about ten times larger than the measured value. Since
the height of the barrier, as measured by the thermal ac-
tivation, agrees with the theoretical potential, the width
must be very much less than predicted. This is consistent
with a dynamical readjustment of the charge on the sur-
face into the position formerly occupied by the tunneling
electron.

Some of the data in the tunneling regime indicate a
slight decrease in tunneling rate with increasing tempera-

TABLE II. Measured and computed activation energies for various values of electric field, E~, and
charge density, no. Errors indicated are statistical errors computed from the linear regression to the
data.

E& (meas. )

(K)

24+0.2
23. 1+0.5
14.7+0.4
14.3+0.3
14.6+0.4
17.8+0.5
17.4+1.5
15.9+0.3
12.9+0.8
15.8+0.8
14.6+0.3
14.8+0.3
15.2+0.2
15.9+1.2
10.5+0.
11.9+0.1

8.8+0.1

10.8+1.3

El
(K)

24. 1

22.4
17.5
16.5
16.1
17.6
17.1

16.2
15.5
15.4
14.6
13.9
16.6
16.1
13.9
15.5
14.8
12.9

(V/cm)

70.2
69.9
31.3
25.6
21.1

58.0
58.4
55.0
53.6
52.0
48.5
48.0
43.1

39.4
35.1

29.7
20.8
13.5

no
(10 /crn )

0.123
0.131
0.058
0.048
0.038
0.133
0.139
0.136
0.139
0.134
0.130
0.138
0.095
0.088
0.091
0.063
0.041
0.028

Taverage

0.955
0.965
0.73
0.73
0.73
0.67
0.64
0.615
0.595
0.615
0.63
0.575
0.695
0.655
0.575
0.66
0.705
0.63
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Ep
(V/cm) (10 '/sec)

n,
(10 cm/ )

TABLE III. Measured tunneling rates for three different
densities.

-9.20
-940—
-9.60—
-9.80—
-10.0—

182.7
178.0
173.4
159.5
99.4
96.6
93.8
90.9
88.1

85.3
52.4
51.2
48.3
43.8
35.2

1.39
2.19
4.04
6.85
1.05
1.91
2.95
3.88
5.57
8.56
1.17
1.01
1.67
2.98
2.65

0.452
0.454
0.453
0.441
0.274
0.274
0.274
0.274
0.273
0.273
0.149
0.144
0.142
0.138
0.093

—-10.2—
~ -104-

-10.6—
-10.8—
-11.0—
-11.2—
-11.4—

I

0,54 0.36
V I 1 j

0.38 0.40 0.42 0.44

FIG. 6. Tunneling rate vs 5=E~/2mne for three different
densities: C3, no=1.49-1.38; 0, no=2. 74-2.73; o,
no ——4.54-4.52 (10' cm ).

ture. This can be seen in two of the curves in Fig. 5. Un-
fortunately, the data are not consistent in this regard so
that more work is required to determine if it is truly a
feature of the tunneling process. Some temperature
dependence would be consistent with the coupling to rip-
plons, i.e., with the so-called "quantum dissipation"
phenomenon. ' The details of this interesting ternpera-
ture dependence have not been worked out for our
specific system.

Discussion of possible experimental artifacts and errors

The discharge method for obtaining free electrons has
the disadvantage that electrons can land anywhere in the

sample chamber including the helium film covering the
sample walls. These electrons can then be effectively
trapped by their image charge. Electrons arriving at the
surface of the liquid with greater than 1 eV can penetrate
the liquid and reach the plates. If plates have patches
that are insulated by dirt or oxide, some of the electrons
will remain on these patches and will alter the electric
fields on the charge pool. If such charges were to move
during a set of measurements, they would alter the ob-
served time dependence of the capacitance. If the
amount and distribution of such charge were different be-
tween successive rneasurernents, it would contribute to
the scatter of the results since the actual value of F.
would be different than computed from the known ap-
plied potentials. If the amount and distribution of such
charge were highly reproducible it would result in a sys-
tematic error in F. .

We expect that some of the random errors in the data
result from random variations of the amount and distri-
bution of stray charge. This is particularly true at low
values of E . Future experiments designed to eliminate
stray charge will test the possibility. Systematic errors
that would alter the qualitative conclusions of this paper
are ruled out by several arguments. The dependence of

Ez on E~ is qualitatively and quantitatively consistent
with the well-understood aspects of the potential as well
as with previous experimental results. ' Any stray charge
in the system would alter both the thermally activated
and tunneling escape rates in the same direction. Conse-
quently, the fact that the tunneling rate is many times too
large relative to the thermal escape rates would not be al-
tered by the presence of stray charge.

If charge from the pool on the liquid surface were to
escape along paths other than upward from the center of
the pool, our interpretation of the results would be in-
correct. The 1 eV barrier to penetration of the liquid
makes escape through the liquid appear impossible. Es-
cape along radial paths on the surface might occur when
the edge of the pool is within a few microns of the ring
plate. However, in our geometry, as

~ Vz ~

is reduced in
order to initiate the escape, the radius of the charge pool
decreases. Thus, as our experiment proceeds (

~ Vz
~

is re-
duced), escape along radial paths would decrease continu-
ously, whereas the observed rate is constant until it be-
gins to increase at a well-defined critical voltage.

The temperature-independent escape rate at low tem-
peratures could, in principle, indicate simply that the
electrons were not cooled below some limiting tempera-
ture. Several features of the data rule out this possibility.
The most simply stated argument is based on the fact
that the thermal transfer between the electrons and the
helium proceeds via inelastic electron-ripplon scattering.
This scattering rate' increases with increasing pressing
field. Thus, the thermal contact would be best at the
highest pressing fields so that the samples at high press-
ing fields would reach lower temperatures. On the other
hand, the data show that the transition to the
temperature-independent regime occurs at higher tern-
perature for larger pressing fields.

Since the measured capacitance depends on the level of
the liquid as well as the radius of the charge pool, varia-
tions of the liquid level will therefore appear as increases
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or decreases of the amount of charge. In particular, we
have observed small changes in capacitance when tem-
perature differences between the He pot and the He pot
are changed rapidly. We assume this results from a heat
Aush of superAuid He into the filling capillary of the
sample chamber. This could introduce a small artificial
temperature dependence to the escape rates. However,
measurements of capacitance versus time for constant
V~(

~ V~ ~
& VC) show that any contribution from this

source is less than the scatter in the data.

CONCLUSIONS

The measured thermal activation energies are in
reasonably good agreement with the simple, one-particle
static potential used by Iye et al. , assuming the prefactor
for the Arrhenius law exponential term is only weakly
temperature dependent (i.e., not exponential). However,
the observed tunneling rates are much too rapid for that
potential. The "frozen" potential is even worse in this re-
gard. On the other hand, the potential for a uniform
charge distribution (no correlations) yields much more
rapid tunneling than is observed. We do not have as yet
a detailed microscopic description of this process, but the
possibilities we are examining all focus on the dynamical
nature of the tunneling process. Landauer and Buttiker
(LB) showed in a very simple model using a potential
modulated at frequency to (Ref. 3) that a characteristic
time enters the problem. rLa L IU, whe——re L is the thick-
ness of a square barrier and U=&2(U E)lrn is —the
imaginary velocity under the barrier of height (U E). —
For (U E)= 10 K and —for L——= 10 cm, rLa=—5X10
sec. The typical response frequency of the 2D electron

gas to the tunneling electron is the zone boundary
plasmon ro =(2nne im)k with k=n ~ n' . For n
=10 cm, co~L&=-2. In this case the tunne1ing electron
may absorb energy from the electron gas as the gas
overshoots to screen the hole left behind. This could lead
to tunneling where the electron is boosted up in energy
and emerges from the system at an energy higher than
E&. At these energies it has a smaller barrier to go
through. It is also possible that in the process of tunnel-
ing the electron takes a path in the Feynman sense which
is not along the z axis. In this case it takes advantage of
the repulsive field of the neighboring electrons so that the
effective potential for tunneling is closer to that of the
uniform charge distribution than is the potential for
thermal activation.

A successful theory of the tunneling process in this sys-
tem should lead to a better understanding of the basic
quantum tunneling process in the presence of coupling to
other degrees of freedom. Good measurement of the
weak temperature dependence in the tunneling regime
should give us new insights into the effect of ripplonic de-
grees of freedom, quantum dissipation, " on quantum
tunneling. Finally, it will be interesting to understand
how a better theory preserves the agreement between the
observed and statically calculated activation energies.
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