
PHYSICAL REVIEW B VOLUME 38, NUMBER 13 1 NOVEMBER 1988

Perturbation theory of superconducting micronetworks near the phase-transition boundary
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A perturbation theory for micronetworks is developed which is valid near the second-order phase
boundary. Perturbation equations to general order in terms of the nodal order parameter are de-
rived. Explicit corrections to first order in temperature T and magnetic flux P are obtained from the
latter equations. This scheme is then applied to the infinite ladder. Stability limits in terms of the
Gibbs free energy are derived for different spatial vortex solutions. Furthermore, the shielding
currents of the ladder for

~ P ~
&0.2lgo are calculated (Po is the fluxoid quantum) near the phase

boundary as a function of AT and b P and are compared to our numerical solutions of the nonlinear
Ginzburg-Landau equations. The agreement is very good. Similarly, very good agreement is ob-
tained for the order parameter near /=0. 5/0. Expressions for magnetization, differential suscepti-
bility, entropy difference, and specific-heat jump near the phase-transition boundary of the ladder
are derived.

I. INTRODUCTION

Superconducting micronetworks' make a second-
order phase transition in a magnetic field when going
from the normal to the superconducting state. The de-
tails of this transition depend only on the topology of the
network. If the network contains areas which are com-
mensurate to each other, the phase boundary becomes a
periodic function of the fluxoid quantum (()o. Similarly, if
the underlying flux corresponds to a periodic flux struc-
ture due to the presence of vortices, it may lock-in, for
certain magnetic field values, in a state commensurate
with the network, at a global energy minimum.

The mean-field theory, ' based on the Ginzburg-
Landau (GL) equations, assumes that we are dealing with
interconnected filaments thin enough so that they can be
treated as one-dimensional branches in the GL context
[radius & g(t) and 1(,(t)].

Vortex current patterns are predicted in a network as,
for example, for the infinite ladder. ' However, these
loop or mesh currents are of infinitesimally small magni-
tude at the phase boundary and become of physical
significance only in the superconducting state beyond the
phase boundary.

It is the purpose of this work to develop a perturbation
theory suitable for dealing with currents in thin wire
structures which are a consequence of a magnetic flux or
temperature change away from the phase boundary. In
that case, it is appropriate to assume that the normalized
order parameter increases continuously from zero ampli-
tude, at the phase boundary, to a finite value beyond it,
thus permitting a perturbation approach similar to that
used by Abrikosov in deriving the vortex state of a bulk

type-II superconductor.
When a current from an external source is introduced,

however, the transition from the superconducting to the
normal state is not of second order. In that case, the full
nonlinear theory has to be applied to obtain meaningful
results.

Micronetworks of micrometer and submicrometer di-
mensions have been studied by a number of experimental-
ists, in particular with regards to the details of the
phase-transition diagram of periodic networks, '

confirming predictions of theoretical studies. ' Interest-
ing experiments of aperiodic and disordered networks
have been performed recently' which have been com-
pared to theoretical predictions. '

This work deals with a perturbation theory for micro-
networks near the second-order phase-transition bound-
ary. In Sec. II we develop the general perturbative for-
malism for micronetworks, in Sec. III, specific perturba-
tion equations are derived, and in Sec. IV, the Gibbs free
energy is evaluated and applied to a ladder network in or-
der to find the most stable spatial configuration of the or-
der parameter and vortex current pattern. In Sec. V we
compare numerical results of our perturbation theory,
applied to the ladder, to our exact numerical, nonlinear
calculations on the ladder for two different extreme cases,
and Sec. VI is devoted to the conclusions.

II. PERTURBATION EQUATIONS
OF SUPERCONDUCTING MICRONETWORKS

A. General considerations

We start our perturbation calculation at a point on the
phase boundary, separating the normal from the super-
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conducting state. When entering the superconducting
state from the normal region, the phase transition is of
second order and occurs at a magnetic field H =Ho. The
latter is a function of the transition temperature To so
that the phase boundary is described by the pair of vari-
ables Ho, To. The relation between Ho and To is ob-
tained from the eigenvalue solution of the linearized GL
equations, that is, in the limit that the order parameter
(OP) is vanishingly small. As a consequence, any per-
sistent currents are infinitesimally small and the local
magnetic field is the applied field.

For the vortex state of type-II superconductors, Abri-
kosov devised a perturbation scheme near the bulk tran-
sition field H, 2 in which the temperature is kept constant
and K is varied near H, 2. It consists of expansions of the
vector potential A(x, y) and the order parameter P(x,y)
of the following form:

A= Ao+g A~+g A4+

Ap and f, are the dominant terms at the phase boundary
at H, 2. Ao is directly related to the applied field, that is
to H, 2, and P, is obtained from the lineared GL equations
as a function of Ao. The parameter g is dimensionless
and is a measure of the order of magnitude of the correc-
tion terms in the perturbative scheme. Starting with Ao
and t(t„A2 is obtained from the second (current) GL
equation. With the corrected A value, a relation for P3 is
obtained from the first GL equation from which the vor-
tex state near H, 2 is calculated. We take a more general
approach for micronetworks. In addition to the above
deviations of A, we permit also a variation in tempera-
ture, expressible in terms of changes in the temperature-
dependent coherence length g(t), where t =T/T, and T,
is the transition temperatures in zero magnetic field (criti-
cal temperature)

We then define a complex modified order parameter by

f.b(x) =e g.b(x)

where

y,„= I A(u) du,
o 0

(4)

f,(x)=f,b(x)=e "fb(x')=e '"g, (x)
C

=e '"Pb(x'),

'Vbx =Nb +Tgx

V„y,„= A(x),2K

A(x) = A(x'),

V ab Xba

f(x)=
~ f ~

e'e(

I((x)=
~ g ~

e~'"' .

and where the path of integration is along the branch.
Although f,b(x) is not single valued, it has obvious ad-

vantages in simplifying the starting equations.
Let the branch length between nodes a and b be L and

the curvilinear coordinate be x' when measured from
node b, so that x'=L —x as shown in Fig. 1(a). We then
simplify our notation to the following scheme:

go is the value of the coherence length at the phase
boundary at which t =to=To/T, . The value of go is
nonzero at to except in zero field where to approaches
one and go infinity. Ao is related to Ho(To) of the net-
work.

An equation for networks equivalent to Abrikosov's re-
lation for P3 will be discussed below, separately, in the
context of higher-order nodal equations of a network.
This equivalent relation will lead to a different conclusion
than that obtained by Abrikosov for the vortex state of
infinite extent because of the finite length of the filaments
of a micronetwork and the specific boundary conditions
at the nodes (generalized Kirchhoff's current laws). The
expansion of the order parameter will be done in terms of
a modified order parameter which has the advantage of
simplifying the starting equations and nodal relations.

B. Modified order parameter

Assume that the usual complex GL order parameter
on a branch connecting nodes a and b is t)'j,b(x), where x
is the curvilinear coordinate measured from a towards b.

0-2
x~ ( J)

fl ~

+n+2

FIG. l. (a) Coordinate system used in conjunction with Eq.
(3) for the modified order parameter between nodes a and b.
The length x to point P on the filament is measured from node
a, while x' is measured from node b towards P. (b) Shown are
the symbols of the infinite ladder as used in the text. Coordi-
nate system x-y, longitudinal and transverse current densities JI
and J„ index of node n, order parameter at upper (Pt) and
lower (Pi=@i') branches, and lattice spacing a. The vector
potential A is parallel to the y direction (0, A~,O).
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Unit vectors along the wire are taken radially outward
from nodes a and b.

C. General starting equations

%hen subscripts are dropped, the GL equations in the
modified OP notation become

gV f+(1—If I
)f=0,

'2 '2

X,~(x)= —v f,3+ —V f„4, k4

0 0

+(fa) )'(f.3)*+2
I fa i I

'f.3

etc.
The solution of the lowest-order equation (j =1) yields

a modified OP to first order which is

, i(f 'vf fvf—' »c 4~/
(7)

f, &(x ) = [f,&(0)sin(L —x) +e "f»(0)sinx ]/sinL,

V„i —A P, (x) =0,

where current density J is in Gaussian units
(statamperes/cm ), the fluxoid quantum go=bc/2e and g
and A, are the temperature dependent GL coherence
length and penetration depth, respectively. The usual no-
del condition'

where

27T b

b& =gp AJ dx (with x =x/gp)
p a

Inserting f„(x), Eq. (11), into the nodal condition (8)
gives the usual first-order characteristic equation

where the sum is over all branches connected to node a,
reduces in the modified OP notation to

']'ay)

f„(0)g cotL& g.— f@(0)=0,
P sinL&

(12)

Qv, f, (x) =0.
x=0 (8)

The gradient is measured outward from the node. Then
within the context of our perturbation scheme the
modified OP is

f, (x)=rif„(x)+ri'f, 3(x)+ri'f, &(x)+ (9)

It is the object of our perturbation scheme to apply con-
sistently Eqs. (1), (2), and (9) to Eqs. (6)—(8). Equations
(6) and (7) are the starting equations and Eq. (8) is the no-
dal condition, with f being complex. Taking real and
imaginary parts of Eq. (6) yields

4'v'
I f I

+[I—
I f I

' —4'(ve)']
I f I

=0
and

v'e+2ve(v
I f I

)/
I f I

=0.
Equation (7) is also

where the sum is over all branches connected to node a
with P being a running index over all nodes P, including
node b, which are connected directly to node a, and
where f„(0)=f„(x=0) and fb, (0)=fb, (x'=0) are the
modified OP's at nodes a and b.

The determinant of the coeScient matrix of the homo-
geneous set of equations of the form (12), corresponding
to a given network, must be zero if the nodal OP's are to
be nonzero. This leads to an eigenvalue equation which
determines the phase boundary Ho( To ) of that particular
network.

Higher-order solutions are found the following way:
For order j & 3 (odd), the function X, (x) is known in
terms of f, z(x) and the temperature diff'erence from
the phase boundary implicitly through the term g
Then Eq. (10) can be integrated by the variation-of-
constants method. The nodal condition (8) then leads to
the following nodal equation for the higher-order solu-
tions:

J=vxvx A=
I f I

ve .
C 2m-A, 2

D. Perturbation equations

Inserting Eq. (9) into (6) and measuring lengths in units
of gp, we obtain the general perturbation equations for
the order parameter

V f„(x)+f,~(x)=X, (x) with j=1,3, 5, . . . , (10)

where

X, i ——0,

f„(0)g cotL& —g . f&, (0)= gsinL& j
&

sinL&

where

~aPO~3='&.pre
' fpi(0)

+ [X,csin(L p
—x )]dx,

a

~ ps=['1' p4+ —,(y, i') ]e '~fp/(0)

+i@ ai32e fp3 (0 )

P+ [X,~&(x )sin(L& —x ) ]dx,
a

(13)

2

v'f. i+ If.i I'f.i

etc.
In evaluating Eqs. (12) and (13) it should be recognized

that integration around a closed path leads to

2K
go= $0 Ao.d x = 2m.

00 40
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where P is the flux at the phase boundary, and

2ir bPy2=(o A2 dx=2ir
4o 4o

'

where b,P is the flux difference in the closed contour mea-
sured with respect to the enclosed flux at the phase
boundary (x =x /go).

Consider P,» just below Eq. (13). It contains a first-
order correction term in the magnetic flux b, P (through

y2 or A2 if integrated around a closed loop) and a first-
order correction term in the temperature, To —T=5T,
through gz embedded in X&, so that the existence of the
correction term f3 depends on the first-order correction
terms bP and bT. The condition for the existence of
solutions off are that all the characteristic determinants
vanish' (there might be several, depending on the rank
of the coefficient matrix). The requirement that f3 exists
leads to an equation containing bP and bT, while the
postulate that f5 exists, for example, leads to an equation
which contains also (bT), (bP), and (AT)(b,g) terms.
In what follows, we shall limit our considerations to
first-order correction terms in b,P and hT.

II, using the same procedure as above, this relation be-
comes

d a3f [f„(x)]*X,3(x)dx = [f„(x)]'

df„(x)—f,3(x)
dX x=0

Summing Eq. (17} over all branches in the network and
applying the boundary condition, Eq. (8), at each node,
we arrive at

f [[f,i(x)]'X,3(x)—2J, A~(x) jdx =0, (18)
all branches

where we have defined

4~
( J2)conv

J~ =—

&2H, /A,

III. AMPLITUDE OF ORDER PARAMETER

For j = 1, Eq. (10) is a homogeneous, linear differential
equation and, therefore, does not fix the amplitude of the
OP. To determine the latter, one has to consider at least
the equation with j =3 which contains the inhomogenous
term 1,3(x). This equation is similar in form to that used

by Abrikosov to fix the amplitude of the OP of the vortex
state.

To simplify the following arguments, we drop the sub-
script of X and let f, i

——u(x) and f,3 v(x). Then——Eq.
(10) for j =1 and 3 takes on the forms

with J2 ——J,b2 being a second-order term. In the above
equation, the term A2(x) is made up of two contribu-
tions, the self-field A2(x) arising from the current density

Jz in the filament, and a term ~5, Az(x) which is due to an
externally imposed magnetic field difference measured
from the magnetic field Ho at the phase boundary:
Az(x)=A&(x)+b, A2(x). Assuming that the network is
made up of superconducting filaments of constant cross-
sectional area S, we can multiply Eq. (18) by S and obtain
an integral over the volume of the superconductor. Note
also that Jz ac

I f, I, that

Lu(x)=0,
Lv(x) =X(x),

(14)

(15)
that

f dv J2 EAz ——SJ2f (EAz)dx,

f b dU dQ
u (x)X(x }dx = u —v

Q dX dX
(16)

In Abrikosov's case, the limits of integration are +Oo
and the functions u (x) and v (x) and their derivatives are
zero there, so that the above integral is also zero. So in
that case u (x), the unperturbed function is orthogonal to
X(x). This holds more generally whenever the perturbed
and the unperturbed solutions obey the same boundary
conditions. In our case, however, the limits of integra-
tion are from node a to node b at which the perturbed
and unperturbed solutions are not zero or do not obey the
same boundary conditions. So the orthogonality condi-
tion, as used by Abrikosov, does not apply to micronet-
works.

In order to find a new relation for a micronetwork, we
multiply Eq. (15) by [u (x)]*. Then in the notation of Sec.

where L is a self-adjoint operator, regular in the interval
(ab) under consideration. In our case L =V, + 1. Multi-
plying Eq. (15) by u (x), integrating by parts, and making
use of Eq. (14) leads to

b

f dv J, A,'(x) = —(J,S)'k fdx,

(19)

where

f Ifi I'«
all branches

f J~ A2dx, .
all branches

f Ifi I'«
all branches

p2
all branches

f kJ2dx .

where k is a constant.
If we scale f, I

by a (hT, hH}, where a =0 at the
phase boundary, then a can be calculated from the
volume integral of Eq. (18). After replacing X,3(x) by use
of Eq. (10) we obtain

S(g~/go) P, +2ShyP~

SP +2S P
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Here hy is the circulation of 532 along a given closed
portion of the network. We see that the second term in
the denominator is of order S . If the condition S &&A,

is satisfied we are justified in neglecting the self-field term.
Thus Eq. (19) becomes

aT
CX +2hyT T p2 p2

(19')

where hT and (hy )P2 are positive in the superconducting
state below and second-order phase transition boundary.

In a recent paper, Ref. 17, the mixed state of a super-
conducting network was discussed. There, the authors
substitute the linearized GL equation back into the fully
nonlinear free-energy expression, thus neglecting terms
which are relevant beyond the phase boundary. This pro-
cedure leads to a nonpositive definite squared order pa-
rameter when the fully nonlinear GL equation is substi-
tuted into the free-energy expression and their minimiza-
tion procedure is followed.

In the next section, we shall deal with the infinite
ladder in which case we can exploit the symmetry of the
commensurate states and replace ,' f 6—A2dxby

bG

[H, (0) /4m. ]Sgo

M=-
dH

=lb,H, (21')

(21)
The summation extends over all branches of the network.
The ratios P, /P3 and P2/P3 can be readily calculated.
Note that 6T and ( b,P )P2 are positive. Then it is
straightforward to obtain other thermodynamic quanti-
ties such as the magnetization M( T), the magnetic
differential susceptibility X(T), the entropy difference
S(H), and specific-heat jump b C between the supercon-
ducting and normal states at the phase boundary. As-
suming the normal state is nonmagnetic, that
bT=To Tand—A/=a (H Ho)=—a b,H, then in units
of H, (0)S(o/4' these expressions are

and J2by

g=
dT Ho T, —T p3

ET~C
TO

(21")

all upper branches

where we have assumed a vector potential
A= [0,(Ho+AH)x, 0) with the y-coordinate parallel to
the ladder as shown in Fig. 1(a). The symbol t means the
upper branch, and the last integral is

hH —y =AHa2 2=5 2,
n 2

where a is the lattice spacing between nodes and hP is the
flux difference in a mesh of area a . The vector potential
parallel to the x direction is zero, so that the term
Jz.J b, Azdx does not contain contributions from the
transverse current J, . '

Near the phase boundary ' the order parameter at node
nis

f ', = (e '~"+&—e"")=(f,)*,

where

a8 =3 cos ——2 cos —q
ko 2

with y = 2m Pleo, and P is equal to the fiux through area
a at the phase boundary (/=a Ho). The phase bound-
ary is obtained from the characteristic determinant of Eq.
(12) which leads to the following eigenvalue equation:

2 1/2

3 cos —=2 cos cosq+ 1+ 2 sin —sinq
a r
0 2 2

IV. GIBBSFRKK ENERGY GF INFINITE I.ADDER

H, (0)A.
G, —G„=a dU A2 J (20)

Distances are normalized by k and the self-field term
A2 Jz is of higher order for thin filaments (S « A, ). We
neglect this term here and in Eq. (19). Applying Eq. (20)
to the infinite square ladder we obtain

The Ginzburg-Landau equations are obtained by vary-
ing the Gibbs free energy with respect to 1t, p', and A
and finding an extremum of the free energy. If the full
GL equations are substituted into the Gibbs free energy
and integrated over all space, the following expression'
remains to fourth order:

(22)

I f„, I

= —,'a [I+8 +28 cos(2qn)], (23)

For a fixed value of ) (or Ho), the smallest eigenvalue
a/go(T) (largest T:—To) is chosen. This determines the
appropriate wave vector q, as a function of P at the phase
boundary. Therefore, the transition temperature To be-
comes a function of P (or Ho) and q. For
P &0.214 824$o=p, the value of q=0 and for larger
values of P the value of q varies from zero to vr/2 at
P =go/2. For still larger values of P, the persistent
current patterns reverse direction, but symmetry is main-
tained with respect to Po/2 and the phase boundary be-
comes periodic with period Po. Then it follows from the
linearized equations, with a arbitrary, that
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Ji2(n, n +1)=
a

4 sin
ko

sin ++q +B sin +—q2 2

+2B sin
2

Xcos[q(2n +1)], (24)

J ( n, n ) =a B sin sin(q)sin(2qn ) /sint2 (25)

Within our perturbation scheme, however, the scaling
factor a is no longer arbitrary. Away from the phase
boundary, in the superconducting region, a is deter-
mined to first order in b, T and bH by Eq. (19'}.

With Eqs. (11), (23)—(25), the coefficients P, to P3 were
numerically evaluated for the ladder and the Gibbs free
energy, Eq. (21},was obtained for various q intervals.

Equations (19') in conjunction with Eqs. (11) and (23),
describe completely the order parameter to first order in
AT and AH inside the superconducting region of the
phase diagram. However, a point inside that region can
be described by first-order solutions of various q values.
We assume that the most stable solution is the one with a
q value which has the lowest Gibbs free energy. In order
to demonstrate this clearly, we permit solutions with
discrete q values by taking periodic boundary conditions
as will be shown below. In that case, we obtain regions in
the phase diagram where one discrete q value, q&, has a
lower free energy than the adjacent q values such as qk
or ql, +, or other q values.

Equation (21) is that of a parabolic cylinder in hT and

bP (or b,H) for a specific q value, qk. For another q
value, say qk+, , the free energy is also represented by a
parabolic cylinder but shifted in the space (b,G, b, T, AH ).
The curve of intersection between those two surfaces in
the superconducting region are lines where the energies
of the adjacent q values are equal. Figure 2 shows those
curves emerging from the phase boundary of the ladder.
The periodic boundary conditions imply that g„=t(t„+
with q=2~k/m and 0(k ~m. However, the relevant
quantities in the free energy are related to

~ g„~ which
is periodic over a distance m/2 instead of m, so that we
choose q =ok/(m/2) with 0&k &m/2. Figure 2 is a
plot with m /2= 10, and Fig. 3 with m /2=30.

Consider Fig. 2. Assume that we are at the phase
boundary at point P, with q=a/10. Then, in order to
get to point P without changing the q value, we have to
lower the temperature and decrease the magnetic field as
shown in the figure. For the path shown, the ladder
would be always in the lowest energy state. However, if
we were to start at Po with q =0 and decrease the tem-
perature at constant flux, or start on the phase boundary
at P2 with q =a /5 and decrease the magnetic field, in or-
der to reach P, and also require that we stay in the lowest
energy state, then the order parameter has to change its
period. Therefore, for the ladder to remain in its lowest
energy state, while H and T are changed, requires that
the spatial period of the order parameter changes in gen-
eral. An exception to that rule is that as hH and AT are
changed, the initial and final destination in the phase dia-
gram and the path taken are in the same q region such as
(P„P) in Fig. 2.

As can be seen from Fig. 3, as m/2 is increased, the
constant q regions become narrower and a path taken
from the phase boundary to an interior point without

1.4

m/2 = 10

1.0

((T)
0.8

0.6

0.4

k=1

=3) =AG (4 =4)

0.2

0.1 0.2 0.5

FIG. 2. Boundaries of Gibbs free energy, Eq. (21), for different wave vectors q =2m.k/m of the infinite ladder for an assumed
periodicity f„=f„+ . The phase boundary is the lower curve for which AG=0. The lines pointing into the superconducting re-
gions are where AG(k) =b, G(k+1), indicating the energetic stability limits for various wave vectors for a period m =20.
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1.2

1.0

0.8

rn/2 = 30 I

l

I l 1

!
! qo 11 i2 ~3 ~4

=dG (k=6)

0.4

0.2

0.1 0.2

() i (i
0.3

I

04 0.5

FIG. 3. Similar to Fig. 2, except that m =60.

changing the q value becomes more restricted. In the
limit that m/2-+ 00 that path approaches a well-defined
curve except for fluxes P(P, =0.215/0.

Due to the perturbative character of the present ap-
proach, it should be noticed that the lines drawn in Fig. 2
and Fig. 3 are only reliable near the phase boundary
where they are tangent to the exact dividing line between
surfaces of different q values.

V. COMPARISON OF PERTURBATION
WITH EXACT SOLUTION

In order to test our theory, we obtain exact nonlinear,
numerical solutions for the ladder for two cases: (A) for
q =0 and (B}for P/$0= —,', and compare these to our per-
turbation solutions near the phase boundary.

When q =0, the transverse currents are zero and the
longitudinal currents act like shielding currents in a su-
perconductor at low fields. This happens to be the case
when ! neo P! (P„where n is a positive or negative in-
teger or zero. The exact solution was obtained by modi-
fying the numerical program of the SQUID circuit of
Ref. 9 to that of a lasso of circumference a /g(t) with arm
length equal to one-half the circumference. Then the
symmetry of the order parameter and nodal slope condi-
tion, Eq. (8}, are the same for the lasso as those for the
ladder with J, =0 [Eq. (25)], as indicated by the insert of
Fig. 4. At the antinodal point A and halfway between
nodes n and n+1, the value of ! P(x)! is a minimum,
while at point 8, at the end of the lasso arm and in the
middle of the transverse branches, it is a maximum. Fig-
ure 4 shows exact nonlinear results of the normalized
shielding current JI of the ladder as a function of magnet-
ic flux through an area a of the ladder (which corre-

sponds to twice the flux through the lasso loop) for vari-
ous constant temperatures [constant a /g(t)]. To obtain a
valid comparison, we compare the slope of JI at JI ——0 in
Fig. 4 with that obtained by our perturbation approach at
the phase boundary.

For q =0, it follows from Eqs. (22) —(25) that 8 =1,

Jl (n, n + 1)=a sin(y/2)/sin[a /go(t)],

J, =O.
The absolute values of the order parameters are the same
at all nodes. However, in between they are functions of x
and y. From the linearized solution, Eq. (11), it follows,
in normalized notation, with !f„!=1, that

1
! P(y}! = [sin (a —y)+sin y

sin a

+2 sin(y)sin(a —y)cos(y/2)],

for the longitudinal branch between nodes n and n +1,
and

! 1(t(x)! =cos (x}/cos (a/2)

for the transverse branch, where we have used the same
coordinate system as that shown in Fig. 1(b). Also,

cos(y/2) =cos(a }—sin (a /2)

from the eigenvalue equation, Eq. (22}. Because of
periodicity we restrict our calculation of the /3's to a unit
cell. Integrating the OP on one branch from y =0 to a,
and on the other from x =0 to a/2, for a =m. /8, leads to

Pi/2=0. 387 53+0.201 52=0.58905,

and

Pq/2 =0.382 45+0.206 84=0.589 29,
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4i'40
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FIG. 4. Comparison of the perturbation approach, applied to the infinite ladder, using Eq. (19 ), with exact nonlinear, numerical
calculations as used in Ref. 9. The curves are the longitudinal currents, JI, as a function of magnetic Aux per area a for various con-
stant temperatures [constant a/g{t)). Curve a corresponds to a/g{t)=0. 38359, b to 0.38761, c to 0.39270, d to 040765, e to
042261, and f to 043756. The slope at J& ——0 of curve c [a/g{t)=n /8] is compared with that obtained from the perturbation re-
sults, Eq. (24'), and is shown by line g. The latter value is —15.68 while the exact value is —15.63. For inset see text.

'2

+2 b(t 1 sin(y/2)
0.589 29 sina

(24')

Then, for example, for a =~/8, with
cos{y/2)=1 —3 sin {a/2), the slope of the normalized
current with respect to the normalized flux, at the phase
boundary, becomes

dJI

d(bglgo)

This compares very favorably with the result of the non-
linear calculation of —15.63. Equation (24'), the pertur-
bation result, is also shown in Fig. 4 for a /g(t) =n/8.

Figure 5 shows a cross-plot of the nonlinear solutions

where the first term of the sum is from the longitudinal
and the second from the transverse branch. It then fol-
lows from the linearized result, Eq. (24} with a = 1, that

Pz ——sin(y/2)/sin(a) .

In calculating the p's, the first order solutio-ns of the
OP's were taken, obtained from the linearized GL equa-
tions. Then, the current density, away from the phase
boundary, is obtained from Eq. (24) with q =0 and a
defined by Eq. (19')

z sin(y/2)
JI ——+a

sina

When the temperature is kept constant (AT =0), this be-
comes

1.9992 sin(y/2)
d [b (a /g)] a /g sin(a /g)

(24"}

which is shown in Fig. 5. The graphical nonlinear results
indicate a value of 6.22 for the slope. The results shown
in Fig. 5 are less accurate than Fig. 4 because of the
graphical procedure used to construct Fig. 5. This shows
that the agreement between our perturbation approach
and the exact nonlinear, numerical solution is excellent
for q =0.

B. Case /=$0/2

When the flux through area a of the ladder is one-half
of a flux quantum (y =m ) then the wave vector q =m/2
and it follows from Eq. (22) that cosa =&5/3 or
a=0.72973. Then the value of 8=&5—2. It follows
from Eqs. (24) and (25} that JI ——0 and J, =0, so that pz,

of J& as a function of a /g(t) for constant flux

P/$0=0. 150. Again, we test our perturbation equation,
but this time for b, / =0. With

JI ——+a sin(y/2)/sin(a /g),

and

b T p& 26[a/g(t)]
CX x0.9996

Tc Tp', a/—g(t)

the slope at the phase boundary, at a/(=0. 3836, be-
comes
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FIG. 5. Cross-plot of Fig. 4, for constant flux /=0. 15$o, for various temperatures of the nonlinear results of JI. The slope at JI ——0

is equal to 6.22 for the cross-plotted results, curve a, and 6.33 for the perturbation result [from Eq. (24")], line b.

in Eq. (19') is zero and a does not contain a linear
correction term in b, P (or hH) near P=Po/2. The only
linear term which remains is in hT (or ha) since P,&0.

The functional behavior of t((x) is explained in the in-
sert of Fig. 6. Across branch (aa'), the phase difference
of the order parameter is zero, and at point M the value
of P(x)

~

is a tnaximum. The phase angle 8=0 at

node a, —90' at node b, —180' at node c, +90 at node d,
etc. , while at a', b', c', and d' it is equal to 0', +90, 180',
—90'. Therefore, the phase difference across the trans-
verse branches varies as 0', —180', 0', 180', 0, while
along the upper branc'h, between nodes, it varies by
—90, and on the lower branch that difference is equal to
+90'. The order parameter along the transverse

0.1

(a)

0.01

0.001
10-5

I I I I I I

10-4

I I I I I s I

103 10-2

FIG. 6. Log-log plot of the maximum order parameter at position M [see inset (a)] as a function of temperature difference, mea-

sured from the phase boundary, at (I=4)o/2. Curve a was obtained numerically from the nonlinear equations, following the pro-
cedure outlined in inset (b) [see text and Eq. (27')], and curve b, from the perturbation approach, Eq. (27).
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branches, in the linearized approach, in normalized nota-
tion, is

g(x)=2
~

ft
~
[cos8,sin(a/2)cosx

+ i sin8 cos(a /2)sinx ]/sina .

solutions for
~ P~ ~

were obtained from the nonlinear
equations, in the spirit of Ref. 9, and are shown in Fig. 6
on the log-log plot of

~ QM ~

versus b(alp(t)) .The
overall fit is satisfied by

Between a and a', where the maximum is located, one ob-
tains from Eq. (26) ~ QM ~

=1.990&6,(a/g), (27')

I
ebb'(x)

I

'=
I @b I

' sinx

sin(a /2)

while between b and b' it is

2 which compares very favorably with Eq. (27), valid near
the phase boundary.

Thus, near the point /=0. 5/0 (q =n. /2) on the phase
boundary, the order parameter can be expanded linearly
in b T while the coefficient of the term in b, P is zero. The
lowest order term in b P is probably the quadratic term.

From the latter equation it follows that at x =0 the OP is
zero and that the phase of the OP Hips by 180' with no
current passing through that transverse branch. This is
what we call a phase Pip -center Dep. ending on the value
of q ( =sr/n), the distance between such phase flip centers
for a commensurate vortex state is n lattice spacings.

Since the vector potential is parallel to the y direction,
and y, b

——~/2, the linearized order parameter between
nodes a and b is

~
g(y) ~,&

—— [(1+B)sin (a —y)+(1 —B) sin (y)
4sin a

—2(1+B}(1—B)sin(a —y)sin(y)]

with

and

It then follows from the above equations that

P, /2 = ( 0. 146 12+0. 152 80+0.018 07 ) =0.31699,

p2/2 =0,
p3/2 = (0.030 00+0.064 09+0.001 59)=0.095 68,

where the first number in brackets comes from the longi-
tudinal branch over distance 2a, while the second and
third numbers come from the transverse branches with a
maximum and a zero in the order parameter, respectively
(over distance a /2).

With a =2(ba)p, /(ap3), the maximum value of the
order parameter at point M [see inset (a) of Fig. 6] is

~ P~ ~

=a ' =1.994+5(a/(0),
cos(a /2)

(27)

where the term on the right-hand side is written in con-
ventional units.

Inset (b) of Fig. 6 shows schematically the functional
dependence of

~
g(x)

~

between point Z and M via nodes
a and b, at which point the slope of

~
f(x)

~

changes by a
factor of 2 in each case due to the nodal condition (8).
Using Jacobian elliptic functions and expanding these for
the Jacobian parameter

VI. CONCLUSIONS

We developed a perturbation theory which is applic-
able to micronetworks near the second-order phase-
transition boundary. Equation (13) is the perturbation
equation of the nodal order parameters. When we postu-
late the existence of a third-order correction to the order
parameter, we obtain an equation which leads to a per-
turbation equation in first order of b, T and b,P measured
from the phase boundary. This equation is related to but
different from the orthogonality condition Abrikosov
uses in characterizing the vortex state of a bulk type-II
superconductor, because of the unique boundary condi-
tions in a network. Our new relation is stated by Eq. (18)
which leads to Eq. (19), the amplitude equation of the
perturbation. Since a spatially modulated order parame-
ter can lead to lower free energies (for certain magnetic
flux intervals) compared to the spatially uniform state,
the p coefficients are functions of the wave vector q of
that modulation. A consequence of this are persistent
mesh and loop currents, like those in a thin film in a mag-
netic field tangential to its surface, ' with the exception,
that the spatial size of the vortex currents are controlled
by the topology of the network. The latter circumstance
leads to commensurate as well as incommensurate vortex
states.

The vortex and shielding currents of the ladder are
given by Eqs. (19'), (24), and (25). In order to determine
which wave vectors are the appropriate ones near the
phase boundary, the Gibbs free energy differences were
obtained from Eq. (21}and calculated for different values
of q =2m.k /m. For adjacent q states, the boundary of sta-
bility of a particular spatial modulation was found by
equating b,G(k) to b, G(k+I ), where stability is defined in
terms of lowest Gibbs free energy. Such regions of lowest
energy are shown in Figs. 2 and 3. Thus, starting from
the phase boundary, if, for example, the magnetic field is
changed at constant temperature (or vice versa or both)
the wave vector will, in general, change when going to a
point beyond the phase boundary into the superconduct-
ing state. This leads to a redistribution of the vortex
currents when H or T is changed. There exist, however,
very special regions or paths of AH and hT where the q
value does not change.

We tested the results of our perturbation theory with
the results of numerical computations, solving the non-
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linear GL equations in the spirit of Ref. 9. This compar-
ison was done for the low field case (/ &0.21$o), where

q =0, and for /=0. 5$O, where q =n /2. Figure 4 shows
the longitudinal current JI in the ladder as a function of
flux at constant temperature and Fig. 5 shows JI as a
function of temperature for constant flux. The agreement
with the exact nonlinear results is excellent in the limit
that JI~0. Similar good agreement is obtained for the
order parameter as a function of bT (Fig. 6) when

q =m /2. A change in fiux, b,P, at / =0.Spa does not pro-
duce a change in the order parameter to first order.

The gpod agreement between our results, obtained
from our perturbation theory, and our nonlinear numeri-
cal solutions, gives us confidence that both approaches

are correct. Expressions for magnetization, differential
susceptibility, entropy difference, and specific-heat jump
for the infinite ladder near the phase-transition boundary
are given by Eqs. (21') and (21"). The perturbation ap-
proach developed here is general enough to be applicable
to any network. The square array and other similar
structures are being investigated at present.
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