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The behavior of a dilute Bose superfluid at low temperatures, T << T}, is considered with em-
phasis on the superfluid density, p,(7). Many of the predictions of the Bogoliubov model are exact
in this regime and are shown to lead to a scaling description of the crossover from ideal to interact-
ing Bose gas behavior as the density is reduced. Combined with previous work on scaling near criti-
cality, T~ T,, these results complete the crossover description of the dilute superfluid over the full
temperature range. Diagrammatic perturbation theory in the superfluid phase is outlined and previ-
ous results from the helium literature are summarized. The various divergences encountered have
previously been shown to arise from nonanalyticities in the self-energy functions at zero momen-
tum, and these are related to the spin-wave nature of the superfluid phase. A full renormalization-
group fixed-point picture is presented summarizing the zero-temperature and finite-temperature re-

gimes and the flows connecting them.

I. INTRODUCTION

In Ref. 1 the crossover from ideal to interacting Bose
gas critical behavior, which occurs as the overall density
is reduced, was worked out in detail. From the ideal-gas
relation for the transition temperature, T, as a function
of number density, n, namely

n=p/m=§1d)A;l < T3~ T, (1.1)
one sees that low densities entail low temperatures as
well. Here and below d is the dimensionality, m is the
particle mass, T, is the actual transition temperature
(which will be close to T, at low densities), {(z) is the
Riemann { function, and

Ar=h/QumkyT)'? (1.2)

is the thermal de Broglie wavelength, which constitutes
the most important large length at low temperatures. On
the scale of T,, however, the analysis in Ref. 1 was re-
stricted to the critical region, t =7/T,~1, and was
therefore unable to treat the true neighborhood of zero
temperature, t << 1. The objective of this paper is to con-
sider this region so as to complete the crossover descrip-
tion of the dilute Bose fluid.

The low-temperature behavior of a dilute Bose fluid is
an old and well-understood subject. The main aim of this
paper is to interpret and clarify some of what is known in
more modern phase transition language. It will be seen
that, in many senses, T =0 can be viewed as a critical
point with its own associated exponents; a crossover scal-
ing description will be appropriate here, as well, in the di-
lute limit. Although the behavior is quite interesting
near T =0, it will transpire that the analysis is much
simpler: all exponents and scaling functions can be writ-
ten exactly in closed form—no novel analytic techniques
are required. In fact, the main results, at least for dimen-
sion d =3, are implicit partly in the original Landau
quasiparticle model,? and especially in the classic work of
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Bogoliubov,’ where he introduced his famous transforma-
tion (see Ref. 2 and Sec. II below). However, none of the
previous work has emphasized the critical nature of the
behavior, nor explored its dependence on the dimen-
sionality d.

To see why some type of crossover scaling description
might be appropriate in the T =0 region, compare the
predictions of the Landau quasiparticle model with those
of the ideal gas.

The Landau model treats the elementary excitations of
the superfluid ground state as a gas of noninteracting, un-
conserved Bose quasiparticles with a dispersion relation
which is asymptotically linear (phononlike) at small mo-
menta

gg~fic |q|, |q|—0, (1.3)

where the speed of sound, ¢, has a value of 238 m/s in
bulk *“He. From this spectrum, the low-temperature be-
havior of various thermodynamic quantities? follows im-
mediately: for example, the “T* law” for the specific
heat,

3

kgT

fic

_ 2w h
v 15¢

d=3 (1.4)

and the “T* law” for the normal fluid mass density,

kpT |*

2
2m°h 2 Cd=3.

45¢

Prn=p—ps= (1.5)

In d dimensions the exponents become d and d +1, re-
spectively. Contrast this with the ideal result

eq=7"q>/2m (1.6)
implying®*
_15¢(5/2) 32 g
V= "at3/2) kg(T/Ty)P"% d=3, (1.7)
pn=p(T/Ty)*"% d=3. (1.8)
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Both exponents become d /2 in d dimensions. The Lan-
dau results are, in fact, valid at sufficiently low tempera-
tures in the weakly interacting limit as well (see below).
Hence there is a discontinuous change in the low-
temperature asymptotics as soon as interactions are in-
troduced. Similar behavior was seen near the critical
point,! where, for example, the exponent describing the
vanishing of p; near T, changed from the ideal value
to=1 [as follows from (1.8)] to the interacting value
§~2/3. In that case the change was described by a scal-
ing ansatz which took the form'

ps(n;T)=p%(n; T)Y(Cyla/Ap)~2/T%)

t_,a/ATC «<1, (1.9
where F=(T,—T)/T,, a is the s-wave scattering length
or effective hard-core radius of the particles,
¢=(4—d)/(d —2) is the crossover exponent, and C, is a
dimensionless metrical factor. The universal crossover
scaling function Y (y) contains all the effects of interac-
tions and can, in general, be calculated only approximate-
ly (for example, by perturbation theory in e=4—d)'.
The asymptotic behaviors Y(0)=1 and Y(y)~y bo61/8
for large y are required in order to recover the correct
limiting behavior as @ /Ar—0 and as 7—0. It follows
from (1.9) that the region over which the interacting
value of §{ can be seen, y >>1, corresponds to a narrow
temperature range

T<Ty=(T./T,)4-"/24=a) (1.10)

where To=h 2/2mmkga® depends only on *He atomic
parameters and fundamental constants. As T, is
suppressed this range becomes increasingly narrow, and
the ideal behavior, y << 1, increasingly dominates. It will
be seen that the same kind of mechanism operates in the
low temperature, t =(1—7) << 1, region as well.

Although the Landau theory gives correct qualitative
predictions, it is completely phenomenological in nature.
It gives no information about the condensate fraction,
nor does it provide a framework for deriving the disper-
sion relation (1.3) from first principles. In Sec. II the Bo-
goliubov model, valid at low temperatures and densities,
will be introduced. This model provides a microscopic
approach to the thermodynamics and yields the well-
known Bogoliubov dispersion relation

—1(e0)2 07172
E =[(gq) +2mc?e ql (1.11)
which reproduces (1.3) at small g with
¢ =#i(4mna)'?/m, d=3. (1.12)

The model also allows one to construct a crossover scal-
ing formulation near zero temperature. The detailed
forms of the scaling functions for various thermodynamic
quantities will be derived in Secs. III and IV, but the
basic scaling variable can be inferred directly from (1.11).
The linear character of the spectrum, (1.12), will cease to
dominate when kz T ~mc?2. For kyT >>mc?, the behav-
ior will be controlled by the high-energy modes, for
which E ~¢j, resulting in ideal-gas behavior. For
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kpT <<mc? only the linear part of the spectrum will be
excited, and the Landau results will be valid. It is natu-
ral, therefore, that the correct low-temperature scaling
variable should be given by the ratio of the two,

me2/kyT o (a /Ay Y =2/t%, ¢o=1, (1.13)
where @, is to be interpreted as the zero-temperature
crossover exponent. The superfluid density should then
take the form

ps(n;T)=pi%e!(n; T)Yo(B,(a /Ay ) =2 /1%,

a/Ar,t <1, (1.14)

where Y,(y,) is the zero-temperature crossover scaling
function and B, is another metrical factor. By analogy to
(1.10), this form implies an interacting zero-temperature
region defined by

t<<to=(T,/Ty)? =272, (1.15)

In the region (<<t <<ty =(1—7y), the behavior will be
ideal-gas-like, with small corrections.

All of the preceding results, valid for the range of
dimensionalities 2 <d <4, are summarized pictorially in
Fig. 1, where a generic superfluid density profile is
shown. The various crossover regions at high and low
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FIG. 1. Schematic plot of a generic low density p, vs T curve
for 2 <d <4, showing the various crossover regions discussed in
the text. The reduced temperatures ¢, and ¢, are properties
only of the ideal Bose gas and are therefore fixed. The crossover
temperatures t, and ty are driven toward O and 1, respectively,
as the density, p, or transition temperature, T, is reduced, at a
rate determined by the exponents shown on the figure. The
temperature T is given by h*/2mm*kgza™? and is set by the
‘He atomic parameters and fundamental constants. For
m*=my, and a* =a,,, one finds T,~15.6 K. For f <<t, one
has p—p,~t?*!, while for (1—t)<<(1—ty) one has
ps ~(1—1)%? with £(3)~ 2. The crossovers are to the ideal re-

sults p—p, ~t?/? and p, ~(1— nb~!, respectively.



temperatures are illustrated schematically, and the rate at
which they shrink with T is indicated.

It is worth discussing briefly the behavior outside the
dimensionality range 2 <d <4. In dimensions d >4, the
low-temperature end of Fig. 1 remains as shown, but the
critical behavior becomes trivial: interactions are now ir-
relevant® and ideal behavior (with, at most, logarithmic
corrections in d =4) results over the entire critical re-
gion.

In two dimensions the behavior is much more interest-
ing.® The ideal gas no longer possesses a finite-
temperature transition; interactions must be included
from the outset in order to generate a superfluid phase.
With interactions, the transition will be of the
Kosterlitz-Thouless type.” Nevertheless, it is interesting
to pose such questions as how the transition temperature
varies with density. and, on the scale of the transition
temperature, how various quantities (for example, the
superfluid fraction) behave. The answers to these ques-
tions can be summarized as follows:® at very low densi-
ties, n, such that

7

Inln(1/na?)>>1, (1.16)

there are still two well-separated crossover regions, one
near T =0, the other near T =T, with widths

to~1/In(1/na? (1.17)

and

Ty~1/Inin(1/na?) . (1.18)

For 7 <<%y the characteristic Kosterlitz-Thouless jump
discontinuity in p; must appear. For ¢t <<t,, p, obeys a
T3 law. In the intermediate regime, t, <<t <<y, an ideal
gas-like law is obeyed, namely

p,~p(1—T/T,) (1.19)

[compare Eq. (1.8)]. Finally, the transition temperature
is defined by the relation

n =InIn(1/na*)A7? (1.20)
[compare Eq. (1.1)]. The appearance of some sort loga-
rithmic dependence is not unexpected since both cross-
over exponents ¢ and ¢, vanish when d =2, but the dou-
ble logarithms are rather unique.

The final section of this paper is devoted to a discus-
sion of various other results from the helium literature.
A method for going beyond the Bogoliubov approxima-
tion by way of perturbation theory will be indicated, and
some of the problems found in perturbation theory will
be related to the spin-wave nature of the superfluid phase.
The section will close with a more formal discussion of
the various crossovers in the language of renormaliza-
tion-group flows and fixed points. Several appendices are
devoted to technical points referred to in the body of the
paper.

II. THE BOGOLIUBOV APPROXIMATION

Discussion of the interacting Bose gas begins with the
second quantized Hamiltonian
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u | ¥(x)

2
He=[d%g'(x) |- 72~

_fd x[v"'zﬁ(x)-{—vw(x)]
+1 fd% [ a9 Pl x5 )e(x—x g(x 1ix)
@.1)

where ~(x) is the pair potential, ¥/(x) is the Bose field
operator, u is the chemical potential, and v is the Bose
symmetry breaking field. Beneath the transition temper-
ature, T, spontaneous symmetry breaking occurs. This
is signaled by the nonvanishing of the average

even in the limit of zero off-diagonal field, v. It is then
convenient to define new fields

p(x)=Y(x)—1v,,

(2.2)

(2.3)
which have the property that
(@(x))=(@'(x))=0 (2.4)
and rewrite the Hamiltonian in terms of these fields. The
result is
H=H,+H,+H;+H,+C, (2.5)
where
H = [d%{[(—p+eo| do| D9 —1v*lp(x)+H.c.}
(2.6)
2
Hy= [d%g(x) |~ 2oVt oo | |glx)
2m
+1 [dx [d% 145 p(x)p(x)
+2] ¢ | 20" (x )p(x)
+93 (x)p (x)]e(x—x") , 2.7
H3=fd fd ¢ (x)p(x)p(x')e(x—x')+H.c.],
(2.8)

Hy=1 [d% [d% o' (x)p"(x)e(x—xp(x )p(x) , (2.9)

C=[—p|t|*+1e0ldo| ‘=3 Pho+v¥5)1V ,  (2.10

where = [ d“x(x), V is the volume of the system, and
H.c. stands for Hermitian conjugate. The value of
Yolu,v) is determined self-consistently via (2.4). An
equivalent method to determine Yy(u,v) is to minimize
the free energy:

oF
&%[u,v;%] lggmm=0 - .11
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In momentum space one has
H =VV{[(—p+oq| | I —Lv*lag+H.c.} , (2.12)

Hy=3 ([0 —p+(ootoy) | | 2latay
k

+ Lo [(¥EVaga_y +vdata (1), (2.13)
Hy=V 23 o (Y8al qapaq+voalala,, ), (214
k,q
H,=Vv'3 "an+an’—qak'ak , (2.15)
k,k',q
where
'_fdd iq-x
“q= X o(X)e (2.16)
a, =V~ [d% e **p(x), 2.17)
and (2.4) is equivalent to
(ag)=(ad)=0. (2.18)

The Hamiltonian (2.5) is slightly different from that ob-
tained from the so-called Bogoliubov prescription, which
entails dropping the operators a, and ag entirely. Thus
the term H |, and all terms in H,, H,, and H, containing
the operator aq or a;, are eliminated. The fact that this
leads to precisely the same physics is a consequence of
the thermodynamic limit and Eq. (2.18): In diagrammat-
ic language (2.18) entails the vanishing of all zero-
momentum insertions (or “‘tadpole” diagrams).® Similar-
ly, the thermodynamic limit ensures that a zero-
momentum term appearing inside a convergent integral
carries negligible weight in the infinite-volume limit. The
effect of these observations is equivalent to leaving out a,
and az) from the outset. Note that if one uses the Bogo-
liubov prescription one is forced to use (2.11) to deter-
mine .

In order to obtain a tractable model, define the Bogo-
liubov Hamiltonian, H,, obtained by dropping H; and
H, from (2.5)

HO:H1+H2+C . (2.19)

This model, in fact, contains much of the essential phys-
ics at low temperatures, T /T, << 1. The reasons for this
will be discussed in Sec. V. H, can be diagonalized by a
Bogoliubov transformation. In order to better elucidate
the physical meaning of the transformation, it will be car-
ried through in a slightly different manner than is stan-
dard. The method is motivated by a close analogy to the
magnetic transition in the classical spin s* model (see Ap-
pendix C). To begin with @(x) is divided into com-
ponents parallel and transverse to ¢,

P (x)=[Ve(x)+ @ (x)1/2 | ¥ ,

P (x)=[Ytp(x)— e (x)1/2i | Yo , (2.20)
or, in Fourier transform,

a  =Wta +voa’ )72 Y| ,

I,k ¢0 k ¢0 k I OI (2‘21)

a  =(Ygay—vea ' )/2i || .
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The only important commutation relation is

la)a, _k]=i/2, (2.22)

all others vanish. In terms of these new operators H, be-
comes

H,= 2 {[52_#+ | ¥ | 2(‘/‘04‘2‘4()]‘7n,kau,—k
k

+eg—p+ [ Yo | 2egla a;

+—;—[Eg—ﬂ+ ! lpo l 2(6*0+0'k)]} . (2.23)

Note that if |, |2=0, the coefficients of the first two
terms are identical. The broken symmetry, therefore,
manifests as an inequivalence between the transverse and
longitudinal directions. Furthermore, within the Bogo-
liubov approximation one has u=o¢| ¥ | % (see below).
Therefore, the transverse fluctuations are, in fact mass-
less, and represent the usual Goldstone modes. The Bo-
goliubov transformation is a rescaling of the operators
a,x and a, ; so as to artificially restore the symmetry of
the two directions: define

au,k=f|1(/4au,k’ a=fi'ay (2.24)
where
fr=led—u+ [ Yo | Hegt+2e)1/(ef—p+ | P | %)
(2.25)

is the ratio of the two coefficients in (2.23). This transfor-
mation preserves (2.22), and is therefore canonical. The
Hamiltonian H, becomes

H,= Y {Eyla o +a a; )
K

+ilek—n+ (Yo | Moot} (2.26)

which, upon converting back to the usual creation and
annihilation operators

ak=an,k+ial,k N

+ _ (2.27)
ak=auv‘k—lal,_k )
reads
H,= S E,(afay+c,) , (2.28)
k

where
Ef=[e0—u+ | Y| oo+ 2e) (e —p+ | ¢ | o)
(2.29)

is the product of the two coefficients in (2.23), and the
zero point shifts are

1|&—n+ | o | (gt o)
Cp=—— —1

(2.30)

Using (2.27), (2.24), and (2.21) one can write the a’s
directly in terms of the a’s as
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+
al:ukak——vka_k N

+ (2.31)
ay=upay—vga_,
where one finds
lug |2=1+ | vy | 2———%(§k/Ek+1) ,
(2.32)

arg(u, )=arg(v, )=arg(yg)=arg(v*) ,
where arg(z) is the phase of the complex number z and
§k=82-ﬂ+(ﬂo+0k)l¢olz . (233)

These are the standard results, more often obtained by
positing (2.31) directly and choosing v, and u, in such a
manner that the diagonal form (2.28) results.>3

In terms of the a’s, H; becomes

H =f5""*VV [(—p+ | Y| 2e0) | | =4 |v] Nag+a})

(2.34)
and a simple calculation gives
0=C(ao)o
=(—p+3eq| P | D7 [Ev—(—p+eo| o] Do),
(2.35)

where the average is with respect to H,. The equation of
state is therefore

v=2—p+eq| o] ¥y

which is of the usual Landau form. The essential results
are obtained by setting v=0, yielding

(2.36)

no= || =p/e0 (2.37)
while the energy spectrum becomes

E, =[(e))?+2ny0e0]'? (2.38)
with an asympotically linear slope

¢ =(ngeg/m)\*=#u/m)"? (2.39)

as | q| —0. To demonstrate the equivalence of (1.12)
and (2.39) the relationship between ¢, and a is needed.
This raises a technical point hinging on the question of
what one means by weakly interacting. A dilute hard-
core Bose gas ought to be considered weakly interacting,
but there one actually has «y= . The solution to the
problem involves converting the pair potential to the
scattering matrix by a diagrammatic resummation
method.>® The result is that in low orders in perturba-
tion theory one may replace «( by the effective potential
47#’a /m [d =3; see Eq. (2.17) in Ref. 1(b) for the general
d result]; the system may then be considered weakly in-
teracting so long as na® << 1. These considerations along
with the fact that ny~n at low temperatures and low
densities (see Sec. III), lead immediately to (1.11) and
(1.12).

As a final point, note that when v=£0 the energy spec-
trum takes the form

Ey={[e)+ |v] /2| | I

F2ngelef+ |v] 72| % | 12 (2.40)
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The field v, therefore, generates a gap in the excitation

spectrum:
Eo=[1v|/4|4o| +eoldo| | V|1

~(og| | | V]V v—0. (2.41)

III. THERMODYNAMICS

A. Free energy

In order to discuss thermodynamics in a unified way,
one must introduce a free energy. An obvious possibility
is

Fy=—(BV) 'Intre "o

=fk[/g—‘1:1(1—63"”5*)—151(uk 12]

—puno+teong—|v| | ol G.1)
with E, defined by (2.25), and the convenient notation

1 1

- — = ddk

v % ) k / n)?

has been adopted. Unfortunately this choice creates an
inconsistency. Given a free energy, (2.11) should be used
to determine ¥,. However, applying this to (3.1) yields

(3.2)

2( —#+n000)¢0_v+2¢'0[ [ll,,V;l/}()]:O (33)
in which
gk(00+(/k)—n0¢f§
I vitol= [, { Bl
l §k(uo+uk)—nouﬁ
2 E,
—(uo—i-uk)H . (3.4)

This differs from (2.36), which is apparently embodied in
the Landau term, C, alone, by the additional term 1. If
the solution to (3.3) is substituted back into E,, one finds
a gap in the excitation spectrum even when v=0, a possi-
bility which is ruled out on general grounds by the spin-
wave character of the low-temperature phase (see Sec. V
and below). In the context of helium, the nonexistence of
a gap is known as the Hugenholtz-Pines theorem,’ and
follows more generally from Goldstone’s theorem.!” In
fact, disagreements with spin-wave theory already appear
in Eq. (2.36): one knows, for example, that the longitudi-
nal susceptibility

X,= || 70|V )T (3.5)
should diverge as |v| %% (e=4—d) as |v|—0,"
whereas (2.36) predicts a finite value, X,=(4u)~!, at
v=0. These inconsistencies should not be too surprising
in retrospect: the k sum in (3.1) represents the first fluc-
tuation correction to the free energy, while (2.36) is the
Landau result for i, which ignores fluctuations. The
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term I[p,v;¥,] in (3.3) is the first fluctuation correction
to ¥,. The inconsistencies in the Bogoliubov free energy,
F,, result therefore from an improper mixing of mean-
field results with fluctuation results.

These problems can be avoided by identifying the pa-
rameter i, appearing in H,, not as the actual long-range
order, but rather as a parameter determined in this ap-
proximation from (2.36). To avoid confusion, this Lan-
dau result for ¥, will be denoted by (1, v), an explicit
function of the other parameters. In this approximation
the actual result for ¥, is determined in the usual way as
a derivative with respect to the off-diagonal field

oF,
av*

in which F, is given by (3.1) but with ¢, replaced by ¥,
[similarly, the parameters uy, vy, &, and E, are defined

Po=—2 (,v,v*) (3.6)

r(3(3—d))
(47)(d+1)/22(d+2)/2,un0§g
1 1
X, T=0)= | —————In( / ), d=3,
© 642" pnoE) Bl /[ v]
const, d >3,
where

Eo=H/(2mpu)'"? (3.10)

is the important characteristic length at T'=0, and
diverges in the weakly interacting limit. The divergence
in the low-field susceptibility at 7 =0 is weaker than at
T > 0 reflecting the fact that the quantum degrees of free-
dom dominate at zero temperature and give rise to be-
havior characteristic of a classical system in one higher
dimension (see Sec. V).

Other thermodynamic properties will now be con-
sidered. The expression for the number density is

dF,
"= a[J. v, T
— 2 -
=[¥o|" |1 =11, v %]
§x 1| 6
+/ R P R (3.11)

To first order in ¢, the first term is simply | 9, | 2. Equa-
tion (3.11) therefore becomes
T l

E, (3.12)

n=1%|’+ [

M
E:—nB(Ek)-*-

1
2

(|l /[ v])E=972,
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by (2.29)-(2.33) with ¢, replacing ¥;,]. The result of (3.6)
is

Yo=Yol 1 —(—p+3eq | 0| )T, v; o]} (3.7)

which also represents the solution of (3.3) to first order in
o This result is now consistent with spin-wave predic-
tions: the low-field susceptibility (dominated by the Bose
factor part of the integral I) is

BT (3€)

2(d+2)/2(B | v | / I 1/}0 | )G/Z”OA‘} ’

X, T)

Blv|/|¥y| <<min(Bu,1/Bu), 2<d <4

which has the requisite | v| ~¢/? divergence at finite tem-
perature. At zero temperature, only the second term in
(3.4) survives, and one has instead (for |v| /| ¢y | <<p)

(3.8)

2<d <3,

(3.9)

which is more commonly obtained from the alternative
definition

n=-—LSCala )+ o2 (3.13)
|4 k

However, if this average is evaluated with H,[¢,] as the
Hamiltonian, (3.12) is recovered, but with the incorrect
result, | ¥ |2 as the second term on the right-hand side.
This difficulty arises because the first term in (3.12)
represents the fluctuation part of the density, hence, for
consistency, |g|? should also contain a fluctuation
correction. This correction is embodied in (3.7), and also
appears in (3.11). Therefore, in order to use (3.13) con-
sistently, the second term on the right-hand side should
be left as | ¢,| 2. This distinction between |y |?, as it
appears in (3.13), and | ¢, | %, as it appears as a parameter
in Hy[4], is not generally made explicit. The definition
(3.13) involves the Green’s function, rather than the free
energy—a quantity which contains further subtleties
which will be discussed in Sec. V.

B. Zero-temperature crossover scaling

The low-temperature scaling forms alluded to in the
Introduction will now be derived with emphasis on the
condensate fraction. Other properties follow in a simple
way as well. The superfluid density will be addressed in
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Sec. IV.
At T =0, the Bose occupation factor gives no contribu-
tion and (3.12) yields
n=n0+%fk(§k/Ek—-l). (3.14)

© 2
(T =01~ 3Kyt [ “ay yt-1 | —LEE

1
d

where K, =2/I'(1d)(4m)?/? is the area of the unit sphere
in d dimensions divided by (27)¢, and ¢=¢(ady’/£}).
The various I' functions arise from the use of the identi-
tyl2

_T(y) e s*7!

B(x,y)= -
=Ty ~Jo (qsr®r

ds . (3.17)

For d >4 the momentum cutoff inherent in ¢ is required
for convergence, and one will have

n —ny(0)~(ay/E)*ag?, d>4 (3.18)

with a nonuniversal coefficient. From (3.14), for large &,
the zero-temperature condensate fraction becomes

no(T =0)~#/2m oo} . 3.19

This is much larger than n —ny(T =0), hence ny~n and
(3.16) becomes

[n—ny(T=0)]/n=Ay(na®)?=2"2 2.d <4 (3.20)
d

in which 4, (=8/3m for d =3) is a constant and a is the
s-wave scattering length.

At low temperatures, the essential temperature depen-
dence of n, originates from the Bose factor in (3.12). The
other term in the integrand also depends implicitly on
temperature at fixed n through pu(7T), but this dependence
is of higher order in the interactions. Therefore,

_ &x
AnO(T)znO(O)—nO(T):fk E ng(Ey)
2
—edg [Py yd-1— Y +¢
& dfo Yy y(yp>4+2¢)172

Xngluy (y2+24)'7] .

Bvidently £2An,(T) is a function only of the scaled vari-
ables ay/&, and Pu=A%/E§~neo/kyT. For weak in-
teractions the shape of the potential becomes unimpor-
tant, and one can simply take ¢ =1. For ease of compar-
ison to the ideal gas, define r =Bu, change variables to
x =PBuy (y2+2)!/? and write

Ang(T)=¢(1d)ATN (),

(3.21

(3.22)

where the prefactor is the ideal result, and

—1
y(y2+2¢)1/2

K85 “T(3(d — DID(3(4=d))2' 2771214 0(a, /£)* =] ,
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It is convenient to define the shape of the potential
dadkH=ey/eg , (3.15)

where a, measures the spatial range of the interactions.
With this definition the condensate deficit is defined as

(3.16)

f

N(n=[{(id)T(id)]™!
X [ Tdx [(P4x?) =] - (3.23)

is the zero-temperature crossover scaling form. The ar-
gument, 7, can be written in the more transparent form

r~Byla/Ar)¥72/t, 1=T/T, <1, (3.24)
where B, is a d-dependent constant, and the critical tem-
perature T.~T, has been introduced via (1.1). The
numerator of (3.24), which may also be written as
Bj(na?)'9=274  represents the dimensionless small pa-
rameter in the problem. As discussed in the Introduc-
tion, this parameter has precisely the same form as that
appearing in the critical crossover region.! This confirms
the proposition (1.13) for the form of the crossover vari-
able, as well as the various exponent values.

The scaling function N (r) yields very different behav-
iors, depending on the size of . Asymptotically one has

1+o(r(d—2)/2)), r__)o’
I(d —Déd —1)

N(r)~ rIdE(d) Qrn2=9?140(r ],
2
r—oo . (3.25)
This yields
Ane(T) td/2’ (nad)(d—2)/d<<t<<1 ,
n
—2 "~ Ny (na?)—td-2*/2dd -1 (3.26)
t<<(nad)(d—2)/d ,

where N, =7%2/6£(3)*3 in d =3. The first line of (3.26)
represents the ideal-gas result; the second line represents
the interacting result. The function N (r) interpolates be-
tween the two results and demonstrates the mechanism
for the discontinuous change in exponents discussed in
the Introduction. It should be emphasized that (3.22)
and (3.23) are asymptotically exact only in the scaling
limit (i.e., for small a/Ar_and T/T,, but arbitrary r).

Thus, for example, given T, (or n), the replacement of n
by n is valid only for ¢ << 1; hence, the range of r is re-
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stricted to r>>(na?)¢=274  Therefore, the entire

domain of the scaling function is explored only in the
limit na?—0.

Clearly, other thermodynamic quantities will scale in a
similar fashion—the variable r =fBu being the only im-
portant quantity in the region of interest. Corresponding
scaling functions may be readily exhibited. The results
are simply a restatement of standard Bogoliubov results.

It is interesting to inquire if the Bogoliubov free energy
can yield information about the critical region. Of
course, all standard approximations break down in this
region. Nevertheless, as shown in Ref. 1(b), crossover ex-
ponents and scaling fields can be obtained by matching
the results to a critical scaling form. In Ref. 1(b) this
matching procedure was carried through in the disor-
dered phase, T > T.. In Appendix A the same procedure
is applied to the ordered phase. The fact that identical
answers are obtained is a further check on the validity of
the scaling approach.

IV. THE SUPERFLUID DENSITY

A. Definitions

The superfluid density is a torsional spring constant
which provides a response to helical twists of the order
parameter,

Polr)=((r)) =1hge

Such a twist can be imposed in several ways. The method
most commonly used in the helium literature involves
adding a term

#i

m

ikgr

(4.1)

2
ko= [ a4y 0Tk vi(r)

#

m

ko S #ikala, 4.2)
k

to the Hamiltonian (2.1), where P is the momentum
operator. The action of this term is to impose a uniform
drift velocity &, =(#/m)k;, on the quasiparticle excita-
tions,> giving rise to a net momentum flux (P)/V
=p,e,. The proportionality constant p, defines the nor-

mal fluid mass density, and the superfluid mass density is
then obtained from

Ps=P—P, - (4.3)

It is important to realize, however, that this definition re-
lies heavily on Galilean invariance (hence, on momentum
conservation), and therefore fails in nontranslation in-
variant (e.g., lattice) systems where p, is not defined.

An alternative formulation,'>'* which has a firmer
mathematical basis, enables calculation of p, directly
without reference to p,. When Galilean invariance is
satisfied, this definition will be seen to be equivalent to
the one above. The superfluid density is calculated by
comparing two systems with different boundary condi-
tions. Let F®, — 7 <0 <, be the free-energy density for a
finite system of length L and cross sectional area A,
defined with the following boundary conditions: if €, is a
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unit_vector pointing along the length L, the operator
_IGGOT/LIIJ(r) should obey periodic boundary conditions
in all directions. This boundary condition imposes a
twist of angle 6 along the length of the system. Equation
(4.1) therefore should result with k,=6€,/L. The
superfluid density is defined then in terms of the asymp-
totic difference between the two free-energy densities

. 2L°m?
po= lim =5 o [Fou, D)= Fou, 7] . (4.4)
L— e

The answer should be independent of 8. This equation
simply says that such a twist gives a free-energy incre-
ment 1p %, where o, =fiko/m.

Parenthetically, this definition shows that p; is the ana-
log of the surface tension for systems with a discrete sym-
metry (such as fluids or Ising magnets). The surface ten-
sion is defined also in terms of the asymptotic difference
between two free energies, in this case F 0 (periodic
boundary conditions) and F7 (antiperiodic boundary con-
ditions). Here, however, the result is proportional to
L !, rather than L —%; and the width over which the or-
der parameter varies is restricted to a surfacelike region
whose thickness is much smaller than L.

Use of the definition (4.4) requires the ability to calcu-
late free energies for finite systems. In general such a cal-
culation is extremely difficult. A third definition—which
avoids this difficulty, at the expense, perhaps, of some
mathematical rigor—would be more convenient. This re-
quires the imposition of a finite twist in the thermo-
dynamic limit and is accomplished by the application of a
rotating external field. Thus the usual constant field term
H, in (2.1) is replaced by the rotating field term'*

Hy(kg)=—1 [dr[vge " pir)+vpe  yT(r)] .

4.5)
The superfluid density is then defined as
. m? @&
= lim | lim — —=F[u, T,upk , (4.6)
ps vO—-»O ko—-O ﬁz ak% [,U. #0 0]

where F is the bulk free-energy density. The loss of
mathematical rigor originates in the fact that in (4.6) k
is permitted to vanish only after the limit L — o is taken,
rather than as the limit is taken. This is a mathematical-
ly nontrivial difference, but should not be important in
any reasonable model.'?

B. The Bogoliubov transformation

Since the second and third definitions above for the
superfluid density will turn out to be notationally identi-
cal, it is convenient to proceed with both of them.
Differences will be pointed out along the way, and the re-
lation to the first definition will be indicated at the end.

Begin once more with the Hamiltonian (2.1), but with
the last term replaced by (4.5). Since a twist in ¥, is anti-
cipated, in place of (2.3) the substitution
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Pin=yte 1ol ,
W) =tpe " +o(r)

is made. The Fourier decomposition of ¢(r) is defined by

(4.7)

i(k+kg)r

r)zV—l/Zzake ,

~ik+kg)r “.8)

1/22 ,

qz(r

where k,=0€,/L for the second definition, or some finite
value, independent of L, for the third definition. The
summation is always over the usual set of k consistent
with periodic boundary conditions. The functions
y=1/2"® 5T gorm an orthonormal basis for functions
with phase change 6 boundary conditions, and the map-
ping z/;—»eﬁl °'r1/1 provides a one-to-one correspondence
between these functions and periodic functions. It is cru-
cial to note that, for each 6, these functions form a linear
space (i.e., the 8 boundary condition is preserved under
linear transformations).
In momentum space the Hamiltonian becomes

H—HY LHY yHY f 5 Lo 4.9)

where Hl3(° and H§° are identical to (2.14) and (2.15),
while, with the definition eo=ﬁ2k% /2m,

k
H{° =V'"*{[(eg| o | *+£9—p)o—L¥ola +H.c. ],

(4.10)
=3 (lefsi,—pt(eoten) [ do *lafa,
+ie [ (¥8)a_ia,+H.c.l}, @.11)
and
C 0= [(eo—p) | Yo | 24 Lerg | Yo | *— L3 o+ Vo)V .
(4.12)

In (4.9)-(4.12) ¢, is defined always by (2.16), independent-
ly of the choice for k.

Neglecting H l;" and H :0, the condition (ay)=0 now
leads to

vo=21(eg—p+ g | Yo ?)

which generalizes (2.36). The solution to this equation
will be denoted by J:O(,u,vo).

Since &gy #€ x4+, k and
equivalent, and the Bogoliubov diagonalization, (2.31), of
H,° becomes more complicated. However, the following
observation simplifies the problem considerably. Let p,
be an odd function of k. Then, assuming that u, and vy
are even, note that

(4.13)

—k are no longer

Sratac= 3o luy | 2= oy | Datay
k k

= Zpkalak . (4.14)
k
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This shows that odd operators of this type are invariant
under the transformation, and therefore remain diagonal.
In particular,

P= #ikaja, = #kaja, . 4.15)
k k

It is therefore only the even part of H 50 which deter-
mines u, and v,. This in turn verifies self-consistently
that uy and v are indeed even. 16

The even part of H° 5" differs from (2. 13) only in that u
is replaced by p—¢,. The odd part of HY 5 is (#ikg/m)-P.
One has immediately then

H§°=§ E{:°+—fn—2k0-k alak+%(E:°—§:°)
(4.16)
where
B0 =€+ eg—p+ (oot o) | §5° |2 4.17)
and
= [(E0) (e | Fg° | 22]172 . (4.18)

For later reference, one can follow through the first
definition for p,, using (4.2) and (4.3). The final result for
H, is the same as (4.16) except that the superscript k
should be dropped and the sign of the momentum term
reversed:'’
ﬁ2

szz Ek'—Tn‘ko‘k

k
where E| and &, are defined in (2.29) and (2.33). Alterna-
tively, H,° is obtained from H, simply by reversing the
sign of k, and replacing u by u—¢g,. The significance of
this will be discussed below.

a;ak—(»%(Ek—ék)] (419

C. The superfluid density

The free energy follows in a straightforward manner
from (4.16) as

ko | p2
—BLE,® +(# /m)ky k)

Flo—y-1s —éln(l—e )—(E* — &)
k

—k —k —k
+(£o—ﬂ)|¢00|2+%"0|¢’00|2— [vol [90°] -
(4.20)

There will be no attempt to carry through the second
definition for p; (a nontrivial calculation is involved even
in the ideal-gas case*). The third definition, (4.6), will be
used instead [see, however, the paragraph beginning after
Eq. (4.24)]. The calculation is simplified greatly by not-
ing that k, appears in (4.16) and (4.20) either with the
momentum operator as ky-k, or with u as u—¢,. Since g,
is of second order in kg, and the derivatives with respect
to ko will be evaluated at ky=0, these two sources of k,
dependence will not mix in the final result. Thus
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_m? [
PS8 veoo | 0k |k,—0
—_m|9F
- 8/,1, vo=0
m 9 1 —BE,\ #
— —In(1— F)—(k-&,)*
V%aEﬁﬂn( e (k)

=p—-"l} S (2¢,/d)[ —dng(E)/dE,],  (4.21)
k

where, in the last line, isotropy is used to replace (k-€,)?

by k%/d. The second term is apparently, by (4.3), the

normal fluid density

P = -’I—’j— S (26, /d) —dng(E,)/dE,] . (4.22)
k

To see that this agrees with the first definition obtained
via (4.2), note that from (4.19) the momentum flux is

—1 m OF
= -t 4.2
p=V "P) % ok, (4.23)
so that
_ M him pl/ k| =~ | &E (4.24)
P fi ky—0 P 0 # | 9k§ |k,=0 '

As mentioned at the end of Sec. IV B, the essential
difference between F ° and F is the appearance of g, with
p in the former. Hence, it is apparent that the first term
in (4.21) is missing in (4.24), while the second term has
opposite sign. The result, (4.24), is therefore precisely
(4.22). The correspondence also follows from Galilean in-
variance: in (4.2) and (4.3) one has &,=#ky/m and
o,=0. By transforming to the frame in which ¢,=0
and &, = —#ky,/m, the Hamiltonian becomes precisely
(4.9) with the sign of k, reversed (see Ref. 14).

Before abandoning the second definition for p; entirely,
it is worth noting that if one is permitted to use
infinitesimal values of the angle 6, yet another candidate
for p, is the definition

272 216
. m-°L o°F
=1 —_— , 4.25
Ps Al_l,nw #2 96?2 ( )
L —>x

which is the 8—0 limit of (4.4). Since k,=0/L, this is
just (4.6), but with the thermodynamic limit taken last in-
stead of first. It is easy to see that this definition also
yields (4.21).

Equation (4.22) for the normal fluid density agrees pre-
cisely with the Landau form.2 There the excitation spec-
trum is given a priori and its dependence on k; is argued
from Galilean invariance. Here the Bogoliubov spectrum
is derived microscopically, and its dependence on k, re-
sults directly from the Bogoliubov transformation.

Still other definitions for the superfluid density exist in
the literature. A definition in terms of the superfluid
response to a rotating current field was used by de
Pasquale and Tabet.'® The definition is, in general, very

complicated, and involves heavy use of diagrammatic
concepts. However, within the Bogoliubov approxima-
tion the calculations can be carried through exactly,'®
and when generalized to d dimensions, the result is pre-
cisely (4.21). This agreement with previous phenomeno-
logical results does not seem to have been pointed out by
these authors.

From (4.22) it is straightforward to exhibit the zero-
temperature superfluid density scaling function. Once
again, to obtain the important dependence at low densi-
ties a wave-vector independent potential, ey =e (¢=1),
is taken. From the same changes of variable used to get
(3.23) from (3.21) one obtains

=K E42mpBusd)

_1

Bné[uy(y2+2>”2]

Xfomdyyd“

=m{(+d)A7R(r), (4.26)
where the prefactor is again the ideal result. The scaling
function R is given by

drn

.
R =
=T @+ eia

@ x/r
<

e
(e*—1)?
and the variable r =fBu was displayed in (3.24). This
function has the asymptotic behaviors

X[(14+x2/r2)/2 11472 4.27)

1+0(r(d72)/2), r—0 ,

d+1 |46d+1I'd+1) —(d+2)/2
R(r)= {4 2 )
( d tiarda
r— oo |
(4.28)
so that for t =T /T, <<(na®)“+2"2(r 55 1),
pn/p=~Ry(na®4=42724(T /T i +1 (4.29)

where Rd=ﬂ‘7/2/45§(%)8/3 in d =3. This demonstrates
once again the discontinuous change in exponents when
interactions are included. These results agree with (1.5)
and (1.8) in the Introduction.

In Appendix B it is shown that the result (4.26) for p,,,
which was obtained from (4.22) by fixing the density, is in
fact the same as that which is obtained using the canoni-
cal (i.e., fixed density) free energy in (4.6) and (4.23).
Therefore, the superfluid density is ensemble
independent—a result which has always been implicitly
assumed.

V. FURTHER RESULTS AND CONCLUSIONS
A. Perturbation theory

In order to progress beyond the Bogoliubov approxi-
mation, some form of higher-order perturbative approach



must be developed. The standard method, which seems
to simplify formal manipulations, begins at the level of
the ideal gas [represented by the first term in (2.1)] and
treats all remaining terms within a diagrammatic pertur-
bation theory.®®!° Since the chemical potential y is posi-
tive in most cases of interest (for example, in the hard-
core Bose gas), this method makes only formal sense, and
meaningful calculations must begin with some kind of di-
agrammatic resummation. To lowest order in the in-
teractions, such a resummation leads directly to the Bo-
goliubov model.>° This illustrates how, within a more
controlled calculation, the Bogoliubov approximation
arises naturally, and why it gives the correct physics at
low temperatures.

The essential piece of physics that emerges from the
Bogoliubov model is the linear form (1.3) of the excitation
spectrum at long wavelengths. All of the low-
temperature thermodynamics follows from this form.
Gavoret and Nozieres'® were first to establish (1.3) (at
T =0) to all orders in perturbation theory (modulo a few
technical problems, see below) showing, in addition, that
the quasiparticle speed of sound is precisely the hydro-
dynamic compressional speed of sound given by the bulk
modulus. Hohenberg and Martin?® rederived this result
by a shorter route using functional calculus.

Gotze and Wagner?! used this result to establish the 7
law, (1.4), for the specific heat. Kehr?>?3 used the same
techniques to establish the 7% law, (1.5), for the
superfluid density,?? showing also that p; coincides with
the density at zero temperature. Kehr also established
the T? law?® for the condensate fraction

no(T)/ny(0)=1—m(kyT)*/12n#’c , T—0(d =3)
(5.1)

which generalizes (3.26) to arbitrary densities.

These results are exact to all orders in perturbation
theory, but involve the unknown speed of sound, c. Ac-
tual calculation of this, and other physical quantities,
must be carried out within perturbation theory—the Bo-
goliubov model giving the correct lowest order results.
In order to go beyond Bogoliubov it is natural to take the
Bogoliubov Hamiltonian, Hy[?,], as the unperturbed
model,®° treating the remainder

H —Hy[Yy)]=H,+H;+H,+8H,+8C (5.2)
as the perturbation. Here H,, H;, and H, are given by
(2.12), (2.14), and (2.15), 8C =C [y]— C[¥,], while

8H,=8ny 3 [(”O+”k)alak
K

+loe%aa_,+e¥®alat )]
with 8no= | 9| >— [ ¥ | > and ¢o= | o | €.
In developing the diagrammatic formalism, the impor-
tant quantities are the Matsubara Green’s functions.
These are defined by

(5.3)

Gij(xl—XZyrl_Tz): - ( qu)i(xl,Tl )(Dj(Xz,Tz)) )

ij=12, (5.4
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where T, is the time-ordering operator and the notation

p(Dg'(2), i=1,j=1,
Pl(p(2), i=2,j=2,
'), i=2,j=1,
@()e(2),

D(1)P/(2)= (5.5)

i=1j=2,

has been used. In the normal phase G; is diagonal. The
superfluid phase is characterized by the appearance of
nonzero off-diagonal elements of G;; which are termed
“anomalous.” Thus, for example, the Bogoliubov Hamil-
tonian yields the Fourier transformed Green’s functions®

G2 (k,ik,)=G%(—k,—ik,)
_ lug |2 _ | vi |2
" ik,—E, ik,+E,’
G2 (x,ik,)=G%(—k, —ik,)*

(5.6)

1 1
ik,—E, ik, +E, |’

= —Uglyg

where k,=2mnkyT, n an integer, are the Matsubara fre-
quencies.

Feynman diagrams, and their associated analytic ex-
pressions, are generated by associating a vertex with each
term in (5.2). These vertices are shown in Fig. 2. Each
vertex has one or more legs, and each leg has an associat-
ed direction, represented by an arrow. An arrow point-
ing away from the vertex represents a creation operator,
an arrow pointing into the vertex represents an annihila-
tion operator. The diagrams are formed by connecting
legs pairwise in all possible ways. Such a connection re-
sults in a bond, or propagator, with two associated ar-

(a) (b) (c)
R O\
//k A R vk8noe2i¢
(d) (e) (f)
. k+K k+q K'-q
K veyo A >.V.*.‘."?.‘ >V~<
k+K’ K Kk k K
(g) (h) (i)

FIG. 2. Diagrammatic vertices for perturbation theory in the
ordered phase, of which only the last is present in the disor-
dered phase (v=0,T > T,). Vertices (a) and (b) arise from H;
here 8v=(—p+eo || )o—1v. Vertices (c)-(f) arise from
8H,, (g) and (h) from H;, and (i) from H,. An arrow pointing
away from a vertex represents a creation operator a, an arrow
pointing into a vertex represents a destruction operator a,.
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rows. Each of the four combinations of arrow directions
represents one of the four Bogoliubov Green’s functions
(5.6), as shown in Fig. 3. The analytic expression associ-
ated with each diagram so constructed is obtained in the
usual manner by multiplying together the propagators
from each bond and the factors of ¢, and ¥, which
weight each vertex (see Fig. 2), then summing over all
internal frequencies and momenta, subject to the usual
conservation rules (which have already been taken into
account in Fig. 2). In the normal phase, the vanishing of
the anomalous propagators implies that momentum and
frequency can only flow along the arrow directions—
reducing the set of diagrams considerably. This is also
the case if the ideal gas is taken as the unperturbed model
and in this sense the set of diagrams is easier to describe.
However, as stated earlier, an infinite class of them must
be resummed to give a single diagram in the present per-
turbation theory. This greatly complicates actual calcu-
lations.

As mentioned, Gavoret and Norieres'~ encountered
some technical problems in their analysis of the zero-
temperature perturbation series. These are closely relat-
ed to the difficulties found in Sec. III involving the mix-
ture of mean-field and fluctuation corrected results, and,
in particular, to the proper treatment of the spin waves in
the broken symmetry state. To understand how these
difficulties arise, consider once again the longitudinal sus-
ceptibility, defined by

19

9| ¢
ARFIRY
=4 [ Ldr(T Lagtr) +al(Dag(0) +ab(0)])
=— lim G.(q,ig,), (5.7
9,i9, —0
where
GL(q’iqn)z%zGij(qun) (5.8)

bj

is the longitudinal Green’s function, and v, has been

|—€————<— = 6.5(x, - XT, —T,)
o
1=>———>—) = G(x, - x,,T, - T,)
]
1=>—————<—p = Gy, = x,T, - T,)
|—€——>—9 = G 5(x, - X T —T,)

FIG. 3. The four possible propagators in the ordered phase,
of which only the first two are nonvanishing in the disordered
phase. The propagators are used to connect the various ver-
tices, shown in Fig. 2, to form a diagram. Each arrow is associ-
ated with the vertex closest to it. In Fourier space each propa-
gator is labeled by a momentum k and frequency ., rather than
the two endpoints (x,,7,) and (x,,7,).
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chosen real for convenience. Using (5.6), the Bogoliubov
result is

YB— _ 1 lim 2u vy Ly |24 |vi |2 1
v T zkao Ek Ek 4[.L )

(5.9)

This represents the mean-field result, which can also be
obtained from (2.36), and disagrees with the spin-wave re-
sult, X, = o [see (3.8)]. The origin of the problem lies in
the fact that the Bogoliubov model does not respect the
full phase symmetry of the order parameter. Rather, a
harmonic approximation is made in which only quadratic
fluctuations of the field ¥(x) about its mean value, ¥, are
kept. This has the effect of treating the longitudinal fluc-
tuations, %[q)(x)-kqo*(x)], and the transverse fluctuations,
(1 /2i)[<p(x)—q)T(x)], as independent. Geometrically, one
is replacing the familiar sombrero-shaped Landau free-
energy surface by a linear trough (Fig. 4). Therefore, the
circular phase symmetry is replaced by a linear transla-
tional symmetry. This is the standard, noninteracting,
spin-wave approximation. As long as one is not interest-
ed in topological excitations, such as vortices (which are
unimportant at low temperatures), this approximation
gives the correct, long wavelength behavior for the trans-
verse (i.e., phase) fluctuations. However, in an applied
field the geometry becomes important. In the trough ap-
proximation a uniform longitudinal field does not break
the transverse symmetry, and the response of the order
parameter to such a field is completely decoupled from
the transverse fluctuations. For this reason the resulting
susceptibility is finite. Conversely the Landau sombrero
becomes tilted in a uniform field, and a unique minimum
is selected. The field therefore couples to the phase fluc-
tuations as well as the longitudinal fluctuations, and for
this reason the response, as measured by the susceptibili-
ty, is singular.

These qualitative conclusions can be extracted quanti-
tatively from the Bose gas Hamiltonian. The cubic and
quartic terms, H; and Hy, in (5.2) contain the nonlinear
geometric effects that connect the longitudinal and phase
fluctuations. In Appendix C the nature of these two
terms is clarified in the context of the conceptually more
simple continuous spin s* model. In Fig. 5 the relevant
higher-order Feynman diagrams involving these two
terms are shown. These yield the second order result

FIG. 4. Landau free-energy surface in the harmonic approxi-
mation.
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FIG. 5. Important one-loop diagrams contributing to the
longitudinal susceptibility. The arrows on the propagators have
been suppressed. The number beneath each diagram represents
the number of distinct diagrams with the same topology ob-
tained by restoring the arrows in all permitted ways. There are
288 diagrams in all.

—ng(Ey)
xJ | gz teot e —Hoedl

2ng(Ey)+1

2 2
(gg—p) |,
2Ei ox\Eg—H

(5.10)

where 7, = | ¥, | 2 and ¥,(u,v) was defined as the solution
to (2.36). It is straightforward to verify that if the
remaining, less singular contributions to X, at this order,
represented by the graphs shown in Fig. 6, are included,
namely

3igeo+p

Sx( n_
v 2( 3'—1000‘—[1)3

I[u,v;¥,] , (5.11)

where I[u,v;y,] was defined in (3.4), then the result
XB 4 x\V8xV is precisely 3y,/0 |v| from (3.7). The
requisite spin-wave results, (3.8) and (3.9), therefore fol-
low immediately from this approach as well. In addition,
this approach yields the corrections, at small momentum
and frequency, to the longitudinal part of the Green’s
function. At lowest order one has (setting v=0)
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FIG. 6. Additional graphs contributing to the susceptibility
at one-loop order. As in Fig. 4, the number beneath each graph
represents the number of distinct ways of labeling the propaga-
tors. There are 96 diagrams in all.

which yields (5.9) when k,,k—0. The important geome-
trical corrections to this expressions arise from the first
diagram in Fig. 5. [This diagram yields the divergent
part of the susceptibility, (3.8) and (3.9), when evaluated
at zero external frequency and momentum.] At finite
temperatures one finds for k << (B#ic) "' and 2 <d <4

m2

GO~ s a7

N(Hd —2)I((4—d)
I(i(d—1)) k|4’
(5.13)

The other Matsubara frequencies give nonsingular results
in this limit. The |k | € divergence is characteristic of
ordered phases with a continuous broken symmetry. In
Appendix C it is shown to emerge from the classical
spin-wave calculation as well. Quantum mechanics (as
embodied in the operator character of the fields) is ap-
parently not important at finite temperatures. Converse-
ly, at zero-temperature quantum mechanics provides the
only dynamics, and should therefore be important. This
manifests itself in the disappearance of the gap between
Matsubara frequencies at zero temperature, so that k,
can be treated as an extra, continuous dimension. At
small |k|, the denominator of (5.12) is k2+(#c)*k?;
therefore, this extra temporal dimension enters in the
same quadratic fashion as the spatial dimensions. Hence,
one expects an exponent characteristic of one higher di-
mension in the zero-temperature analog of (5.13) [this
should be contrasted with the behavior at criticality
where d —d +2 (Ref. 1). Indeed one finds

R 2(<d <3)

By : 1 €
=373 3 5.12
Gi(k,ik,) 2 k3+E12( , ( )
]
2y4 I'[i(d —1)II[1(3—-d)]
Rk, ik, P L 2 2 1
(Ac)¥(16m)% “n I'(d/2)
(mc?)*

G, (k,ik, )~ | —GE(k,ik, )} ————
c(k,ik,) £k, ik, 4(#ic)*m?n

const (d >3),

In(k/xy) (d =3)

(5.14)
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where k?=k? +#% k%, and ky~mc? is the characteristic
energy scale. The logarithmic divergence in d =3 was
noted in Ref. 19, but its physical significance was not
then realized.

Associated with the divergence of G; at small momen-
tum is yet another problem in the diagrammatic formal-
ism. The diagrammatic resummation method mentioned
earlier expresses the Green’s functions G;; in terms of
self-energy functions X ;; via the matrix equations,”

G=G""+G3G"”, (5.15)
where G'? is the ideal-gas Green’s function
GO (k,ik,) =ik, —g,+p)""
=G% (—k, —ik,),
(5.16)

GY,(k,ik,) =G, (k,ik,)=0 .

The self-energies are expressed in the usual manner as the
sum of all one-particle irreducible diagrams, and are gen-
erally assumed to have well-behaved expansions about
zero momentum. For example, the Bogoliubov results
are

3,1k, ik, ) =25k, ik, ) =1 (og+e)
Elz(k,ikn )222](k,lkn )=noé‘k .

(5.17)

In fact, although the transverse, 1 /%, sound-mode singu-
larity is removed by this method, the longitudinal singu-
larity is not.2°~2 To see this, use (5.15) to express £ in
terms of the Green’s functions as

S(k,ik,)=G"" \(k,ik,)— G~ \(k,ik,) (5.18)
in particular,
212:612/(G11G22—G12621) . (5.19)

In the limit of small |k |,ik, the transverse singularity
cancels and one is left with?’

3 (K, ik, )= (G, +G )= LG (K, ik,) . (5.20)

so that 2, vanishes, either as k>~ [or 1/In(k) in d =3]if
T =0, or as |k|* ¢ if T>0. The Bogoliubov result
(5.17) is therefore somewhat misleading. It seems clear
from (5.20) that the origin of this singularity is again
geometrical, as in the case of the susceptibility. This van-
ishing of =, causes infrared (small k, ik, ) divergences in
the perturbation theory for Z,, and Z,; (although, as not-
ed in Ref. 19, and elsewhere, these divergences appear to
cancel out in all physical quantities). In Ref. 26 it is
shown how to eliminate these divergences, order-by-order
in the perturbation expansion.

In order to decouple the longitudinal and transverse
fluctuations completely from the outset, one might con-
sider transforming the fields to polar coordinates. Such
an approach has been developed by Popov.® Within a
functional integral formalism,® his approach begins with
the derivation of an effective hydrodynamical Hamiltoni-
an. This is accomplished by integrating out field fluctua-
tions with wave numbers greater than some small value,
ky. The remaining, slowly varying, part of the field,

Yo(x,7), is written then in the form

l/2ei¢(x.r) .

Yol X, 7)=po( X, T) (5.21)

The broken symmetry of the superfluid state is incor-
porated by writing

pol X, 7)=polko)+m(x,7), (m(x,7))=0 (5.22)

where py( k) is the density of particles with momenta less
than k,, and is essentially equal to the condensate density
for k, sufficiently small. The Hamiltonian is an expan-
sion in powers of the fields 7 and ¢ (and their derivatives
with respect to x and 7), with coefficients given by ap-
propriate thermodynamic derivatives® (hence the term
“hydrodynamical””). For example, the coefficient of
| V¢ | % is proportional to the superfluid density p, corre-
sponding to the fact that gradients in the phase give rise
to an additional free-energy density 1p &l with
o, =(A/m)Vé.

As expected, correlations in the field 7 are nonsingular
whereas correlations in ¢ contain the transverse singular-
ity. The longitudinal singularity in the standard Green’s
function (5.4) arises from the higher-order mixing of the
fields 7 and ¢ when (5.21) is expanded.”’ In particular,
Gy (x —p)~{d(x)d(y))? as expected.”’

The hydrodynamical Hamiltonian approach also al-
lows one to recover other results, such as the damping of
collisionless sound (i.e., the imaginary part of the Bogo-
liubov quasiparticle energies, E,). At finite temperature
the damping is proportional to T*|k|; at zero tempera-
ture it is proportional to |k |°.%% Via a complicated di-
agrammatic resummation technique, the approach also
can be used to derive the standard superfluid hydro-
dynamic results? in the collision dominated regime. In
particular, both first (density wave) and second (tempera-
ture wave) sound poles appear in the Green’s function.
For the weakly interacting Bose gas, the second sound
pole has an amplitude proportional to p, and a speed
¢ /V'3 where c is the speed of first sound, (1.12).%2®

B. Unified scaling picture

In this final subsection the scaling properties of a di-
lute, weakly interacting superfluid are summarized within
a more unified picture. To begin, observe that zero tem-
perature and zero density (or chemical potential) can be
considered as a type of onmset critical point. Thus, near
this point, a given thermodynamic quantity will “turn
on” with a characteristic power of the density (or chemi-
cal potential). For example, one has for u,p—0

p(T=0)=p=pu/vy,

(5.23)
Yo(T =0)=p'?=(n/v)?,

so that the superfluid density and order parameter onset
with an exponent of unity and 4, respectively. Note, if p
is used as the independent variable, the above coincide
with the ideal-gas results.

The next step involves the introduction of the tempera-
ture. At any finite temperature, the superfluid transition
must occur, but now at a finite value, p.(T), of the densi-



38 CROSSOVER SCALING IN A DILUTE BOSE SUPERFLUID. .. 8753

ty, or, u.(T), of the chemical potential. This transition is
determined essentially by the condition that the interpar-
ticle spacing be of order the thermal de Broglie wave-
length [see (1.1)]. The onset of p, and ¥, now follow from
the usual critical exponent definitions as

p(Tip) ~(p—p, ) ~Ap*/ 1=

Yol Tsp) ~ (p—pe P AP/ 1= (5.24)

)(l—a)

’

Ap(T;u)=p(T;u)—pAT)~(u—p,

for T >0, a>0, where a is the specific-heat exponent.
Only the definitions in terms of p make sense for the ideal
gas [if @ <0 one has Ap~u—pu, with corresponding
changes in the two lines above].

An attempt is now made to include both (5.23) and
(5.24) into a single scaling expression, the temperature be-
ing treated as a relevant variable. Thus, one first at-
tempts to write p, in the form

ps(T;p)=pY UDOT /p*"), T,p <1 (5.25)
with Y©(0)=1, and ¢'® to be determined below. The
major shortcoming of this form is that it predicts that all
superfluid density profiles have precisely the same shape:
the finite-temperature transition must take place at some
critical value, y,, of the argument of Y'©. This implies

T.(p)=y.p*" /D, (5.26)
and hence,
p(T;p)/p=Y Oy . T/T,), (5.27)

so that p; /p as a function of T /T, yields a single univer-
sal curve. This completely contradicts Fig. 1 which dic-
tates the existence of two intruding crossover regions, one
near T =0 and the other near T =T,, where such a sim-
ple scale invariance breaks down. If these two regions
were to be ignored (they disappear in the zero density
limit), the function Y'® and the exponent ¢‘© follow im-
mediately from the ideal-gas results as

YO =1—(y/y. )% ¢9=2/d . (5.28)

This naive scaling therefore is capable only of describing
the ideal gas, and completely misses the effects of interac-
tions.*°

In order to properly include interactions, two new vari-
ables must be added to the scaling form. These are sim-
ply the scaling combinations appropriate to the zero tem-
perature and critical regimes discussed in the Introduc-
tion and body of this paper. Thus write,

. Dop Dp
o (/)% UT=D/T. ) |’

(5.29)
where the new crossover exponents are
__ d __ d __d _, d(4—d)
Y=g %7 2 VTa 2% a
(5.30)

where ¢ and ¢, were defined in (1.9) and (1.13), respec-
tively. This can be rewritten in terms of the variable
y =D(°)T/p¢(0) as

Dyp Dp
(y/yc)‘b"' [(Ge=p)/y. 1

ps(yip)/p=Y |y; (5.31)

If y is held fixed and p is allowed to vanish one must re-
cover

Y(y;0,00=Y'%y) . (5.32)
It is therefore natural to write
Y (y;90.97)=Y )Y, r(yo,¥7) 5 (5.33)

where Y r represents the effects of interactions and has
the limiting forms

y—y),
(y—0),

Yrlyr), yr—

Yo()’o), y0_>w (5.34)

Yoryo,yr)=
where the functions Y and Y|, are the critical and zero-
temperature crossover scaling functions discussed in Ref.
1 and Sec. IV (with appropriate allowance for the fact
that the scaling variables y, and y; take slightly different
forms from those used previously).

Scaling forms generally imply some sort of underlying
fixed-point renormalization-group flow structure. In Fig.
7 such a flow structure for the Bose fluid is shown. This
figure is highly schematic and is meant only to illustrate

T=0 Gaussian
Fixed point \

1/T, mpty system’
QUANTUM

oz
AV e

(T=0)

Wy
f"l’g’, P,
sl | g
P ».'{( K

RN\ CLASSICAL
\ PLANE
Critical
Fixed point

Quantum
Spin Waves

(X~v-er2)

[\
o

Sk Classical
Spin Waves
(X~ve2)

FIG. 7. Schematic fixed point diagram for the pure interact-
ing Bose gas. At finite temperature the flows eventually collapse
onto the classical plane. Critical scaling involves the crossover
of flows passing from the vicinity of G, to that of G, then finally
to that of C. Zero-temperature scaling involves crossover from
the quantum to classical spin-wave regimes. The half-plane
»0=0, >0 is singular as it corresponds to infinite density
(p=0).
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the qualitive relationships between the various fixed
points. Primarily, this is due to the fact that different
forms of renormalization are required in different regions
of the diagram; therefore, all the flows cannot actually be
shown simultaneously.

The basic structure of the flows is as follows: All flows
originating at finite temperature inevitably collapse onto
the classical plane in which only the zeroth Matsubara
frequency survives. This property reflects the unimpor-
tance of quantum mechanics at finite temperature. The
structure within this plane is well known.>""3 The criti-
cal properties are described by the Gaussian fixed point,
G, and the critical fixed point, C, characterized by the ex-
ponents (5.24). Flows beginning in the disordered (nor-
mal fluid) phase are attracted to an “infinite-
temperature” sink, D. Flows beginning in the ordered
(superfluid) phase are attracted to a sink, S, which de-
scribes the spin-wave properties. Flows in the plane
separating the ordered and disordered phases describe the
system at criticality, and are eventually attracted to C.

The crossover to ideal-gas behavior, when the density
and transition temperature are reduced, is described by
flows that begin near the T =0 plane. The detailed
analysis of the flows describing the critical crossover was
carried out in Ref. 1(b) (see especially, Sec. VII). These
flows must begin near the critical surface, u (T, ), and
are first attracted toward the zero-temperature Gaussian
fixed point, G,, before contracting onto the classical
plane. If the starting density is sufficiently small, the
flows will remain close to the (=0, £ =0 axis and pass
near G (it is this property of the flows which in fact deter-
mines what is meant by low density'®) before crossing
over to C, and finally, S. The simple nature of the flows
from the starting point to the neighborhood of G allows
one to map the starting point directly onto the flows
crossing over from G to C.'® This is the essence of the
correspondence between the dilute Bose gas near criticali-
ty and the classical continuous spin s* model.!

Conversely, if the flows do not begin sufficiently near
the critical plane, they will be attracted first toward the
ideal plane (e(=0) before collapsing onto the classical
plane and arriving at S without passing near G. These
flows may still pass near G (if the starting point lies in the
critical region of Fig. 1, but not the interacting critical re-
gion), or they may miss G entirely (if the starting point
lies in the intermediate region of Fig. 1).

It is at very low temperatures that the quantum spin-
wave fixed point finally comes into play. At zero temper-
ature the flows will terminate at S, and the behavior will
be that of the (d + 1)-dimensional classical spin-wave sys-
tem, as noted in Egs. (5.14) and (3.9). Close to zero tem-
perature, the flows pass very close to S, before contract-
ing down onto S. It is precisely this crossover from S, to
S which results in the scaling behavior that has been the
main concern of this paper. Although the analysis in this
paper was not carried out within a renormalization-group
framework, it seems clear that such a treatment of the
Bogoliubov Hamiltonian would present little more
difficulty than the ideal Bose gas or Gaussian models (see
Appendix D).

This completes the general scaling picture of the dilute
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Bose fluid. An interesting question that remains to be
discussed is how these results are affected by the presence
of an external random potential. The work in Ref. 1 was
strongly motivated by the experimental results of Reppy
and co-workers®® on helium adsorbed in porous Vycor
glass. These experiments were consistent with the as-
sumption that randomness could be ignored, at least in
the density and temperature ranges explored. Although
heuristic scaling arguments exist that make this plausi-
ble,** a full renormalization-group picture, analogous to
that of the flows about G, G, and C in Fig. 7, has yet to
be presented. This will be addressed in future publica-
tions.*
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APPENDIX A: CRITICAL CROSSOVER
IN THE ORDERED PHASE

In this appendix, the forms of the critical scaling fields
beneath T, will be derived. The calculations will be per-
formed at fixed chemical potential 4. The imposition of
the constant density constraint may be treated separately,
as discussed in detail in Ref. 1(b) and in Appendix B.

It is most convenient to work with the condensate
wave function given by (3.7). Near the critical point, u
and 1, will be small, and one seeks the leading u—0
singularities in the integral I[u,v=0; (1/ey)!’?]. The
coefficients and degree of these singularities will be relat-
ed to the scaling properties.'

To begin, the second, zero temperature, term in the in-
tegrand varies as

Io=1 [ oot o) E/Ey— D —pot/ooEy ]

2
d = d—1 y°+1
zg OK d _—
o« dfo A R TRENTIE ll
¢

, (AD

2y (p2426)17
where ¢ and £, were defined in Sec. III. Since its integral
diverges in d > 2, unless the cutoff inherent in ¢ is used,

the last term in square brackets yields the leading depen-
dence on &,. The result is

Iy~ —é—uoKd(ao/go)zaadfowdu ud 3$(u)?,

Ep— o . (A2)
The analysis of the temperature dependent part of I is
more complicated. The exponential cutoff in the Bose
factor allows one to set ¢ =1 to obtain the leading depen-
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dence on Bu. Via the same substitution used to derive

(3.23), one has

(eo+ o ) —Noot
AIEfk o+ )é—no K, (E,)

Ey
2Ax2/rr+ )21
(x2/r24+ 1) (e*—1)
X[(x2/r2 4 DV2=1]4-272 0 (A3)
J

- K0 %0 f ®

AI(r)—AI(0) mfwdu
T 2r 0

2(1+u2)1/2_1
(1+u?)'”?

[(1+u2)1/2_

In the limit » — 0 the result is

- @-272 2 24(1d)
AI(r:O)zf dx> L 2 o -
0 e*—1 T(id)A% A%

(A4)

The leading correction to this result is also important,
and is extracted by subtracting the r =0 result and
changing variables to u =x /r:

1]d-272_py(d=2/2 +1 . (AS)
e _

The subtraction ensures the existence of the r =0 limit of the integral for d <4, so that the leading dependence is ob-

tained by replacing r(e™—1)""! simply by u "

s?=1+u?, and the identity®

The resulting integral can be evaluated using the substitution

o (s —1H"" 1 _
=2""B(v—pu,u) (A6)
fl s+1) n,p
to give the remarkably simple result
(d—4)/2
AP —AI(0) =~ 02X T[12—a)}rd -2 (A7)
AT
The final result is therefore
28(1d) (d—4)/2
0 2 IX2 d—2)/2
| Yo | ~(p/eg)”? ‘1——— r[L2—d)](Bu) +0(Bu) (A8B)
| A% AT ’
!
Note that (A2) does not contribute at the _order shown. g, ~Beo/A%, g, =Bu—2¢L( %d)ﬁao//\d ,
In order to make the connection with scaling, one
matches (A8) to a scaling form® ¢p=14—d), By=1—-Top=(d—2)/4, Ty=1, A1)

B,
AY? Y| ~A4,8,°V[ 4,8, /88] (A9)

in which g, and g, are scaling fields! and the factor of
A%/? on the left makes the equation dimensionless. Since
¥, evidently diverges as g '/? for small & at fixed >0,
one anticipates, by appropriate choice of the metrical fac-
tors 4, and 4,,

Yiyl=y [l+y +0(y)] (A10)

with Ty=1. The quantity g./? || A§’* then has, at
least in low orders, an expansion in powers of ¢ given by

-r
gl |ty | A% =g, (0" 4, 470

X[1+4e(A,g..(0)/g,(0)*

+”0(Bo+ro¢)g;,(0)/g”(0)+ e,
(A11)

where g;(0)=(dg#/du0),,0:0, etc. Comparing (All)

with (A8) one identifies [see Ref. 1(b) for details of the
matching procedure]:

Ay=—3x29-97r[L(2-d)],

A1= A 50231/22(d—6)/4{

—T[L2-a)])'2.

These results are completely consistent with those de-

rived in the disordered phase' —the linear scaling fields

and crossover exponent being identical in the two cases.
The same calculation can be carried through for the

superfluid density using (3.7), (3.11), and (4.20). The ap-
propriate scaling form here is

A%p,/m ~B g ,°R[B,g,/g¢] (A13)
with

Ry, 1=y, “l14y,+00:2)]. (A14)

As expected, the results for g w 8o and ¢ are the same as

(A12). The other, property dependent, parameters are
given by
o=+(d =2), Ap=1,

(A15)
BI=B2=2“"2’/2[(d +2)/d1{-T[12-d)]} .

This result also demonstrates that the scaling forms for
p./m and ny=|v,|? differ: Although vy=28, and
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A,=2T,, the metrical factors resulting from squaring
(A9) and (A10) are

A4, =4,=3x2""Y?[_T(L2-d)] (A16)

which are different from B, and B, so long as d <4.

APPENDIX B: ENSEMBLE INDEPENDENCE
OF THE SUPERFLUID DENSITY

In Eq. (4.6) the superfluid density was defined as a
second derivative of the free energy with respect to an
imposed twist. The free energy used was the grand
canonical free energy—a function of the variable u. If, as
is appropriate in some experiments, the density is con-
strained to be fixed, one might be concerned that the cor-
responding constrained derivatives will yield a different
answer for p,. The following observations illustrate that
this concern is unfounded.

Let
pslul= ﬁz akZF (1, Tovoi ko], 0=0.ko=0 (B1)
and
puln]= ’;’f aizG [n,Tovoikoly —okg—0+ (B2
where
G'=F'4+pun (B3)

is the canonical free energy. It will be shown that
p,[u]l=p;[n], where n=—0F'/du. Hence the con-
straint commutes with the k derivatives.

Begin with the standard identity

an|  [an
dx ay

oh(x,y)
ox

Sy

3x , (B4)

D D

where A (x,y) is any function, and the subscript D means
that the corresponding derivative is to be taken at fixed
D =D (x,y). One has then

3G oF! i u
ak, 3k, |, ko |
JF! dF! au du
ko |7 o ko |3k | 7" Bk |
dF!
OF (BS)
ak,
since n = —(3F'/3p), . Therefore
21 2l
aG2 an an 3 (B6)
ok |~ | ok2 dky | | 3k,

If F! is an even function of k, as is certainly the case for
helium, the second term vanishes when k,—0, and the
required equality follows immediately.
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APPENDIX C: SPIN WAVES IN THE s* MODEL
The s*model Hamiltonian is given by
Hy=1[d%(|Vs|24r|s|>+Lu|s|h (C1)

where s is an n-dimensional continuous spin, and an un-
derlying lattice spacing, b, should be understood. Com-
parisons with helium are made by taking n =2— as is
appropriate to the phase symmetry of the field operator.
The first two terms in (C1) represent the Gaussian model,
which is closely analogous to the ideal gas.! In the or-
dered phase (characterized within mean-field theory by
r <0) there will be a nonzero magnetization, M= (s). It
is therefore convenient to perform a shift by defining

o=s—M, (o)=0 (C2)
[cf. Eq. (2.3)]. The Hamiltonian then reads
Hy= [di%[}|Vo |*+L(r +uM?)(M-0 +0?)
+uM-0c(M-0+0%)+luc*]+F,V
(C3)

where Fy=1rM?+1uM* is the Landau free energy.
Treating the deviation, o, as small, the initial approxima-
tion consists of dropping terms cubic and higher in o.
Equation (C2) then implies

M2~M3=—r/u (C4)
[cf. Eq. (2.37)], and the Hamiltonian becomes
H ~H?+Fy(MyV

= [d%[L|Vo |2 +u(Myo P ]—(r2/4u)V (C5)

[cf. Eq _(2.19)]. Writing o =(o!,0'), where ol=0- M

and o-M =0 (here M= M/|M| =M,/ |M;| ), one has
0= [d%[L| Vo241 Vo |24 |r [(a!P?].  (CO)
The transverse fluctuations are therefore ‘‘massless”—

these represent the Goldstone modes—while the longitu-
dinal fluctuations are not. The momentum space correla-
tion function is given by
%(oq-o a0 ——( log |2+l
1 (n—1 1
Brn | ¢*  q*+2]|r]|
_ g’ +2n—=1)|r | /n
Bq*(g*+2|r|)
If one takes n =2, #2/2m =1, and | ¥ | is identified with
u, this last form corresponds exactly to the zero-
frequency propagator, B~'GY,(q,ig, =0) [cf. Eq. (5.6)].
To be more explicit, the Bogoliubov canonical transfor-

mation corresponds precisely to the Jacobian preserving
transformation

(C7

Go=[(g’+|r )¢ a},q(q’+ [r )" %0y].  (C8)

In terms of this transformed spin, the Hamiltonian be-
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comes

H)=13 @+ |r | Xoh)?+q% | og|’]
(c9)

where Ej=[q*+2|r|q*]'/ [cf. Egs. (2.28) and (2.38)].
A cutoff g, ~m/by on the momentum sums should be
understood.

Carrying the analogy further, the analog of the anoma-
lous Green’s function is

_lrl

H(ogP—(a))P)e= BES )

(C10)

which corresponds precisely to B7'GY,(q, ig, =0) [cf. Eq.
(5.6); to see this, identify aé-i-ial'l with @, and
ot q—ia”_q with az ], and is nonzero simply because the
broken symmetry makes the longitudinal and transverse
fluctuations inequivalent.

The superfluid density or, in spin language, the helicity
modulus, can be obtained by adding the term analogous
to (4.2), namely

%fddxko-(alVa“ —a'vat)

1 1
=13 ky'qlogo! —olot

q

Q) (€11

to H,, and taking two derivatives with respect to k. The
result is

J

5G(x —}’)=%.32u2M2<0“(x)0”(y) [fa”(z)al(z)zddzr)()c

where the subscript ¢ indicates the connected part. This
yields
8G,(x —y)=2Bu>M? [ d%2d WG (x —2)
X Gw —-z)ZGﬁ(y —z)
~2Bu*M?*G{(q =0)’G(x —y)?
=(u*M?*72|r | )G (x —yp)?, (C17)

where the last two expressions follow in the limit of large
| x —y | by virtue of the short-ranged character of

GO(z)~exp[— |z | /(2] r |)?]

[as follows from (C7)]. Also from (C7) one has
GY(z)~B~'|z |* 9 when |z| is large, so that (C17)
yields the Fourier transform

8G,(q)~(u’M?*/2|r | ))kzTY g™, ¢—0. (C18)
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pi=2 3 2 g o Jololol oy
q

_l l 2 s\2
= V§ FL B(EY) (C12)

which should be compared to the small momentum form
of (4.21).

Finally, to obtain the singularity in the actual longitu-
dinal correlation function, the higher-order terms left out
of H? must be taken into account, in particular the cubic
term

uM-oo?=uMo'[(0")?+(0')?] (C13)

which connects o! to ()2 The origin of this term is
clearer if one considers the model more commonly en-
countered when discussing spin waves—namely the fixed
spin ferromagnet

H!=[d%|Vs|? |s|=1. (C14)
If one considers small fluctuations o about unit magneti-
zation, then one has precisely

ol=[1—(c")?]'?—1~ - L"), (C15)
i.e., the fixed length constraint implies that longitudinal
fluctuations are directly related to transverse fluctuations.
For soft spins the relationship is not strict, but o still will
be dominated by the easy transverse fluctuations, and
these will drive the longitudinal fluctuations. The term
Mc'(o')? in (C13) represents just this effect.

To see the effect of (C13) on the longitudinal correla-

tions, consider the following second-order contribution to
G,(x —y)=(al(x)al(y))

(C16)

[
This dominates Gl?(q) at small g, and leads to the re-
quisite divergence of the longitudinal susceptibility
X, =G ,(q =0) [cf. Eq. (3.8)].

As a final observation, note that if the momentum
cutoff g, is taken to be temperature dependent in such a
way as to mimic the effective energy cutoff ~kzT in-
herent in the Bose factor arising in the helium diagram-
matics, then the various temperature laws for
no(0)—ny(T), p,(T), etc., hold precisely in the s* case as
well. Without such a cutoff the temperature dependence
would be trivial, governed only by the temperature pre-
factors such as that which appears in (C12). Thus, for ex-
ample, p, would vary strictly linearly with temperature
at low temperatures, independent of dimensionality.
Note, however, that the actual temperature dependence
of g, will not be simple because it would entail inverting
an equation such as ,BE;A ~1. In contrast, near T, it was

found' that one needed only to invert g3 ~1. This is
not surprising as in this regime one has fmc? << 1.
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APPENDIX D: RENORMALIZATION-GROUP
ANALYSIS OF THE BOGOLIUBOV MODEL

In this appendix, the path-integral formulation of the
Bose fluid is used to derive renormalization-group flows

J

for the Bogoliubov model. In this approach, the Hamil-
tonian is replaced by a Lagrangian which is a functional
of a classical complex field®1® @(x,7), with Fourier
transform a(k,k,). The Bogoliubov Lagrangian reads
[cf. Eq. (2.13)]

Lo= 3 ([ik, —eQ+p—nolooteo)la*(k,ik,)a(k,ik,) —Lingefa(k,ik,)a(—k, —ik,)+a*(k,ik,)a*(—k, —ik,)]} .

k.ik,

(D1

The trivial constant term (2.10) has been dropped for simplicity. Equation (2.36) still is taken as the equation of state
determining ny(u,v). Asin Sec. II, a (k, ik, ) is divided into longitudinal and transverse parts,

a(k,ik,)=al(k,ik,)+ia*(k,ik,) .
This yields

Lo=— 3 {(eY4+v/2¢y) | a(k,ik,) | 24+ (34 2nge +v/20) | a(k,ik,) |

k. ik,

+k,[at(k,ik,)a( —k, —ik,)—al(k,ik,)a"( —k, —ik,)]} .

L, is put into a standard form by rescaling a* and a' to yield

Lo=— 3 ((k*+9)|a'(k,ik,) | *+(1+ek?) @k, ik,) |* +k,[a Xk k,)a (—k, —k,)—a I(k,k,)a {(—k, —k,)]} ,

k,ik,

where
V:mvaz/ﬁ?’t/}o R
alz(ﬁ2/2ma2)l/201 ,
a@'=2ngeo+v/2¢y)%a,
e, =#/2m 2ngeo+v/2¢y)a? ,
k=ka ,
k,=[2ma*/#(2ngeq+v/2¢)1' %k,
and the unimportant k dependence of ¢, has been
dropped.

The renormalization-group transformation involves in-
tegrating out all field components with wave numbers in
a shell b6 'k, < | k| <k,,(b >1), where k,=0(1) is a
cutoff [corresponding to a cutoff k, =O(w/a) on |k|],
then rescaling momentum and fields so as to restore the
original cutoff, as well as the standard form (D3), but
with renormalized parameters v',e;,T’. Since L, is
quadratic, the first operation simply yields a constant

which contributes to the free energy, while the rescaling
operation yields

v'=b%, e)=b"%e,, T =bT,

(D4)
;J’:b_l, é—”zl ,

where £ and ¢! are the transverse and longitudinal field
rescaling factors, respectively. It is seen immediately that
the spin-wave fixed points are located at v=0, e, =0, and
either T=0or T=c. The T =0 fixed point is unstable
to both ¥ and T, while the T = oo fixed point is unstable

f

only to v. This essentially reproduces the structure
shown in Fig. 7.

The various exponents near zero temperature follow
from the free-energy density which, from (D4), obeys

f®T)=b"4"1£(b%,bT)+5f , (DS5)

where §f comes from the renormalization constant men-
tioned above, and is presumed nonsingular. The prefac-
tor b ~¢~! follows from f =F /BV, where F is the exten-
sive free energy. Two derivatives with respect to ¥ yields

X%, T=0)~b3>"%b%,T=0) (D6)

which implies X7 _o~7¢ ~3 [cf. (3.9)]. A single derivative
yields for the singular part of v,

¢0,sing(v=0’ ~b ]~d¢0,sing(V=0a bT)

which implies ¥ oo~ T¢ " [cf. (3.26); since a>0 the
fact that (3.26) is a constant density result does not affect
the exponent here, only the detailed scaling function].
The crossover from ideal-gas behavior manifests in the ir-
relevance of e,~£3/a% 1In the dilute limit the initial
value of e, is very large (e, = o, or =0, is the ideal-gas
fixed point), and only after many renormalizations can it
be neglected, as was done in (D35), (D6), and (D7).

As T renormalizes to infinity, the gap between the fre-
quencies k, in (D3) acts to suppress all nonzero k,. To
obtain a proper finite limiting free energy when T is large,
it is convenient to change the renormalization scheme
slightly. Instead of renormalizing the temperature, one
fixes it at, say, T'=1, and absorbs the renormalization
into a coefficient ' ! of k,, in (D3).® The result after re-

(D7)
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normalization is

I'=b-'T (D8)
and T is therefore irrelevant. The free energy renormal-

izes as

f@D)=b"% (b*%,b~'T)+8f . (D9)

This new procedure amounts to an essentially trivial
change: The renormalized free-energy density is simply
taken as F/BV’ rather than F/B'V’, where V'=b"%is
the renormalized volume—the former has a finite
nonzero limit as I'—0, while the latter diverges to
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infinity as —0.
From (D9) the renormalization of the finite-
temperature susceptibility follows as
X(%T=0)~b*"%(b*%T=0), (D10)

hence X(I'=0)~%%~* [cf. Eq. (3.8)]. The only tempera-
ture dependence comes from the factor 1/f in the above
definition for the free energy: All quantities, therefore,
vary linearly with 7. This is a well-known property of
classical continuous spin models. Nontrivial temperature
dependence results only if the cutoff k, is made tempera-
ture dependent (see Appendix C and Ref. 1).
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