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We report the results of a stability analysis of coherent oscillations in series arrays of Josephson
junctions shunted by a common load. The analysis has found the parameter values for which the
coherent, in-phase solution is stable and gives a quantitative measure of the stability. We find that
arbitrarily large, dc-biased, arrays of Josephson junctions will phase lock most strongly when the ca-
pacitance parameter P, = 1 and the bias current is about the same as the critical current of the indi-

vidual junctions. We use bifurcation theory to discuss the role that symmetry plays in determining
the form and the stability of these oscillations. Simulations with up to 100 junctions confirm the re-
sults of the stability analysis. Arrays of nearly identical junctions are also discussed.

INTRODUCTION

Josephson junctions have the remarkable property that
they oscillate at a frequency that is proportional to the
voltage across the junction. ' Connecting multiple
Josephson junctions together in a series array introduces
the possibility that the junctions will phase lock and os-
cillate coherently. Understanding the mechanisms that
are responsible for such phase locking is an interesting
problem of nonlinear dynamics as well as being useful for
practical applications. We present here analysis and nu-
merical simulations that detail these phase-locked solu-
tions and their stability.

From the point of view of applications, Josephson
junction arrays are of considerable interest as local oscil-
lators, mixers, and parametric amplifiers in microwave
and millimeter-wave circuits. Arrays have the advan-
tage over single junctions that their power and source im-
pedance can be increased to practically useful levels.
Typically for these applications, the junctions are ar-
ranged in a one-dimensional array shunted by a load.
This is the configuration that we consider here.

The conditions under which arrays of Josephson junc-
tions phase lock has been analyzed using perturbative
techniques by Jain, Likharev, Lukens, and Sauvageau.
While extremely useful, their analysis is restricted to a
limited range of parameters. Here we employ an exact,
albeit numerical approach based on Floquet theory to ex-
amine the stability of the in-phase coherent oscillations
under general conditions. This technique is similar to
one that was used to study the stability of single Joseph-
son junction circuits. By in-phase we mean that all of
the junctions oscillate identically. We plot the numerical
results for a variety of cases of practical interest.
Throughout this paper we employ a lumped parameter
model for the circuit which is valid for arrays small com-
pared to a wavelength of the radiation and for distributed
arrays. Within this model we show that arbitrarily large
arrays of junctions will phase lock and oscillate in phase

and we quantify how stable the in-phase oscillations are.
Using symmetry arguments we show that when the in-
phase oscillations lose stability as many as (N —1)!new,
symmetry-related solutions can appear. The solutions
that appear after the in-phase solution has lost stability
also show some degree of coherence although the junc-
tions no longer all oscillate identically. Numerical simu-
lations of these other solutions are presented.

BASIC CIRCUIT AND MODEL

The general circuit diagram of the array we are consid-
ering is shown in Fig. 1. It is a series array of current
biased Josephson junctions shunted by a load impedance.
In this circuit the oscillating voltage across the junctions
generates a high-frequency load current. This current
flows through all of the junctions and serves to couple
them. Under certain conditions the interaction between
the oscillating load current and the oscillating super-
current flowing through the junctions leads to phase lock-
ing and coherent oscillation of each junction in the array.

The behavior of Josephson junctions is commonly
modeled using the shunted-junction model. ' Within
this model the equations that describe the behavior of the
circuit in Fig. 1 are

V(t)= y y/, (t)=F(IL(t)) . (lb)

The first equation is a statement of the conservation of
current and the second that the voltage across the array
of junctions equals the voltage across the load. We have
used the usual reduced units, measuring current in units
of the critical current I, voltage in units of I,R~, resis-
tance in units of Rtt, capacitance in units of fi!(2eI,RN ),
inductance in units of fil(2eI, ), and time in units of

13~/k(t)+pk(t)+sin[Qk(t)]+IL (t)=Itt

k =1,2, . . . , N (la)
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LOAD

in the expansion of the load functional F(IL +i) linear-
ized about the in phase load current IL .

We can greatly simplify the linearized equations by
taking advantage of the permutation symmetry of the
system. (Any permutation, gj.~rib, leaves Eq. (3) un-

changed. ) We transform to the natural coordinates of
this system, which are the mean coordinate
y=(l/N) gk & rtk, and the N —1 relative coordinates,

gb gb
———rtk+ &. The Eqs. (3) then become,

p, gk(t)+gb(t)+cos[(t)0(t)]gk(t)=0, k =1,2, . . . , N —1

(4a)

FIG. 1. Circuit diagram of a series Josephson junction array
shunted by a load impedance.

P, jb(t)+jo(t)+cos[$0(t)]y(t)+i (t)=0,
Nj(t)=F'(I, (t))i(t) .

(4b)

(4c)

fi/2eI, R&. Here N is the number of junctions, RN is

the appropriate shunt resistance of the junctions, p,
=(2eI,RNCJ )/A is a dimensionless measure of the capac-
itance C~ of the junctions, Il is the load current, Iz is the
applied bias current, and F(IL } is the functional that re-

lates the load current IL to the total voltage V across the
array. (For instance when the load in Fig. 1 is a capaci-
tor F(IL ) =(1/C) JIt dt. ) The Pk's are the differences in

the phases of the quasiclassical, superconducting wave
functions on the two sides of the junctions. This model
is a good approximation over a wide range of P„
including weak-link superconductor-normal-metal —su-

perconductor (S-N-S —type) junctions where p, « 1,
shunted tunnel junctions (p, =1), and unshunted tunnel

junctions at voltages below the energy gap (p, &&1).
For the in-phase solution all of the junctions oscillate

together, pb
——$0. In this case the N + 1 equations for the

array reduce to just two equations,

p p (to) +p (t0) +sin[$0(t)] +IL ( t) =Itt

V(t) =Np, (t) =f(IL(t)) .

(2a)

(2b)

This is equivalent to the equations for a single junction
shunted by a load with a scaled load functional
f(I)=F(I)/N. Thus the calculation of the in-phase
solution for an arbitrarily large array reduces to the
equivalent calculation for a single junction.

STABILITY ANALYSIS OF THE IN-PHASE STATE

N

g itk(t ) =F'(It (t) )t (t) (3b)

where $0(t) and IL (t) are functions of period T that solve

Eq. (2). F'(It (t))i (t}is shorthand for the first-order term

To determine the stability we c6nsider small perturba-
tions to the in-phase solution, (Pk $0+rtk, I =IL+—i—)
Linearizing around the in-phase solution results in a set
of linear differential equations with periodic coefficients,

p, rjk (t)+ ilk ( t)+cos[po(t)]gk ( t)+ i ( t) =0

k =1,2, . . . , N (3a)

g, (t+T)
gb(t + T)

g, (T) g. (T) g, (t)

gb(t) gb(T) gb(t)
(5)

The eigensolutions of Eq. (5) are called the Floquet solu-

tions and can be put in the form g, =e 'X&(t),
P2t

gz ——e X2(t), where X,(t) and Xz(t) are periodic functions
of period T and p&+p2 ———I/P, . The p's are called the
Floquet exponents and their real parts determine the sta-
bility of the perturbations. They are related to the eigen-
values k of the matrix in Eq. (5) by p, =ln(A, )/T. If
both Re(p, ) and Re(pz) are negative, then any initial per-
turbation decays and the in-phase solution is linearly
stable. If either exponent has a positive real part, the
perturbations grow and the in-phase solution is linearly
unstable. Finally if either Re(p, ) =0 or Re(p2) =0, then
the perturbations to Eq. (4) neither grow nor decay: We
then say that the in-phase state is (linearly) neutrally
stable, and nonlinear terms omitted in writing Eq. (3)
determine the ultimate stability of Po(t). Note that the

imaginary part of the Floquet exponents are determined
only up to an integer multiple of 2~i/T. To avoid any
ambiguity we will pick n /T & Im(p) & ~/T-.

Before discussing the numerical solutions to these
equations we consider approximate solutions for the Flo-
quet exponents in various limits. The approximate solu-

This transformation decouples all N coordinates in the
problem. Further simplification results because all of the
relative coordinates obey the same equation. Thus, be-
cause of symmetry, the stability analysis of the original
N + 1 equations reduces to solving the above set of three
equations. The in-phase solution $0 will remain stable as
long as the relative coordinates do not grow. We there-
fore focus our attention on Eq. (4a).

Equation (4a) arises in many physical problems and
can be analyzed using Floquet theory. The analysis
shows that any solution to this equation can be expressed
as a linear combination of two fundamental solutions,

g, (t) and gb(t), which are specified by the initial condi-
tions: g, (0)=1, g, (0)=0, gb(0)=0, gb(0)=1. Since
cos($0) is a periodic function, g, (t+T) and gb(t+T)
must also be solutions to Eq. (4a), which can be expressed
in terms of g, (t) and gb(t). This leads to the vector equa-
tion,
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where

—1+[1—4P, (cos(Po) ) ]'i
2P,

For I~ && 1, cos(Pp) is nearly sinusoidal and

p+= —(cos(go))~0. Hence, the in-phase solution is
stable for ( cos(go) ) & 0 and approaches neutral stability
as the bias current increases. For p, »1, the in-phase
solution again approaches neutral stability as the largest
real ~art of the Floquet exponents is bounded by
1/QP, & p+ & —1/(2P, ). Therefore we conclude that
arrays of junctions with p, »1, or Iz »1 will not
phase-lock strongly.

In the highly damped limit one can take p, =0 and the
equation for the relative coordinate can be solved exactly.
Direct integration of Eq. (4a) in this case yields,

g(t) =exp —f cos[po(t')]dt'
0

(7)

From this solution we see that such an array will once
again phase lock when (cos(Po)) &0. By differentiating
Eq. (2a) in this case one finds

r IL (t)
cos(po) = f . dt .r o P(r)

(8)

Except for bias currents close to the critical current both
IL (t) and Po(t) are nearly sinusoidal, periodic functions.
Here Po(t) is the voltage across the load and IL (t) is the
current through the load so IL (t) leads Po(t) by n/2
when the load is capacitive, Iz (t) lags Po(t} by n/2 when.
the load is inductive, and IL(t) has the same phase as
Po(t) when the load is resistive. These phase relationships
taken together with Eq. (8) dictate the sign of (cos(Po) )
and show that in this limit (p, =O, Iz »1}the junctions
will phase lock with an inductive load, will not phase
lock with a capacitive load, and will be neutrally stable
with a resistive load. This agrees with the earlier pertur-
bation calculation of Jain, Likharev, Lukens, and Sau-
vageau, and with our numerical results in this limit
which we present in the next section.

APPLICATIONS OF THE STABILITY ANALYSIS

As we discussed at the beginning of the paper, it is only
by virtue of the existence of a load that the junctions can
couple. Therefore it is of interest to examine the nature
of the stability of the in-phase state for various typical
loads. We have done this for six representative cases
which include a resistive load, a capacitive load, two in-

tions give physical insight and they also provide a check
on our numerical work. When cos(go) oscillates with a
period much shorter than any other time in the problem
we can employ the averaging method to find an approxi-
mate solution to Eq. (4a). In this approximation, which is
valid for p, »T=2~/I~, we replace cos(po) with its
average value, (cos(Po)). The solutions to the averaged
equation are

e + ande)o+I C

ductive loads, and series and parallel resonant
inductance-capacitance (I.C) loads. The Floquet ex-
ponents were calculated in each case by numerically
determining g, (t}, gb(t), and Po(t) by means of a Runge-
Kutta algorithm and then using these results to diagonal-
ize the matrix of Eq. (5). Each time the matrix was diag-
onalized, a check was performed to insure that—T/P

~

A. ,A.2
—e '

~

was less than 0.05. The condition,
—T/P

A. ,A, 2
—e '=0, is equivalent to p, +pz ———1/p, which

is a result of Floquet theory. When the period of the os-
cillation gets long (T» 1), as does happen for bias
currents near the critical current, longer numerical in-
tegrations are required and it becomes more difficult to
calculate the Floquet exponents. In fact for low bias
currents the condition, Re(p+ ) & —1/(2p, ), is violated in

Figs. 2(a) and 2(b) although the numerical results are
within the limits stated above.

In Figs. 2(a) —2(f} we plot contours of the largest real
part of the Floquet exponents associated with the relative
coordinate as a function of the junction capacitance p,
and the bias current Iz for each of these loads. These
stability plots show the range of parameters over which
the in-phase solution is stable and they provide a quanti-
tative measure of the stability. The heavy line is the
Re(p) =0 contour and separates the stable and unstable
regions. The dashed line corresponds to the transition to
the zero voltage state. To the left of this line the junc-
tions no longer oscillate and questions concerning
coherent oscillations are moot. The in-phase solution is
most stable for the regions where the exponents are most
negative. For instance an exponent of —0.4 corresponds
to the perturbations decreasing by a factor of about 10
for every cycle of the in-phase oscillations. As the figures
indicate we have observed stable in-phase oscillations in
some region of the p, -I& plane for each type of load.
Universally the strongest phase locking occurs for p, in
the range 0—1 and Iz in the range 1 —2. Lee and Schwarz
found similar results for the optimum phase-locking re-
gime based on calculations for two junction arrays. '

These plots relate the stability of arbitrarily large arrays
of junctions with a load that scales with the number of
junctions. For instance Fig. 2(a} relates the stability of a
series array of N junctions shunted by a resistor whose
resistance is R =N in our reduced units. The appropriate
scalings for the other circuits are given in the figure cap-
tion.

Figures 2(a) and 2(b) show that in-phase oscillations are
stable in most of the p, Iz plane when the loa—d is resis-
tive or capacitive. The stability plots for the inductive
loads, Figs. 2(c)—2(d), are nearly the complement of the
stability plot for the capacitive load or resistive load. (In
the circuit of Fig. 2(d} a large capacitor is included in
series with the inductor to block dc currents which would
short the junctions, but the load appears inductive at all
relevant frequencies. } Roughly speaking, the in-phase os-
cillations are stable for inductive loads in the regions
where they were unstable for capacitive loads. As p, or
I~ (or both) become large the real part of the Floquet ex-
ponent approaches zero in all of these plots implying that
the in-phase state approaches neutral stability. In this



PHASE LOCKING OF JOSEPHSON-JUNCTION SERIES ARRAYS 871538

limit, arrays with a resistive or capacitive loads are stable
and approaching neutral stability while arrays with in-

ductive loads are unstable and approaching neutral sta-

bility. The numerical results agree with the limiting ex-

pressions presented above in all Of the limits discussed.
We emphasize, however, in the P, =0, Iz »1 limit our
numerical work shows that the range of P, for which

these limiting results are quantitatively valid is rather
narrow.

The behavior of the stability of the in-phase solutions
as the load goes through a resonance is shown in Figs.
2(e)—2(fl. For low bias currents the circuit in Fig. 2(e)
has a capacitive impedance and the stability plot resem-
bles that of the simple capacitive load, Fig. 2(b). For
high bias currents the circuit in Fig. 2(e) has an inductive
impedance and the stability plot resembles that of the
simple inductive load, Fig. 2(c). Analogous statements
can be made about the limiting regions in Fig. 2(fl. This
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FIG. 2. Contours of the largest real part of the Floquet exponents are plotted as a function of the junction capacitance P, and the
bias current I&. The in-phase solution is unstable for Re(p) & 0 and is most stable for the most negative exponents. These plots relate
the stability of arrays with an arbitrarily large number of junctions where the impedance of the load scales with the number of junc-
tions. (a) Resistive load with an impedance matched to the impedance of the array R =¹(b) Capacitive load C =3/¹ (c) Load is a
series resistor inductor, R =N, L =3N. (d) Load is a series inductor capacitor, L =3N, C =S/N. Here a large capacitor is used to
block dc currents which would short the junctions. The load has an inductive impedance at all relevant frequencies. (e) Load is a
series inductor capacitor which passes through a resonance at a bias current of about 2, L =N/2, C =1/(2N). (f) Load is a parallel
inductor-capacitor with a large blocking capacitor to prevent the inductor from shorting the junctions, L =N/2, C = 1/(2N), block-
ing capacitor= 5/1V. This load also passes through a resonance at a bias current of about 2.



8716 P. HADLEY, M. R. BEASLEY, AND K. WIESENFELD 38

shows how one can piece together the approximate stabil-
ity plots of more complicated circuits by taking parts of
simpler circuits in the appropriate limits.

STABILITY LQSS BY IN-PHASE QSCILLATIGNS

The manner in which the in-phase solution loses stabil-
ity depends to a large extent on the symmetries of the
governing circuit equations. The relationship between
symmetry and stability can best be described using the
language of bifurcation theory. " A solution loses stabili-
ty when at least one Floquet exponent crosses into the
right half-plane. Such an event is called a bifurcation,
and signals an abrupt change in the dynamics. In the ab-
sence of special constraints or any underlying symmetry,
there are only three ways in which the solution can lose
stability as a single parameter is varied [see Fig. 3(a)].
The three possibilities are a saddle node bifurcation,
where a single exponent crosses the imaginary axis at
Im(p) =0, a period doubling bifurcation, where a single
exponent crosses the imaginary axis at Im(p) =mlT, and
a Hopf bifurcation, where a complex-conjugate pair of
exponents cross the imaginary axis anywhere else.

When an underlying symmetry is present, however,
these are not the only generic bifurcations, since typically
one can have several exponents crossing into the right
half-plane simultaneously. ' In the present array prob-
lem, there is a permutation symmetry; any transforma-
tion of Eq. (1) which exchanges two junctions leaves the
circuit equations unchanged. It follows that if
(P„P , .2. . , P, ,P„, . . . , P~ ) is a solution then so is

(P„P2, . . . , PI„PJ, . . . , P~ ), as are all of the other Ã per-
mutation related solutions. Of course, all of these solu-
tions may not be distinct. If all Ã permutations give the
same solution, then we call this a symmetric solution; this
is just what we have been calling the in-phase solution.
On the other hand, if a solution is not invariant with
respect to all 1P. permutations of the {Pk ), then we call it

a symmetry-broken solution.
We are interested first and foremost in the instabilities

suffered by the in-phase (symmetric) solution; there are
two distinct possibilities. First, the instability can give
rise to a new solution which is also in phase, so that the
entire nonlinear problem reduces to Eq. (2), which has no
underlying symmetry. Consequently, the symmetry plays
no role, and we expect to find only the generic bifurca-
tions listed above. This happens when one of the Floquet
exponents associated with Eqs. (4b) and (4c) crosses into
the right half-plane while the Floquet exponents associat-
ed with Eq. (4a) have negative real parts. The other pos-
sibility is that the system undergoes a symmetry-breaking
bifurcation, in which case the new solutions no longer
represent in-phase oscillations of the array. In this case a
Floquet exponent associated with Eq. (4a) crosses into the
right half-plane and the underlying symmetry plays an
important role in the observed dynamics. The general to-
pic of the effects of symmetry on the bifurcation structure
of nonlinear dynamical systems is under intense investiga-
tion, " but the current understanding is not nearly so
complete as the symmetry-free situation. Indeed, very lit-
tle formal work has been reported on the (permutation)
symmetry relevant to the present problem.

We turn first to the simplest case, namely arrays con-
sisting of only two junctions. We have observed two of
the generic bifurcations (period doubling and saddle
node) as well as symmetry breaking. To help visualize
how the in-phase state loses stability in each of these
cases we have made phase portraits for the dynamics at
various points in the stability plots [Figs. 4(a) —4(f)].
These phase portraits are projections of the circuit's
phase space trajectories onto the sin(p, )-sin((()2) plane.
Physically, the phase portraits can be interpreted as plots
of the supercurrents of the two junctions but we prefer to
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Re (P)
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- iz/T-
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FIG. 3. (a) The three generic, codirnension-1 bifurcations
(period-doubling, saddle-node, and Hopfl occur as single Flo-
quet exponents cross the imaginary axis at im/T, O, and as a

complex-conjugate pair respectively. (b) Two multiple
bifircations in which many Floquet exponents cross the imagi-

nary axis together were observed at Irn(p) =n. /T and Im(p) =0.

FIG. 4. These phase portraits are projections of the two-

junction-array trajectory in phase space onto the sin(P, )-sin(Pz)
plane. (a) In-phase solution recorded at the point labeled A in

Fig. 2(a), Is ——2. 3, p, =0.75. (b) Solution with twice the period
of the in-phase oscillations recorded at the point labeled 8 in

Fig. 2(a), Is = 1.7, p, = 1. (c) Solution with four times the period
of the in-phase oscillations recorded at the point labeled C in

Fig. 2(a), Is =1.5, p, = l. (d) Chaotic solution recorded at the

Point labeled D in Fig. 2(a), Is=1.45, P, =l. (e) Symmetry-
broken solution recorded at the point labeled E in Fig. 2(a),

Is = 1.2, p, = l. (f) Antiphase solution recorded at the point la-

beled F in Fig. 2(b), Is = 1.2, P, =0. l.
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think of them as two-dimensional windows looking into
phase space that allow us to infer the symmetry and to-
pology of the solutions. The letters on the stability plots
correspond to the parameter values for which the phase
portraits were made. For instance, Fig. 4(a) is a phase
portrait of the dynamics of a two-junction array which
has the parameter values corresponding to the point la-
beled A in Fig. 2(a). In this case the phase portrait is a
diagonal line stretching from [—1, —1] to [1,1], corre-
sponding to an in-phase solution (((), =(()2). Phase por-
traits such as this are observed throughout the stable re-
gions of the stability plots, as expected.

Figure 4(b) is a phase portrait of the dynamics at the
point labeled 8 at the edge of the unstable region in Fig.
2(a). Here a Floquet exponent has crossed the imaginary
axis at Im(p) =rrIT and the in-phase solution has under-
gone a period-doubling bifurcation. Notice that the
period-doubled solutions makes two loops in phase space
before repeating itself and thus has twice the period of
the in-phase solution. (The curve can intersect itself since
it is only a projection of the true, nonintersecting trajec-
tory onto the plane. ) This solution is coherent in the
sense that there is a definite (time-dependent) phase rela-
tionship between the oscillations of the two junctions but
they do not oscillate identically as they do in the in-phase
solution. Moving further into the unstable region to
point C, a second period-doubling occurs and the solution
has four times the period of the (unstable) in-phase state
[Fig. 4(c}]. Further decreasing of the bias current leads to
a cascade of period-doubling bifurcations and to chaos
[Fig. 4(d)]. Moving back toward the stability boundary
to point E we observe a symmetry-broken solution [Fig.
4(e)]. This solution does not share the permutation sym-
metry of the governing equations; indeed ((),(t) and (()2(t)
have different wave forms altogether, though they do
have the same period.

When the in-phase solution of a two-junction array
loses stability via a saddle-node bifurcation a different
solution appears. A phase portrait of this new solution,
for the point labeled F, is shown in Fig. 4(f). This is the
antiphase solution which was discussed by us previous-
ly. ' In the antiphase state all of the junctions oscillate at
the same frequency but they each have a distinct phase.
The phases interfere destructively in such a way that the
fundamental of the supercurrent oscillations vanishes. In
that earlier work we showed that the antiphase state can
itself lose stability via further symmetry breaking, leading
to period-doubling bifurcations and chaos.

Elsewhere in the stability plots of Fig. 2 we observed
the antiphase solution at the points labeled 6, H, and J.
A symmetry-broken solution was observed at the point
labeled E, and chaotic solution was observed at L.

We now move on to arrays containing more than two
identical junctions. In this case, the Floquet exponents
are degenerate. More precisely, since the N —1 Eqs. (4a)
that govern the relative coordinates are identical, the
S—1 associated exponents are all equal, and these ex-
ponents all cross the imaginary axis simultaneously. In
our simulations we have observed multiple Floquet ex-
ponents cross the imaginary axis at Im(p)=0 and at
Im(p) =m/T: We will call such. an event a multiple bifur-

cation. A multiple bifurcation in which identical sets of
complex conjugate pairs of eigenvalues cross the imagi-
nary axis simultaneously was never observed.

Our simulations show that when the in-phase state
loses stability via a multiple bifurcation at Im(p) =0 the
array assumes a symmetry broken, antiphase solution
(the fundamental of the supercurrent oscillations van-
ishes). Figure 5(a)—5(f) shows snapshots of the phases Pk
of two, three, four, five, six, and ten junction arrays in the
antiphase solution at eight points in a cycle. These
snapshots were made at point G of Fig. 2(e). The phases
are measured as angles from vertical as they would be in
the pendulum analogy to Josephson junctions. Viewed
successively from left to right the snapshots form a movie
of the antiphase solution. Note how the phases are
spread out, tending to add destructively in this solution.
In contrast to the two junction case of Fig. 5(a), the solu-
tions shown in Fig. 5(b) —5(f) are symmetry-broken solu-
tions; they do not have the full symmetry of the equa-
tions. Consequently, any transformation that permutes
two of the junctions will usually generate new,
symmetry-broken solutions. Since each junction has a
distinct phase in the antiphase solution, it follows that at
least (N —I }!solutions are created when the N —1 ex-
ponents cross the imaginary axis at Im(p) =0 and the sys-
tem enters the antiphase solution.

A different type of solution appears for a multiple bi-
furcation at Im(p) =m. /T. In this case we observe both a
period doubling and symmetry breaking at the bifurca-
tion point. The observed solution has twice the period of
the in-phase solution and the phases of the junctions

(b)

(c)

L

(e)

F&G. 5. Six sets of snapshots of the phases (()„of an N-
junction array in the antiphase solution at eight points in a cy-
cle. The phases are measured as angles from vertical as they
would be in the pendulum analogy to Josephson junctions.
Viewed successively from left to right the snapshots form a
movie of the antiphase solution. Note that the phases tend to
add destructively in this solution. The load in each case was a
series inductor-capacitor where L =N/2, C =1/(2N), I& ——2.5,
P, =2.5, where N is the number of junctions. (a) N=2. (b)
N =3. {c)N =4. (d) N =5. (e) N =6. (f) N = 10.



8718 P. HADLEY, M. R. BEASLEY, AND K. WIESENFELD 38

(b)

(c)

(d) / Xj

I
I

''
i

simulations of 100 junction arrays which would have
phase locked strongly if all the junctions were identical.
Figures 7(a) —7(e) are movies of nonidentical junction ar-
rays in which we have introduced Hat distributions of
0%, 5%%uo, 10%%uo, 15%, and 20% in the critical currents,
the shunt resistances and the capacitances of the junc-
tions. The lengths of the lines that show the positions of
the phases are proportional to the critical currents of the
junctions. Thermal noise was also included in the simula-
tions. When the noise terms are included in Eq. (1) we
have,

peak(t')+( k(t)+sln[fk(t)]+IL(t) =Is + gk(t)
(e)

I !L k =1,2, . . . , N (9a)

V(t) = g Pk(t) =F{It(t) ), (9b)
FIG. 6. Illustration of the solution that appears after a multi-

ple bifurcation where many eigenvalues cross the imaginary axis
at Im(p)=~/T. This solution has twice the period of the in-
phase solution. For more than three junctions the phases form
coherent subgroups and half of the junctions oscillate with one
phase while half oscillate with another. The load in this case is
a resistor, R =N, Is ——1.7, P, =l. (a) N=2. (b) N=3. (c)
N =4. (d) N =5. (e) N =50. (a) is the same solution as that de-
picted in Fig. 4(b).

divide into a small number of coherent subgroups. Ar-
rays with even numbers of junctions form two groups
where half of the junctions oscillate with one phase and
half oscillate with another. Odd-numbered arrays with
greater than three junctions also form two groups, divid-
ing themselves as evenly as possible. The case of three
junctions seems to be a special case, with all three junc-
tions out of step. Figures 6(a)—6(e) illustrate the behavior
for arrays of two, three, four, five, and 50 junctions. No-
tice that for arrays of four or more junctions the solutions
look very much like the two-junction case, even for as
many as 50. This solution has somewhat lower symmetry
than the full permutation symmetry of the equations. In
fact, this multiple bifurcation yields N!/[a!(N —a)!]
new, symmetry related solutions, where a is the integer
part of X/2. In the large-N limit, 2 new solutions ap-
pear.

Thus the consequence of having many Floquet ex-
ponents cross the imaginary axis simultaneously seems to
be a tremendous increase in the number of new solutions
that appear. This phenomena has been termed "attractor
proliferation, " and seems to be a common occurrence in
dynamical systems with many coupled degrees of free-
dom, including nonlinear oscillator arrays. '

NONIDENTICAL JUNCTIONS

k=1

where gk(t) are the uncorrelated noise currents,
(gk(t)gk (t') ) =(4/y)5kk 5(t t'), an—d y =fiI, /(ektt T)
=1150. This level of thermal noise corresponds to criti-
cal currents of 10 A and an operating temperature of
4.2 K. Notice that the oscillations remain largely in
phase when a 15% spread in the junction parameters is
introduced. The main effect of the spread in the phases is
to reduce the net amplitude of the in-phase oscillation.
These simulations show that the in-phase solution
remains stable when modest junction mismatches and
thermal noise are included.

As for stability, intuitively we expect that for the
nonidentical junction case the Floquet exponents would
no longer be identical but rather they would be scattered
around the identical junction value. This scattering im-
plies that some of the exponents would have greater real
parts than in the identical junction case. Since the in-
phase solution loses stability when any one of the ex-
ponents crosses the imaginary axis, the scattering of the
exponents due to nonidentical junctions would make the

(a)

ib)

li
(c)

I

(e)
/jt

Thus far we have dealt with the idealized case of iden-
tical junctions in order to make the problem tractable for
arrays with arbitrarily large numbers of junctions. The
hope is that when there are just small parameter
mismatches these results will remain qualitatively valid.
To determine the effect that nonidentical junction param-
eters have on the in-phase oscillations we have performed

FIG. 7. Illustration of the solution for 100 junction arrays
with nonidentical parameters and a matched resistive load
R =N. Each sequence has a different percentage spread in the
junction parameters (critical current, capacitance, and shunt
resistance). (a) 0% spread in the junction parameters. (b) 5%.
(c) 10%. (d) 15%. (e) 20%. In each case Is ——2. 3, P, =0.75,
and y = 1150.
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in-phase solution less stable. The simulations agree with
this picture qualitatively but a quantitative numerical
study of this effect has not been made. For another dis-
cussion of nonuniform arrays see the work of Sauvageau,
Jain, and Lukens. '

OTHER APPLICATIONS

Although the numerical work was done for circuits
which might have applications as local oscillators, the
limiting form for the Floquet exponents for other circuits
involving series arrays of Josephson junctions can be
determined as well. In particular, series arrays of Joseph-
son junctions have been used to build parametric
amplifiers and voltage standards' in which each of the
junctions interacts with an external signal. In terms of
the variables used in this paper this is equivalent to mak-
ing the bias current Itt in Eq. (1) time dependent. In this
case the in-phase solution still exists and the solutions to
Eq. (3) still determine the stability of the in-phase solu-
tion. The only difference is that the in-phase solution Po
depends on the now time-dependent bias current. The
limiting form for the Floquet exponents in a practically
important limit P, » 1 still applies, namely
I /QP, & p+ & —1/(2P, ). Thus the junctions will not
mutually phaselock strongly and the in-phase state will
approach neutral stability for large P, for these circuits
as well.

CONCLUSIONS

We have presented a general approach to the stability
analysis of series arrays of Josephson junctions. By tak-
ing advantage of the symmetry in the problem we were
able to determine the stability of the in-phase solution for
arrays with an arbitrarily large number of junctions. Ap-
plying this analysis to a variety of loads, P, s and bias
currents, we find empirically that in the in-phase solution
is most stable when P, = 1 and the bias current is on the
order of the critical current of the junctions. We showed
that the in-phase solution can lose stability via a multiple
bifurcation and that as many as (N —1)! new solutions
can appear. This analysis should prove useful both in the
design of practical array circuits and as an example of the
types of dynamics that can occur in high-dimensional
nonlinear systems.
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