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Subharmonic energy-gap structure in superconducting weak links
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We present corrected calculations of the subharmonic energy-gap structure using the model of
Octavio, Tinkham, Blonder, and Klapwijk, which includes the effect of normal scattering in the
weak link. We show that while the overall predictions of this model do not change qualitatively, the
details of the predicted curves are different and in better agreement with experiment. We also
present calculation of the current-voltage characteristics and of the excess currents for T =0, as the
normal scattering parameter Z is varied. We also show how the calculation can be shortened using
symmetry arguments and discuss how this model improves the understanding of the connection be-
tween weak links and tunnel junctions.

INTRODUCTION

The subharmonic energy-gap structure (SGS) observed
in the current-voltage (I-V) characteristics of supercon-
ducting constrictions at voltages V =26, /ne, with
n = 1,2, . . . has been a rather difficult problem to under-
stand. Initially explanations of its origin based on mul-
tiparticle tunneling' or self-detection of the Josephson ra-
diation, while predicting correctly the voltage position
of the structure, could not reconcile the experimentally
observed strengths with theoretical expectations. More
recently, Klapwijk, Blonder, and Tinkham (KBT)
showed that the structure could be explained by multiple
Andreev reflections at the superconductor-normal-metal
(S-Itl) interfaces at either end of the weak links. This
work was extended by Octavio, Tinkham, Blonder, and
Klapwijk (OTBK) who used a Boltzmann-equation ap-
proach to remove the difficulties of the earlier trajectory
technique and to allow for the inclusion of normal
scattering in the superconducting constriction. More re-
cently, Arnold has calculated the SGS using a modified
tunneling Hamiltonian approach which yields results that
are at least in qualitative agreement with the OTBK re-
sults. Kummel et al. have computed the SGS from the
Bogoliubov-de Gennes equations, which also include the
superconducting channel and should thus yield more
complete results than the earlier techniques which did
not include information about the super conducting
phase. At the same time, comparison with experiment
has not been easy due to the wide range of SGS structure
that can be observed experimentally depending on wheth-
er one studies point contacts or microbridges ' and on
the significant contribution of heating effects to the shape
of the curves.

In the course of trying to compare theoretical models
to experimental I-V characteristics in niobium point con-
tacts, we found an error in the coefficient for normal
reflection in the computer program used by OTBK to cal-
culate their I-V characteristics. While correction of this

error does not change the overall qualitative shape of the
SGS it does remove some of the detailed discrepancies be-
tween theory and experiment and suggests that a more
quantitative comparison is indeed possible. We also show
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FIG. 1. {a) Schematic diagram of the weak-link model used

showing an electron moving towards the right and a hole mov-
ing towards the left, p& and pL are the chemical potentials at ei-
ther side. (b) Distribution functions f (E) and f. (E) for
T/T, =0.70, Z=0.70, and e V/6= 1. Note the symmetry in the
solution proven in the text.
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how symmetry arguments can be used to simplify the
problem and reduce the computation time.

THE OTBK MODEL

In the OTBK approach the quasiparticles are divided
into two subpopulations which depend on their direction
of motion f (E,x) and f (E,x), with all energies mea-
sured with respect to the local chemical potential. Here
x is the spatial variable, with x=0 and L de6ning the
ends of the constriction. Applying simple energy argu-
rnents to the subpopulations at the opposite end of the
constriction in addition to appropriate boundary condi-
tions at the interfaces we have the following equations

f (E,O)=A(E)[1 f—( —E,O)]+8(E)f (E,O)

+ r(E)f,(E),

f (E,L)= A (E)[1—f ( E—,L)]+8(E)f (E,L)

+&(E)f0(E),

f {E,L)=f (E —eV, O)

(2)

(3)

A (E},B(E), and T(E) are the coellicients of Andreev
reflection, normal reflection and transmission coefFicients,
respectively. The second argument in f (E,x) refers to
the two ends of an idealized junction, as shown in Fig.
1(a). These three equations can be combined by eliminat-
ing one subpopulation to give as in OTBK Eq. (6)

f (E)= A (E)(1—
j A( E+eV—)[1 f (E——2eV)]+8( E+eV—)f ( E)+T—( E+eV—)fa( E+eV—)] )

+B(E)(A (E+eV)[1 f ( —E —2e—V)]+B(E+eV)f (E)+T(E+eV)f0(E+eV)]+T(E)fa(E) . (4)

This equation relates the distribution function f with

energy E to those with (E —2eV), ( E 2eV—)—, and E—
as well as the equilibrium terms f0(E), fa(E+eV), and

f0( E+eV). —Since Eq. (4) represents an infinite system,
the biggest limitation in its solution is the number of
points that can be considered simultaneously, since we
need to truncate it while guaranteeing that equilibrium is
reached for large and small energies. The solution can
nevertheless be simpli6ed further than noted by OTBK
by deriving an additional equation from Eqs. (1) and (2).
The physical explanation can be given in the following
manner: Since the reflection and transmission coefficients
are all even in energy, the electrons with distribution

f (E,O) which move to the right in Fig. 1(a) will have
exactly the same distribution as the holes of energy —E
moving in the opposite direction with distribution
1 f ( E,L } an—d so —f (E,O) = 1 f ( E,L ) w—hich-
together with Eq. (3) yields

f (E,O)=1 f ( —E —eV, O—) .

This may be shown formally by considering the boundary
conditions. Rewrite Eq. (2) as

1 f ( E —eV)=—A (E)f—(E eV)+B(E)—
x [1 f ( E —eV)]+—T—(E)f0(E),

(6)

where we have used Eq. (3), conservation of probability
and the fact that A (E), 8(E), and T(E) are all even
functions of the energy. It is then easily seen that Eqs. (1)
and (6) are equivalent to Eqs. (1) and (5}. Now these last
two equations are used to eliminate one subpopulation by
substitution of Eq. (5) into Eq. (1) to yield

f (E)= A (E)f (E eV)+—B(E)[1 f ( E ——e—V)]

+ &(E)f,(E), (7)

which needs to be solved self-consistently. Figure 1(b)
shows an example of what the distribution functions look
like for a particular set of parameters. Equation (7)
reduces the computational time due to its much simpler
form. One limiting case can be solved, the solution for
8=0 (Z=O where Z is the dimensionless scattering pa-
rameter which models the elastic scattering at the inter-
face ) is given by

f (E,Z =0)=[1—A (E)]f0(E)

+ y (1—A")f"(E)g A'

with the notation g "(E)=g ( E ne V)—
The current through the junction is then

I= J dE[f (E)—f (E)]

CALCULATIONS

As noted earlier, an error was present in the normal
reflection coefficient in the computer program used by
OTBK. Here we present the recalculated derivative

f dE [2f (E)—1]
n

where R„=(1+2Z )RD, and R0 [2AuFe——N(0)]
[here A is the cross-sectional area of the contact, uF is

the Fermi velocity, and N(0) is the density of states at
the Ferini energy].
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FIG. 2. Normalized differential resistance {1/R„)(dV/dI) as a function of the normalized voltage eV/6 for T=O. (a) Results
from OTBK. (b) Corrected results.

curves. dV/dI versus V, for the same parameters as
OTBK and note the main differences between the results.

Figure 2 shows (1/R„)(dV/dI) as a function of the
normalized voltage for T=O and varying value of Z,
parametrizes the degree of normal scattering present in
the weak link. In Fig. 2(a) we show the earlier (OTBK)

results and in Fig. 2(b) the recalculated curves. As can be
seen in the figure the main effect of the correction is to re-
move the sharp rise in dV/dI at 2b. observed earlier as
well as some of the sharpness at the maxima in dV/dI.
In addition, note that the identification of the value of 2b
is not clear cut. For low Z values the minimum in d V/dI
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FIG. 3. Normalized differential resistance (1/R„)(dV/dI) as a function of the normalized voltage e V/6 for Z=0.55 and varying
temperature (a) OTBK results and (b) corrected results.
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FIG. 4. Normalized differential resistance (1/R„)(dV/dI) as a function of the normalized voltage eV/5 for Z=1 and varying
temperature (a) OTBK results. (b) Corrected results.

occurs at a voltage somewhat below 2b, this minimum
moves closer toward 2h as the value of Z is increased.
This effect would give an additional contribution to the
heating-induced depression of gap values observed in su-
perconducting microbridges with low Z values. There is
a remarkable similarity of our calculated curves with
those obtained by Arnold, including the shift of the
minimum with respect to the gap value.

Figure 3 shows (1 lR„)(dv/dI) as a function of the

normalized voltage for Z=0.55 and varying temperature.
Figure 3(a) corresponds to the earlier calculations and
Fig. 3(b) to the new calculation. As in Fig. 2 the main
effect is to eliminate the sharp peaks and smooth out the
curves, but the overall differential resistance remains at
the same level. Similar behavior is shown in Fig. 4 for
varying temperature and Z= 1.

Figure 5 shows a series of I-V curves for different
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FIG. 5. I-V characteristics as a function of the scattering pa-
rameter Z, showing the change from excess current to
insufhcient current as Z is increased. The dashed line corre-
sponds to V =R„I.

FIG. 6. Plot of the normalized excess current as a function of
the scattering parameter Z. While the calculation was per-
formed at T=O, the temperature dependence is totally con-
tained in the gap function in the normalization and the graph
can be used for quick comparison with experiments.
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values of Z. For small Z the I-V curves exhibit excess
current which means that the high voltage asymptote lies
above the normal state characteristic, V =A„L The ex-
cess current is defined as I,„,=I(eV/IJ ~&1)—V/R„.
This is in agreement with experimental data for weak
links and point contacts and it is the strength of the
present model that it can explain both the subharmonic
gap structure and the excess current. In Fig. 6 we have
made a plot of I,„,versus Z. The correction made in this
paper reveals another interesting feature; for large Z the
excess current becomes a deficient current and thus be-
comes negative, which can also be seen in Fig. 5 where
the curves for large Z lie entirely under the normal state
curve. For increasing values of the scattering parameter
Z, the structure resembles more a "leaky" tunnel junc-
tion (e.g., a tunnel junction with localized states in the
barrier). Experimentally some tunnel-junction and high-
resistance point-contact data do in fact exhibit a negative
excess current. In the limit where Z goes to infinity the
negative excess current converges to —4b, /3eR„, which
is an analytic result in the limit 6 &&kz T.

CONCLUSION

The correction presented in this paper should allow for
a more quantitative comparison between experiment and

theory. Experimentally, there is a wide range of types of
I-V characteristics which can be observed in supercon-
ducting weak links. Earlier it seemed dimcult to recon-
cile some of the detailed features of the SOS predicted by
our model. These features are no longer present and it
should be feasible to compare our results with careful ex-
periments.

In conclusion, we have presented a recalculation of the
I- V characteristics of superconducting constrictions using
the Boltzmann approach of Octavio, Tinkham, Blonder,
and Klapwijk. %e have shown how additional argu-
ments can simplify the solution of the problem and how
the recalculated curves differ from earlier ones. The re-
calculated curves are similar to experimental ones and
quantitative comparison with experiment should now be
possible. ' Finally, our results are strikingly like those
obtained by Arnold, using a different approach.
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