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Theory of the photon-drag effect in a two-dimensional electron gas
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Intersubband transitions stimulated by an electromagnetic wave which has a momentum in the
plane of a two-dimensional electron gas (2DEG) are accompanied by a "photon-drag" current due
to the momentum imparted to electrons by the absorbed photons. In a high-mobility 2DEG at low
temperatures, an enhanced effect occurs owing to the difference in the momentum relaxation times
in the ground and the excited subbands. A theory of this effect is developed with particular atten-
tion paid to the geometrical aspects of proposed experiments. The enhanced effect is considered in
two limits, corresponding to two dominant mechanisms of line broadening in the intersubband ab-
sorption spectra (the collision and the Doppler linewidths). The photon-drag effect permits a new

type of spectroscopy containing information about the momentum-relaxation kinetics in 2D sub-

bands. Moreover, it allows the imp)ementation of novel far-infrared detectors. Fundamental limits
on the quantum efficiency of such detectors are discussed.

I. INTRODUCTION

The photon-drag effect is entirely owing to the ex-
istence of a photon momentum. Classically, the momen-
tum carried by electromagnetic waves manifests itself
through a radiation pressure. The latter can be easily
determined if one knows the refiected and the transmitted
fractions of incident radiation. Consequently, light-
pressure experiments deliver only part of the information
that can be (much more easily and accurately) extracted
from the usual light-reflection and absorption experi-
ments. On the other hand, if the absorption of radiation
is due to free carriers or to optical transitions leading to
the formation of free carriers, then these carriers acquire
a directed motion caused by the absorbed photon
momentum. The magnitude of this current carries addi-
tional information about the energy spectrum of electrons
and various scattering mechanisms.

The low-frequency (cor«1, where r is the electron-
momentum relaxation time, and m the angular frequency
of the electromagnetic wave) photon-drag effect (PDE)
was first considered by Barlow, ' who described it as an ac
Hall effect due to the electric and magnetic field vectors
of the wave. If we neglect the difference between the usu-
al electron mobility p and the Hall mobility, then
Barlow's result can be derived on the basis of a very sim-
ple argument, cf. Fig. 1. Consider a Aux 4 of mono-
chromatic photons of energy fico and momentum fiq. For
simplicity, we assume an isotropic medium of permittivi-
ty e, so that co/q =c/t/e, and S={4/fico)q/q, where S is
the radiation energy flux (the Poynting vector) in the
medium. Let a be the free-electron absorption
coeScient. Then afiq@ represents the rate of momentum
transfer to the electronic system per unit volume, i.e., the
drag-force density. If the volume density of free electrons
is N, then one can say that these electrons are acted upon
by an effective electric field E'= afiq4/eN. This field—
gives rise to a current density

J=eNpE' = —a4 pkq =- apS
c/ e

Although the simplified approach, used in the deriva-
tion of (1.1), does not take into account the fact that the
process of absorption requires the participation of pho-
nons and/or impurities (as is well known, a truly free-
electron gas does not absorb photons), nevertheless for
roe«1 [where ~ is related to electron mobility by the
usual @={e/m )~], it leads to a result practically identi-
cal to that obtained by more rigorous methods. ' How-
ever, this approach loses validity in the quantum frequen-
cy range, when Ace ~ kT (it is already invalid in the "clas-
sical" regime Aco&kT if co~&1); ' Eq. (1.1) is totally
inadequate for the consideration of optical transitions be-
tween quantum subbands. The PDE based on such tran-
sitions was independently discovered by two groups. '

In these early experiments, the optical transitions were
realized between the valence subbands in p-type germani-
um. Subsequently, the PDE was studied in other semi-
conductors for a variety of optical transitions, including

FIG. 1. Schematic illustration of a photon-drag effect experi-
ment.
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intraband transitions, one- and two-photon interband
transitions, ' and impurity-ionization transitions. '

In the case of optical transitions between two quantum
subbands, the PDE current is formed by a combination of
the current due to electrons in the excited subband and
the current carried by the ground-subband electronic sys-
tem, driven from the equilibrium by a velocity-selective
excitation. These two currents may have the same or op-
posite sign, and the net PDE current can be directed ei-
ther along or opposite to the incident photon flux. (One
can also have a transverse effect when the current and
flux are not collinear. Such an effect can take place even
in crystals possessing a cubic symmetry provided the
electron energy spectrum is not spherically sym-
metric. " '

) Within each subband, the net currents are
also determined by differences of oppositely directed
currents —those along and opposite to the direction of
light. In special cases, usually realized in a narrow range
of the incident radiation frequency, one of the above
currents may become dominant; the net PDE current is
then radically different from the current outside the "res-
onant" range.

One example of such a resonance was predicted by
Grinberg and Udod' for the case of PDE in bulk p-type
Ge, when optical transitions occur between the valence
subbands. Such transitions are schematically illustrated
in Fig. 2(a). Because of the conservation laws of energy
and quasimomentum, the energies E&+ and Ez+ of non-
equilibrium holes with k q & 0 are larger than the corre-
sponding energies E& and Ez of holes with k.q&0.
Consider the PDE current excited in the light-hole sub-
band. The resonance occurs when

inversion layers or quantum wells, or Landau subbands in
a magnetic field. In this case, the energy and momentum
conservation laws in the linear in q approximation lead to
the result that the excitation frequency must satisfy the
Doppler relation

v.q (1.4)

kz

where v is the electron velocity and fico&, the energy gap
between the two parallel bands. Equation (1.4) implies
that electrons with v.q & 0 can absorb only those photons
whose energy Rm&ficozi, cf. Fig. 2(b). Conversely, if
%co &ficoz&, then only electrons with v.q &0 will be excit-
ed. If the momentum-relaxation times in the two sub-
bands are different, then the velocity-selective excitation
provided by the Doppler effect will give rise to a substan-
tially enhanced PDE current. Such an effect was first
suggested by Dykhne et al. ,

' who discussed it by analo-

gy with the known effect of light indu-ced drift of neutral
atoms in the gas phase. ' ' Recently, ' one of us con-
sidered the PDE in a degenerate two-dimensional elec-

Ez &Ac&)opt(Ez (1.2)

where A'co, , is the optical phonon energy. At sufficiently
low temperatures, kT &&Ace,pt only the light holes with
k q & 0 will interact with optical phonons, leading to sub-
stantially shorter momentum-relaxation time for such
holes. Consequently, the current in the light-hole sub-
band will be dominated by holes with k.q &0. This type
of "resonant" PDE is brought about by the sharp depen-
dence of the momentum-relaxation time on energy. A
similar resonance can be realized with interband optical
transitions.

Another type of resonance in bulk p-type germanium
occurs when the excitation of current carriers is selective
with respect to their quasimomentum and the tempera-
ture is sufficiently low t:o ensure a sharp boundary at the
Fermi energy EF in the distribution of holes. As is evi-
dent from Fig. 2(a), if the excitation energy fico is such
that the energies E, , E ~+ and EF satisfy the inequality

$2&

(0)

EF &Ei+ (1.3) qll
I

then only the holes with k.q &0 will make optical transi-
tions. It has been shown, theoretically, that in the reso-
nant range the PDE current can be enhanced by almost 3
orders of magnitude. '

Situations similar to the second type of resonance can
arise in the case of optical transitions between equidistant
bands, such as those in a two-dimensional electron gas in

ky

FIG. 2. Illustration of the optical transitions between quan-
tum subbands. (a) Transitions in bulk p-type Ge between the
heavy-hole and the light-hole valence subbands. (b) Transitions
between equidistant subbands in a two-dimensional electron gas;

q
—Av*q=h k qll m.
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tron gas (2DEG) in the presence of a collisional level

broadening. It was shown that the drag-current spec-
trum contains new information about the momentum-
relaxation kinetics in 20 subbands.

The purpose of this work is to further develop a micro-
scopic theory of the PDE in quantum wells (QW's). On
the basis of a solution of the kinetic equation, we shall
generalize the results obtained earlier' to the case when
the momentum-relaxation times within each 2D subband
themselves depend on the electron kinetic energy; more-
over, the present results are valid whether or not the elec-
tronic system is degenerate. At the same time we shall
extend the consideration of the geometrical aspects of the
problem. The earlier work assumed a specific experimen-
tal arrangement with the incident radiation propagating
as a transverse magnetic wave of a waveguide formed by
multiple quantum wells; here we shall discuss two addi-
tional illumination schemes and present expressions
which should be convenient for a comparison with exper-
iments. We shall also discuss the fundamental limitations
on the sensitivity of PDE-based photodetectors.

3(a)], it is natural to characterize the absorption of light
by an absorption coefficient a(co), whereas for oblique il-
lumination schemes, [Figs. 3(b) and 3(c)], a more con-
venient characteristic is provided by an "absorbed frac-
tion" coefficient P(co), which is defined as the ratio of the
absorbed and the incident radiation powers (cf. the Ap-
pendix}. In what follows, we shall distinguish the quanti-
ties describing one or the other of the illumination
schemes by aSxing a subscript a, b, or c, corresponding
to the schemes in Figs. 3(a},3(b},and 3(c), respectively.

Besides the incident angle, an important factor
influencing the absorption process is the polarization of
the infrared wave propagating in the crystal, since only
the normal to the QW component E, of the electric field
can induce the intersubband transitions. Considering the
oblique schemes of illumination, we shall be assuming
that the incident radiation is polarized with the electric
field lying within the plane of incidence. In the
waveguide scheme, the appropriate mode of radiation is
the transverse magnetic (TM} wave. An important
geometric parameter affecting a(co) in this case is the de-
gree of confinement of light.

II. GEOMETRY OF THE PROBLEM I'=2&(D/A, } (e „—e„, ), (2.1)

So
AEAs

GaAs/AEAs
M QW

Af AS

Photon-drag current in a QW can be induced using
three distinct illumination arrangements, schematically
illustrated in Fig. 3. In the waveguide scheme, ' [Fig.

which is the fraction of the integrated intensity of the
light wave propagating within the absorbing core of
thickness D. To implement this scheme, it is virtually
imperative to use a multiple QW cor-e

Next, consider an oblique illumination as in Fig. 3{b}.
Denote the wave vector of incident radiation (in vacuum}
by qp and that entering the QW by q. (Here we shall
neglect the small difference in the refractive index be-
tween the QW and the surrounding material. ) I.et Sp{co}
be the spectral density of the incident electromagnetic
flux in the direction qp and S(co) the analogous quantity
for the QW. The corresponding densities per unit area of
the QW are given by

Sp (cp) =
I

Sp(cp)
I
cosp

S,(co)=
I
S(a))

I
cosX,

(2.2)

where P and X are the angles of incidence and refraction,
respectively, related by Snell's law: sing=~esinX. Ac-
cording to the Fresnel equations, one has

QW
~ ( ) ~ ( )

4v ecosfcosX
( &ecosg+ cosX )

(2.3)

(b) (c)

Whence, using (2.2) one obtains

2

I
s(~)

I
=

I s,(~)
I

( ~Ecosf+ cosX )
(2.4)

FIG. 3. Illustration of the three illumination schemes dis-
cussed in this work. (a) Waveguide scheme; infrared radiation
travels as a TM wave of a dielectric waveguide formed by a
multiple-QW core and two cladding layers of lower refractive
index. (b), (c) Oblique illumination schemes, the radiation is po-
larized with the electric field vector lying in the plane of in-
cidence; in the scheme (c) the incident light is normal to a crys-
tal surface cut at an oblique angle to the QW.

I
S(co)

I
=

I
Sp(cp)

I

( e+I)
(2.5)

For the illumination scheme of Fig. 3(c), the radiation
flux density S(co}propagating in the medium at the same
angle with respect to the QW as in Fig. 3(b), is related to
the incident flux Sp(co) (assumed directed normally to the
crystal surface) as follows:
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III. INTERSUBBAND ABSORPTION LINEWIDTH

Consider a QW with 2DEG of surface concentration n.
The subband energy spectrum is of the form

Eg k ——E;+Ek, (3.1)

where i is the subband index, k is the 2D electron wave
vector in the QW plane, Eh ——R k /2m, and m is the elec-
tron effective mass. We shall confine ourselves to the sit-
uation when only the first subband (i =1) is occupied,
i.e., E2 —E, —m% n/m »kT. We are interested in opti-
cal transitioris to the next subband (i =2}. Such transi-
tions were recently studied experimentally in GaAs quan-
tum wells. ' The observed sharp absorption peaks (7
meV full width at half maximum}, indicate that the line
broadening in those samples was governed by electron
scattering processes. Such broadening can be represented
in the form

electronic system away from the equilibrium, while relax-
ation processes —which include both intrasubband and
intersubband scattering —attempt to restore the equilib-
rium. We shall label the photon-induced variations of the
electron distribution by a subscript "phot. " These varia-
tions for the two subbands involved are related by

af, (k)

phot

t)fq(k+ qi)

phot

(4.1)

Let us denote the nonequilibrium part of the distribu-
tion functions by a tilde, j';(k}. In this case, when

co~&&1, the kinetic equations for f, and 72 become
decoupled. Physically, this occurs because in the high-
frequency limit the elementary processes of the electron
scattering and the optical transition can be considered in-

dependently of each other. In the relaxation-time ap-
proximation we can write

1

2r, (k) 2rq(k')
(3.2)

Bf,(k)
f, (k)=r, (Eh)

t3t
, phot

where r;(k) =~, (Eh) are the momentum-relaxation times
in the subbands i=1 and 2, and the rnomenta k and k'
are related by the conservation laws (cf. Fig. 1)

t)fi(k)
j'i(k+qi) =r2(Eh+q

phot

(4.2)

k'=k+qll,

E2,k' El,k+~ '
(3.3)

In these equations, qll is the component of q in the plane
of the QW.

It should be noted that even in a perfectly uniform sys-
tem (no inhomogeneous broadening) one has, besides the
collision-broadened linewidth (3.2}, also a "natural"
width lLq of the intersubband absorption line —associated
with the fimte magnitude of the photon wave vector.
Indeed, Eqs. (3.3) imply

tritu =trice„+ t}lto„~q,k,+qll'

where

k+ qll'k E2'k+
qll

E1'k
A k-q

(3.4)

IV. THE PHOTON-DRAG CURRENT
IN THE LIMIT OF SMALL DOPPLER SHIFT h, ~ &&Ay

In order to evaluate the photon-drag current, we must
determine the variation of electron distribution functions
f;(k) in the two subbands, i= 1, 2, connected by the opti-
cal transitions. Photon-induced transitions drive the

Equations (3.4) imply (1.4), which shows that the natural
linewidth is of purely Doppler nature and its magnitude
is determined by the scatter in electron velocities. For a
degenerate distribution the ficoh+ h varies in the range

bq ——trt kFqi/m, which for n =10' cm, Ace=0 15 eV, .
and m =0.07mo gives hq=1 meV. For a scattering time
of order r-10 ' s, the lifetime broadening (3.2) is an or-
der of magnitude higher: fiy-7 meV. We shall, there-
fore, consider the limit fig &&hq first.

where the energy arguments of ~,. are referred to the
edges of respective subbands.

The contributions I; of both subbands to the drag
current are given by

28 t}fi(k)
I, = — gr, (Eh}L k Bt

2e
I2 —— gri(Eh+ ti )

L,

R(k qt)

. phot mqll
(4.3)

t)f, (k)
X

, phot

+l(k+qg) qg]

mqll

where L is the length of the QW in the direction of q~~.

In the evaluation of [Bf/t)t] h„, the Hamiltonian
operator corresponding to the electron-photon interac-
tion should be taken in the form Hph„——(e/mc) (A p),
where A is the vector potential for photons, because the
optical transitions are to be described including efFects
due to the photon momentum. A straightforward cal-
culation leads to the following expressions:

t}fi(k)

pho

2m. e ft2ttiitf i(Eh}
S(co)sin (X),

Acm c0 e

(4.4)

where k is determined by the condition (3.4},f, (Eh ) is
the equilibrium distribution function for the electron oc-
cupation of the first subband, and

f12 = (2m ~t2/tri}
I

& 1
I
~

I » I

'

is the oscillator strength of the optical transition.
If the spectral width of the light source is much nar-

rower than the linewidth of the absorption spectrum,
b to„d && y, then we can replace S(co) in (4.4}by
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y{k, k+q )/~
S(co)=S'" ql (4.5)

(co—co2, —co~+ ~) +y (k, ~k+q(~~)

where S"'—=fS(co)de is the total radiation energy densi-
I

ty in the direction q. Substituting (4.5) and (4.4) into
{4.3}, expanding the integral in powers of ql to within
linear terms, and integrating over the orientation angles
of k, we obtain the linear current density I=I/W(where
&is the device width) in the form

2e f,2sin XS'" I„f, (E)yc(E)dEJ=
A'mc c (h,a)) +yc(E)

r

Bine&(E} [rt(E}—r2(E)]
X —A'r~(E) E ~1 + i 2

2ha)—
(4~)'+yc(E)

(i'co) yz(—E) Bin~2(E)

2yc(E)~g(E) BE
E (4.6)

where hco—:co —co2„and yc is defined by (with
E =/2k'/2m )

1 1
y (E)=y(k, k)=2 (k)+2 {k)

(4.7)

S„,ed~@a(a))Rco)
NlC

, e sinC'pb(co)~(~)
Jb =so,z mc

e sin(2X)~eP, (u)F(co)Stot
20tC

where

2b, a) (E&
r(co) = r2+(r) —r—g)

&[{i~)'+yo]

{4.8a)

(4.8b}

(4.8c)

{4.9)

a(co) and p(co) are the absorption coeScients discussed in
the Appendix, and

ff, (E)EdE
&E)—= If, (E)dE

{4.10)

is the average electron energy in the ground subband.
Equation (4.8a) coincides with the result obtained ear-
lier' for a degenerate electron distribution, i.e., when
&E & =E /2=mfPn/2m.

As discussed earlier, selectivity of the excitation with
respect to the initial electron momentum Rr results from
the conservation laws (3.4}. Photons with hco=co
—~2&&0 induce the intersubband transitions only in
those electrons whose momentum has a positive com-
ponent in thedirectionofq~~ [cf Fig 2(b}]. Selectivepro-
motion of such electrons gives rise to a current within the

In the derivation of (4.6) it has been assumed that
bc' «co2, . Inasmuch as S'" represents the radiation den-
sity inside the QW, the preceding equations are indepen-
dent of the chosen illumination scheme. Our waveguide
geometry (with the assumed TM polarization of the
wave) is described by letting X=n/2 in Eqs. (4.4) and
(4.6}.

If the momentum-relaxation times are independent of
the kinetic energy, then (4.6}simplifies and it can be writ-
ten in the following form for the three illumination
schemes introduced in Sec. II:
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FIG. 4. The calculated spectral dependences pb(co) and Jb(co)

for obhque iBumination as in Fig. 3(b) in the Iimit Lelq (Q'fff.

I

ground subband —corresponding to the motion of elec-
trons in the direction opposite qt. This is the origin of the
second, frequency-dependent term in (4.9). This term is
positive for hco &0. At the same time, electrons excited
into the subband 2 for hco&0 have positive velocities in
the direction of qi ~ i.e., their contribution to the current
is negative. When the surplus photon energy changes
sign, i.e., becomes a "deficit" hcog0, the current I&
changes its sign too.

It is clear that for (E)»yc, the term proportional to
(ri —rz) dominates in Eq. (4.9)—except when bc@ is ei-
ther very small, (b,co

~ «yo, or very large, (Lice)»yc.
The changing of the current direction with varying pho-
ton frequency represents a signature of the photon-drag
current in a two-dimensional electron gas.

Consider a numerical example of an Al„Ga, As/
GaAs/Al, Gai, As QW with a modulation-doped
2DEG of density n=10' cm . Assume e=10,
m=0.067m~, and Rco2i ——0.12 eV (corresponding to the
incident radiation wavelength +=10 pm), and the
energy-independent relaxation times ~& ——10 ' s and
rz 10 ' s (c——orresponding to fiy-3.5 meV). The oscil-
lator strength of intersubband transitions is close to uni-
ty, ' fi2=1. To obtain optical transitions for incident
wavelengths in the vicinity of Ao= 10 pm, the QW width

d~ must be of order 100 A. Figure 4 shows the spectral
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dependences of the absorption parameter 13b(ro} and the
PDE linear current density Jb(co), calculated from Eqs.
(A3) and (4.8b), respectively, assuming an oblique il-
lumination under Brewster's angle [P=arctan{ &a)=72 ].
It is assumed that the entire surface of the device is il-
luminated and the current is measured with an ideal
short-circuit arrangement (no series resistance). The
2DEG is assumed degenerate. Denoting the QW width
by 8', the ratio of the full current Jb 8' to the total in-
cident Aux of the radiation energy So",WL will exceed the
value J& plotted in Fig. 4 in units of So,' by the factor
(1/L). To obtain J,(co)/So", one should multiply the
values Jb(co)/So ', presented in Fig. 4 by a factor

4e(1+a)
sin (X}tanX .(I+ e)'

The values of p, (Io) are related to pb(Io) plotted in Fig. 4
by

2
sin(X)tanX,

b ~ (1+ e}'

where X is now the angle between the oblique crystal sur-
face and the QW plane [cf. Fig. 3(c)].

Figure 5 shows the spectral dependences of the PDE
current J, /S' ' and the absorption coefficient a(Io) for
the waveguide illumination scheme, calculated with the
same QW parameters as those used in Fig. 4. In the
waveguide scheme, an important parameter is the
confinement factor I [cf. Eq. (2.1)]; we have assumed a
25-period superlattice {p=25), each period d =dII, +da
consisting of a dz, —100 A GaAs QW and an AIAs bar-
rier of thickness da =3d n, corresponding to the duty cy-
cle r=da, /d= —,'. The assumed permittivity values
were eoaA, ——10.88, and @A~A,

——8.16, giving E'„„—e,~,d=—rhe=0. 68, and I =0.18. The current was cal-
culated with the help of (4.8a) and multiplied by the num-
ber of wells. The absorption coefficient was calculated
using (A17). If we neglect the extinction of the radiation
along the QW (i.e., assume aL «1, cf. Sec. V), then, as

in the preceding, the ratio of the full current to the total
radiation energy flux is given by J/S"'d.

For all three illumination schemes, the peaks of the
PDE current

~

J
~

occur very near [exactly at, if the term
r2 in (4.9) is neglected] the value hco=yo/&3. Thus, the
separation between the peaks scales' in proportion to
yo=1/2rz, and the signal amplitude at these peaks is

V. QUANTUM EFFICIENCY

The quantum efficiency g of a photodetector is defined
as the number of electrons Bowing in the circuit per in-
cident photon. For example, in the waveguide
configuration this means

J/e
(S /fico)d

(5.1)

It may appear from the equations of Sec. IV that for a
sufficiently high product aF, the quantum efficiency can
exceed unity. This is, of course, not the case. In order to
understand this fact more clearly, consider the simplest
case of energy-independent ~& and ~2 and rewrite Eqs.
(5.1) and (4.8a) in the form

'g =CXSV, (5.2)

where s =2M/A. m with A, being the photon wavelength
in the medium, a—:a(co), and r:r(co) L—arge v. alues of g
mean that the quantity sF—which physically corre-
sponds to the longest mean free path of excited
carriers —becomes comparable to the absorption length
a '. But since the mean free path cannot exceed the
sample length, si&L (in a singly connected sample), in
this situation we must also have a '&L. However, in
this limit, Eq. (5.2} is incorrect because it does not take
into account the attenuation of the beam along the QW.
It is easy to show that the correct expression, valid for ar-
bitrary values of aL, is of the form

rI=L '(1—e )s7.

dQJ

-as~ for aL &&1

-L 's7 for uL 2 1 . (5.3)
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FIG. 5. The calculated spectra of the absorption coefficient
a(co) and the PDE current density J,(co) for a waveguide
geometry in the limit h~ &&Ay.

Since the mean free path in a singly connected sample has
to be less than L, it follows that g ~ 1 in both limits. In
principle, g ~ 1 can be obtained if the sample has the to-
pology of a ring.

VI. DRAG-EFFECT CURRENT IN THE LIMIT
OF LOW COLLISIONAL BROADENING Ay (&hq

If we should ignore the photon momentum, then in the
limit of a vanishing collision width y ~0, the
absorption-spectrum line between two ideal equidistant
{i.e., neglecting nonparabolicity) subbands would
represent a sharp resonance peak, limited (in the dipole
approximation) by a spectral source width hco. Taking
into account the photon momentum, however, leads to a
broadening of the line by an amount of order
Lekq /A Elk Fcf

~~

/m ', as discussed earlier, this broadening is
a near-perfect analogy to the Doppler width of spectral
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lines in gases.
To evaluate the drag current in this case, using our

general formalism (4.3) and (4.4), we replace S(r0) in Eq.
(4.4) by S"'5(ro—c02, —rv), +q „). From (4.3) we then ob-

+q~i

tain

where

~„,e vof&zI&j

cfPe roy t

(6 1)

mc
I r j = ((1 t

—12 )) —K sin X((r2 )) {6.2)

r2
—= r2(E), +Ab a) }, (6.3)

S„,eda(ro) I r j

... Pb(~}arj
mc sing

stot c, , ep, (ro)Irj
mc tang

(6.4a}

(6.4b)

(6.4c)

The absorption parameters a{co),pb(rv), and p, ( )roin the
Doppler linewidth limit are given in the Appendix by
Eqs. (A18},(A21},and (A22), respectively.

Calculated spectral dependences of the linear current
density Jb and the coefficient Pb, are presented in Fig. 6.

and ((. . . )) denotes a special kind of averaging of the
quantities r(E),} over the momental of electrons in the
2DEG, [cf Eq. (A25)] of the Appendix; the quantity vo
(dimensionality of a velocity) represents a normalization
factor [cf. Eq. (A19)] involved in that averaging. If the
relaxation time within a subband can be considered in-
dependent of the energy, then one should replace ((r, ))
by v;.

Specializing to our three illumination schemes (Sec. II),
Eq. (6.1) yields

To ensure the inequality Ay && Lq, the relaxation times ~&

and v2 were assumed equal to 4)&10 " and 10 " s, re-
spectively. This value of v.

&
corresponds to an electron

mobility 10 cm /Vs —a value often achieved and ex-
ceeded in modulation-doped QW's at low temperatures.
In the calculation we assumed one QW with the
parameters —other than the relaxation times —identical
to those assumed in the calculation of curves in Fig. 4.
As before, a degenerate 2DEG was assumed. The
current peaks occur very near hro=b, /%&2; if the
second term in (6.2} is neglected, then this position of the
peaks is exact.

Figure 7 shows the corresponding spectral curves for
the linear current density J, and the absorption
coefficient a in the waveguide scheme, calculated with
the help of Eqs. (6.4a), (A18), and (A23). As in the calcu-
lation of Fig. 5, we assumed a 25-period multiple QW
structure and a degenerate 2DEG ( T=0).

We see that the curves calculated in the Doppler limit
(Sec. VI) have a qualitatively different shape compared to
those calculated in the collision-broadened limit (Sec. IV).
The main quantitative difference is in the position of the
peaks of drag-current spectra: In the Doppler limit these
peaks scale with bsa:ql'(/n, whereas in the collision-
broadened limit they scale with po 1/(2rp).

VII. SUMMARY AND DISCUSSION

We have developed a detailed theory of the photon-
drag effect in intersubband absorption by a two-
dimensional electron gas in an inversion layer or a quan-
tum well. If the momentum of incident radiation has a
component q)~

within the plane of the 2DEG, then the
latter acquires, in the process of intersubband absorption,
a nonvanishing drift velocity which manifests itself as a
measurable drag current. As discussed earlier, ' ' an im-
portant enhancement of this effect occurs when the
momentum-relaxation times, ~& and ~2, in the ground and
the excited subbands are different, since in this case the
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FIG. 6. The calculated spectra Pb(co) and J&(r0) for oblique
illumination as in Fig. 3(b) in the limit of low collision broaden-
ing, Ay &&4„and zero temperature.

FIG. 7. The calculated spectra of the absorption coefficient
a(co) and the PDE current density J,(m) for a waveguide
geometry in the limit of low collision broadening, A'y &&h~, and
zero temperature.
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average velocity imparted to the 2DEG electrons can
exceed Aq

1
by several orders of magnitude. The

enhanced effect arises due to the conservation of energy
and quasimomentum in an elementary act of intersub-
band absorption, which leads to a velocity-selective exci-
tation of electrons (the Doppler effect) and a violation of
the cylindrical symmetry in the electron-momentum dis-
tribution function in each of the two subbands. It is not
important that the difference v&

—v.
2 be large compared to

w2, on the contrary, for best results one should maximize
both relaxation times. As discussed in the Introduction,
the efFect has important analogies in three-dimensional
systems. On one hand, it is conceptually similar to the
PDE in bulk p-type germanium in the case when the exci-
tation energy is resonant with optical phonons. ' ' On
the other hand, the PDE due to transitions between
parallel bands can be regarded as an ana1og of the light-
induced drift of atoms in a gas phase. 's

We have considered the photon-drag effect in two lim-
its, corresponding to two dominant mechanisms of line
broadening in the intersubband absorption spectra. One
limit, discussed in Sec. VI and considered earlier by
Dykhne et al. ,

' corresponds to an idealized situation
when one can neglect the collision broadening compared
to the "natural" (Doppler) linewidth. In order to realize
this limit, one would have to "turn oF' the lifetime
broadening of the upper subband associated with phonon
emission. This may become possible if the intersubband
separation is below the optical phonon threshold,
A'co&, &A'co, ,=35 meV; in other words, one has to be in
the range of far-infrared absorption, A,OR40 pm. In this
case, the mobility in both subbands may approach p-10
cm/V s, corresponding to r of order 40 ps. The other—
more realistic —limit (considered in Sec. IV} corresponds
to the dominating lifetime width. Compared to our ear-
lier treatment, ' we have extended the discussion to the
case of energy-dependent relaxation times r; (E) in each
subband.

In both limits, a particular attention has been paid to
the geometrical aspects of a PDE experiment. Besides
the waveguide geometry discussed earlier, we considered
two schemes for oblique illumination of the sample. Such
schemes offer a considerable practical advantage by per-
mitting experimental structures with a single QW (it
would be very diScult to couple light in a waveguide
with such a narrow core}. Considering the fundamental
limit on the quantum eficiency ri of a photon-drag detec-
tor (defined here as the number of electrons Rowing
through a closed circuit per incident photon), we showed
that in a singly-connected sample g cannot exceed unity
(as a matter of principle, this limitation may be lifted if
the sample has the topology of a ring).

Let us now discuss the possibility of an experimental
observation of the enhanced PDE. As shown in Secs. IV
and VI, the signature of such an effect is the changing of
the current direction with varying photon frequency. In
our view, the only practical dilculty is associated with
an inhomogeneous broadening of the intersubband ab-
sorption line. Indeed, throughout this work we have as-
sumed that the quantum wells are perfectly uniform over
the entire sample. If, however, the QW width varies,
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APPENDIX A: ABSORPTION COEFFICIENT
AND ABSORPTION STRENGTH

For the oblique illumination schemes, we define an
absorbed-fraction coefftcient P as the ratio of the radia-
tion energy at frequency co, absorbed in the QW, to the
normal component of the total radiation energy incident
on the sample. For the geometry corresponding to Fig.
3(b), this coefficient can be written in the form

2%co

S'"LW
O, s k

Bf,(k)
dt phot

(Al)

In the limit bq«Ay, substituting [Bf,(k)/Bt]zh„ from
(4.4) and S(co) from (4.5}into (Al), we find

2e f i2 yo(k)f ](E)dEPb(~}=, F(P)
cA (hr0) +y02(k)

where E=R k /2m, and

2 sing sin(2$)
6( ~Ecosf +cost )

For yo independent of the energy, we have

(A2)

(A3)

Pb(~) = 2/ne'f „
mc

yo/~ ~b yo/~
~ F(P)=

(ha))2+y(~) & (Aced) +yo
(A4)

The absorption strength, defined by

Pb = JPb(CO)d(Eau),

is thus given by

2' e Af, 2
Bb= nF(P) .

mc
(A5)

then so does the intersubband frequency co2, . At a given
excitation frequency c0, the quantity hen=—co —co&, would
then be positive in one part of the sample and negative in
another. Fluctuations of the well width d =100 A, even
by one atomic layer (5d =5 A), can destroy the enhanced
effect since one would have, approximately,

&~a| 25d =10% .
~2&

This diSculty, however, does not appear insurmountable.
Atomically Rat heterointerfaces can be assured by
interrupted-growth epitaxial techniques ' over relative-
ly large areas (several pm}. Steps which go in tandem—
without affecting the QW width —should not be a prob-
lem. Also, part of the nonuniformity can be expected to
be screened away by a large-density 2DEG. For an ob-
servation of the enhanced PDE, it is imperative that the
inhornogeneous broadening be less than the lifetime
width fiy considered in this work.
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It is convenient to express the quantities pb(co) and pb in

terms of their values obtained when the light is incident
under Brewster's angle {as was the case in recent inter-
subband absorption experiments ' ). In this case, the
function (A3) is of the form F(re) =1/(e3/1+e), and we
have

and

pb(co) =pb""""(co)e3/1+e F{rtp)

P P Brewster e3/I +e F(y )

(A6)

(A7)

For the geometry of Fig. 3(c}, the coefficient p„defined
earlier, can be written in the form

2a~ ~fi«)
p, (co)=-=

S;LL, & ar
I

(A8)

where the length Lo is indicated in Fig. 3(c), and L deter-
mines, as in the other scheme, the length of an illuminat-
ed portion of the QW. These lengths are related by
LO=L cosX. Since in the present case

~
S(co)

~
and

~
So(co)

~
are connected by {2.5), we can determine p, (co)

by substituting S(co) from (4.5) and (c}f,/c}t) h„ from
(4.4) into (A8)

8e f,2sin X yo(k)f, (E)dE
p, (co) =

2 2
(A9)

ct}12(v e+ l)2cosX (hco) +yo(k)

For yo independent of the energy, Eq. (A9) yields

2e f,2I yo(k)f i(E)dE
a(co) =

cd% &e (bco) +yo(k)
(A15)

Defining an integrated quantity a—:fa(co}d(%co), analo-

gous to Pb „we find

2ir ne Af ti
mcd 3/e

For yo independent of the energy, we have

2tr" f121' yo
a(co) =

mcd 3/e (b,co)2+ (yo)2
(A17}

(A18)

where ao ——equi /me is the effective Bohr radius, and

vo(co) =

with

fi(E)dE

g +[2m(E Eg}]— (A19}

A'2Q2 mEg=, Q=— bco;
2m fig

((

In the case when Ay &Qlekq i.e., when the absorption
linewidth is of the Doppler nature, the absorption
coefficient can be obtained from (A14) by replacing S(co)
in expression (4.4) for [c}f, (k ) /c}t ]~h„, with
S"'5(co—co&, —cot, i, ). The result is

+qii

}ftil
a(co) =

NQO

8rr ne fi2 sin X yo/ir
p, (co)= 2F{&)mc(3/e+1)' cosX (hco)'+y2O

mc

2esin g

(A20}

p, yo/m

& (&co) +yo
(A10) Similarly, the absorbed-fraction coefficients pb, (co) are of

the form

where the absorption strength p, is defined by
e mvo(co)f, 2 F(y)

pb(co) =
sing

(A21)

P, —:fP, (co)d(ttlco) = 8n e f,2fin s&n J'

cosX(3/e+ 1)

(A 1 1)

4e mvo(co}f i2tanX
p, (co)=

tti co (3/a+I) e' (A22}

The values of p, can also be expressed in terms ofpb"""'"

p { ) pBrewster( )
4& 1+&
(1+ e)

(A12)

p p tirewster e +&

(1+&e)'
(A13}

21 a ~fi{k)
a(co)=-

StotL 2d
(A14)

Setting X=@/2 in (4.4), we find for b, &&fiy

For a waveguide geometry, the absorption coeScient
a{co}is defined as the ratio of the total number of optical
transitions per unit time to the photon Aux density, i.e.,

The normalization factor vo has the dimensions of an
effective velocity. For a degenerate distribution this fac-
tor equals

vo(co ) =6(Ep —Eg ) 1/ 2(Ep —Eg )/m (A23)

i5 n
vv(co) =

2t/2 3/2(k7 )i/2
e (A24)

With the help of the effective velocity vo, the relaxation
times, "averaged" over the electron energy in a given
subband, are expressed as follows:

f t (E )r(E)dE
r(E)

vo(co) a +2m (E Eg)—(A25}

[where 8(x) is the step function], whereas for a Maxwel-
lian distribution vo is given by
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