EPR of Gd^{3+} -doped single crystals of $LiY_{1-x}Yb_xF_4$

Lucjan E. Misiak* and Sushil K. Misra

Physics Department, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8

Pawel Mikolajczak

Department of Experimental Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland

(Received 28 March 1988)

Extensive X-band EPR measurements have been carried out on Gd^{3+} -doped single crystals of $LiY_{1-x}Yb_xF_4$ (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0), covering the temperature range 4.2–290 K. The spin-Hamiltonian parameters (SHP) are evaluated by the use of a rigorous least-squares fitting procedure. The systematics of the SHP are studied both as functions of x and of temperature. Newman's superposition model has been applied to the calculation of SHP; it is found that the calculated values agree quite well with the experimental values, provided that one considers minor distortions of the positions of the eight fluorine ions surrounding the Gd^{3+} ion. The temperature variation of SHP has been explained to be predominantly due to spin-phonon interaction and partially due to thermal expansion of the crystal lattice. Finally, the average $Gd^{3+}-Yb^{3+}$ exchange interaction, averaged over the nearest and next-nearest neighbors, has been estimated, in $LiY_{0.9}Yb_{0.1}F_4$, to be 3.8 ± 2.5 GHz, as found by the application of the molecular-field model using the g shift from the isostructural diamagnetic host, LiYF₄, at liquid-helium temperature.

I. INTRODUCTION

LiYF₄ and LiY_{1-x}Yb_xF₄ crystals have been used, respectively, as laser materials,¹ and as materials to convert infrared excitation to green emission.² X-band EPR measurements on single crystals of Gd³⁺-doped LiYF₄ and LiYbF₄ have been previously reported by Vaills *et al.*³ and by Misra *et al.*⁴ Vaills *et al.*³ confined their measurements to room temperature, and calculated the values of the spin-Hamiltonian parameters within the frameworks of the point-charge and superposition models. Misra *et al.*⁴ extended these measurements down to liquid-helium temperatures, and evaluated the spin-Hamiltonian parameters (SHP) using a rigorous leastsquares procedure.⁵ They estimated the Gd³⁺-Yb³⁺ exchange interaction at room temperature using the Gd³⁺ g shift in LiYbF₄ from that in LiYF₄.

 Gd^{3+} -doped $LiY_{1-x}Yb_xF_4$ crystals are interesting hosts for the study of magnetic interaction of Gd^{3+} ion with its environment. Paramagnetic surroundings of Gd^{3+} ion can be varied, while preserving the tetragonal symmetry, by replacing a certain fraction of Y^{3+} ions by Yb^{3+} ions in the diamagnetic host lattice of $LiYF_4$. These crystals are expected to have tetragonal structure, similar to that of $LiYF_4$, or $LiYbF_4$, crystals. Since the Y^{3+} and Yb^{3+} ions are trivalent, no charge compensation occurs when the substituting trivalent Gd^{3+} ions are introduced in these crystals.

It is the purpose of the present paper to extend the previously reported X-band EPR studies on Gd^{3+} -doped LiYF₄ and LiYbF₄ single crystals to the mixed single crystals of LiY_{1-x}Yb_xF₄, with x = 0.0, 0.1, 0.2, 0.3, 0.4,0.6, 0.8, and 1.0. The spin-Hamiltonian parameters are, here, evaluated using a rigorous least-squares fitting procedure⁵ in which all resonant EPR line positions recorded for several orientations of the external magnetic field are simultaneously fitted. The systematics of these SHP are studied as a function of x, representing the proportion of Yb^{3+} ions present in these crystals. As well, the superposition model of Newman⁶⁻⁸ is applied to the calculation of SHP; in particular, the dependences of the intrinsic parameters \overline{b}_2 and \overline{b}_4 upon temperature are studied. In addition, the systematics of \overline{b}_2 as a function of x is investigated. The temperature dependence of the parameter b_2^0 is accounted for to be due to spin-phonon interaction and thermal expansion of the crystal lattice. Finally, for $LiY_{0.9}Yb_{0.1}F_4$, the only mixed crystal for which wellresolved EPR spectra can be recorded down to liquidhelium temperature, exchange interaction constant between the impurity paramagnetic ion Gd^{3+} and the host paramagnetic ion Yb^{3+} is estimated, using the shift of the Gd^{3+} g value in this host lattice from that in the isostructural diamagnetic host lattice of LiYF₄, taking into account the magnetization of the Yb³⁺ lattice at liquidhelium temperature.

Section II deals with sample preparation and crystal structure of $\operatorname{LiY}_{1-x} \operatorname{Yb}_x F_4$ samples, while details of the experimental arrangement are given in Sec. III. Evaluation of SHP is described in Sec. IV. Details of the behavior of the zero-field splitting as functions of x and of temperature, and application of the superposition model to the calculation of Gd^{3+} SHP in $\operatorname{LiY}_{1-x} \operatorname{Yb}_x F_4$ hosts are described in Secs. V and VI, respectively. Temperature variation of SHP and evaluation of the Gd^{3+} -Yb³⁺ exchange interaction in $\operatorname{LiY}_{0.9}$ Yb_{0.1}F₄ host crystals are presented in Secs. VII and VIII, respectively. Concluding remarks are made in Sec. IX.

II. SAMPLE PREPARATION AND CRYSTAL STRUCTURE

Mixed single crystals of $\text{LiY}_{1-x} \text{Yb}_x \text{F}_4$, to which 0.3 mol. % GdF₃ was added, were grown by the Bridgman-Stockbarger method.⁹ LiYF₄ and LiYbF₄ crystals have the Scheelite (tetragonal) structure with space-group classification $I4_1/a$.^{10,11} The unit cell of LiYF₄ has the dimensions $a = 5.167 \pm 0.003$ Å, $c = 10.735 \pm 0.003$ Å,⁹ while for LiYbF₄ $a = 5.1335 \pm 0.002$ Å and $c = 10.588 \pm 0.002$ Å.¹¹ Since the values of a and c and the distances of the rare-earth metal in LiYF₄ and LiYbF₄ are quite close to each other, it is assumed that LiY_{1-x}Yb_xF₄ crystals also have the Scheelite structure, with the a and c dimensions scaled in the proportion of x from those for LiYF₄ and LiYbF₄, using Vegard's law.¹²⁻¹⁴

III. EXPERIMENTAL DETAILS

A. Apparatus

EPR spectra were recorded on an X-band spectrometer model SE/X-28B, manufactured by Polytechnic School of Wroclaw, Poland, equipped with 100-kHz modulation and a maximum available microwave power of 100 mW. The 100-kHz modulation was mounted inside a TE₁₀₂ resonant cavity. The spectrometer could detect a minimum of 5×10^{10} spins, characterized by a linewidth of 1 G (half width at half maximum of the absorption line), with a 1-s time constant. The external magnetic-field intensity was measured by a RADIOPAN NMR magnetometer (model MJ 110R), with a precision of 0.1 G. The crystal sample was placed inside a plexiglass holder, so that it could be rotated in a vertical plane, while the magnetic field was rotated in the horizontal plane. For measurements at low temperatures, a liquid-helium cryostat, with a temperature stability of ± 0.1 K below 77 K and of ± 0.2 between 77 and 300 K, was used. The microwave power was reduced appropriately at liquid-helium temperatures, in order to prevent saturation of Gd³⁺ EPR lines.

B. EPR spectra

The angular variations of spectra in any Gd³⁺-doped $LiY_{1-x}Yb_xF_4$ single crystal were found to be similar to those in the LiYF₄ host crystal, described in Ref. 3. The features of the angular variation of spectra did not change with temperature, except that the EPR lines broadened in the hosts with higher concentrations of Yb^{3+} , due to the interaction of Gd^{3+} guest with the Yb^{3+} host ions, as the temperature was lowered, such that below certain temperatures, depending on x, wellresolved spectra could not be recorded. Clearly resolved EPR spectra could be recorded below room temperature down to liquid-helium temperatures (LHT) for samples with x = 0.0 and x = 0.1, down to 40 K for x = 0.2, down to 100 K for x = 0.3, down to 175 K for x = 0.4; the remaining hosts did not yield clearly resolved EPR spectra even at temperatures much higher than liquidnitrogen temperature (LNT). Resolved superhyperfine structure (SHFS) due to the nearest-neighbor fluorine nuclei was not visible in any $\text{LiY}_{1-x}\text{Yb}_x\text{F}_4$ crystal at any temperature.

For the orientation of the external magnetic field in the ZX plane, a π repetitive pattern, while in the XY plane a $\pi/2$ repetitive pattern, was found for all the host crystals; these are exhibited in Figs. 1 and 2 for LiY_{0.6}Yb_{0.4}F₄ and LiYF₄ hosts, respectively.

C. Linewidths

EPR linewidths for Gd^{3+} ions in the LiYF₄ crystal were found to be 30 ± 2 G for all lines for the magneticfield orientation along the Z and X axes at room temperature. When the temperature was lowered to 4.2 K, the linewidths increased slightly to 33 ± 2 G. In LiY_{0.9}Yb_{0.1}F₄ crystal the linewidths were very temperature dependent: 40-60 G at room temperature, 50-70 G at LNT, and 150-200 G at LHT. For the LiY_{0.6}Yb_{0.4}F₄ host the linewidths were 100-150 G at room temperature for the various transitions; these increased to 150-200 G at 170 K. All the lines in the LiY_{0.6}Yb_{0.4}F₄ crystal were well resolved down to ~170 K, while at 40 K, for H|| \hat{X} , only the two highest-field lines could be observed, having

FIG. 1. Angular variation of X-band EPR line positions observed at room temperature for the Gd^{3+} -doped LiY_{0.6}Yb_{0.4}F₄ single crystal for the orientation of the external magnetic field in the ZX plane. The various allowed transitions $(\Delta M = \pm 1)$ have been indicated as follows: $A(-\frac{5}{2}\leftrightarrow-\frac{7}{2})$, $B(-\frac{3}{2}\leftrightarrow-\frac{5}{2})$, $C(-\frac{1}{2}\leftrightarrow-\frac{3}{2})$, $D(\frac{1}{2}\leftrightarrow-\frac{1}{2})$, $E(\frac{3}{2}\leftrightarrow\frac{1}{2})$, $F(\frac{5}{2}\leftrightarrow\frac{3}{2})$, $G(\frac{7}{2}\leftrightarrow\frac{5}{2})$, I [diphenylpicrylhydrazyl (DPPH)]. At low fields some forbidden transitions $(\Delta M \neq \pm 1)$ are also observed, not shown here. The continuous lines connect data points belonging to the same transitions.

FIG. 2. Angular variation of X-band EPR line positions observed at room temperature for the Gd^{3+} -doped LiYF₄ single crystal for the orientation of the external magnetic field in the XY plane. The various allowed transitions $(\Delta M = \pm 1)$ have been indicated as follows: $A(-\frac{5}{2}\leftrightarrow-\frac{7}{2}), B(-\frac{3}{2}\leftrightarrow-\frac{5}{2}), C(-\frac{1}{2}\leftrightarrow-\frac{3}{2}), D(\frac{1}{2}\leftrightarrow-\frac{1}{2}), E(\frac{3}{2}\leftrightarrow\frac{1}{2}), F(\frac{5}{2}\leftrightarrow\frac{3}{2}), G(\frac{7}{2}\leftrightarrow\frac{5}{2}), I$ (DPPH). At low fields some forbidden transitions $(\Delta M \neq \pm 1)$ are also observed. The continuous lines connect data points belonging to the same transitions.

widths of about 500 G. (No observation were made for $\mathbf{H} \| \hat{\mathbf{Z}}$ at this temperature.) Below 40 K no clearly resolved lines could be observed in this crystal, even for $\mathbf{H} \| \hat{\mathbf{X}}$. (These linewidths are expressed in ranges, since they depend on the orientation and magnitude of the magnetic field.) The different temperature behaviors of \mathbf{Gd}^{3+} linewidths in $\mathrm{LiY}_{1-x} \mathrm{Yb}_x \mathrm{F}_4$ hosts for different x, are obviously strongly dependent upon x, the fraction of Yb^{3+} host ions present. The Yb^{3+} ions affect the linewidths by dipole-dipole interaction with Gd^{3+} ion. (Detailed interpretation of the linewidth behavior will be presented in a forthcoming publication.)

IV. SPIN-HAMILTONIAN PARAMETERS

A. Spin Hamiltonian

The spin Hamiltonian, characterizing Gd^{3+} ion in $LiY_{1-x}Yb_xF_4$, substituting Y^{3+} , or the Yb^{3+} ion, occupying the S_4 site, can be expressed as

$$\mathcal{H} = \mathcal{H}' + \mathcal{H}^i , \qquad (4.1)$$

where

$$\mathcal{H}' = \mu_{B} \mathbf{H} \cdot \tilde{g} \cdot \mathbf{S} + \frac{1}{3} b_{2}^{0} O_{2}^{0} + \frac{1}{60} (b_{4}^{0} O_{4}^{0} + b_{4}^{4} O_{4}^{4}) + \frac{1}{1260} (b_{6}^{0} O_{6}^{0} + b_{6}^{4} O_{6}^{4})$$
(4.2)

and

$$\mathcal{H}^{i} = \frac{1}{60} b_{4}^{-4} O_{4}^{-4} + \frac{1}{1260} b_{6}^{-4} O_{6}^{-4} .$$
(4.3)

In Eq. (4.2), H describes the external magnetic field intensity. In Eqs. (4.2) and (4.3), the $O_l^{\pm |m|}$ are spin operators, as defined by Abragm and Bleaney;¹⁵ in particular, the matrix elements of $O_l^{+|m|}$ are real, while those of $O_l^{-|m|}$ are imaginary. As discussed by Vishwamittar and Puri,¹⁶ the imaginary terms described by \mathcal{H}^i can be ignored, thus approximating $\mathcal{H} \approx \mathcal{H}'$, which is appropriate to D_{2d} site symmetry. The ideal D_{2d} symmetry corresponds to the case $\chi_1 = \chi_2 = 0$; where χ_1 and χ_2 are the angles characterizing the projections of F^- ligands in the ab plane¹⁶ (see Fig. 3). For LiYF₄, ¹⁶ $\chi_1 = 1^{\circ}30'$ and $\chi_2 = -2^{\circ}29'$, while for LiYbF₄, $\chi_1 = 1^{\circ}42'$ and $\chi_2 = -2^{\circ}49'$, as calculated using the crystal structure data for $LiYF_4$ and $LiYbF_4$. These angles are very small, thus justifying neglect of \mathcal{H}^{i} . The magnetic Z, X, and Y axes, used in Eqs. (4.1)-(4.3), are defined to be those directions of the external magnetic field for which the extrema of overall splitting of EPR lines occur; the direction of the largest extremum defines the Z axis, the direction of the next-largest extremum defines the X axis, while the direction of the third-largest extremum defines the Y axis. The magnetic Z axis is found to be parallel to the crystal axis c. The orientation of the external magnetic field in the *ab* plane for which the maximum splitting of EPR lines is observed, then, determines the magnetic X axis; it is deduced to lie at $34^{\circ}30'\pm30'$ from the *a* axis in the *ab* plane.

O F⁻ ion

FIG. 3. Positions of F^- ligand ions around the rare-earth ion in $\operatorname{LiY}_{1-x}\operatorname{Yb}_x F_4$ hosts. X, Y, and Z denote the axes of the b_2^m tensor, whereas a, b, and c denote the crystal axes. The ligands 1-4 are at the same distance (R_1) , while the ligands 5-8 are at the same distance (R_2) , from the rare-earth ion. The $F^$ ligands (1,3) and (5,7) have the polar angles θ_1 and θ_2 , respectively, whereas the F^- ligands (2,4) and (6,8) have the polar angles $\pi - \theta_1$ and $\pi - \theta_2$, respectively. The azimuthal angles for i = 1-4 and 5-8 ligands are $\phi_1 + (i-1)\pi/2$ and $\phi_2 + (i-5)\pi/2$, respectively.

B. Evaluation of spin-Hamiltonian parameters (SHP)

SHP were evaluated rigorously, using a least-squaresfitting (LSF) procedure,⁵ fitting simultaneously all resonant line positions observed for \mathbf{H} in the ZX plane for all the $LiY_{1-x}Yb_xF_4$ host crystals. This meant evaluation of seven SHP: g_{zz} , g_{xx} , b_2^0 , b_4^m , and b_6^m (m = 0, 4), from a simultaneous fit of more than one-hundred line positions in each case. The relative signs of the parameters are correctly determined by the LFS procedure. The absolute signs of all SHP can, then, be determined from the knowledge of the absolute sign of b_2^0 . The intensity of the highest-field lines relative to that of the lowest-field lines for $\mathbf{H} \| \hat{\mathbf{Z}}$ was found to decrease at liquid-helium temperature from that at room temperature for the $LiY_{0.9}Yb_{0.1}F_4$ host. This indicates that the absolute sign of b_2^0 is negative.¹⁵ (The negative sign for b_2^0 has, thus, been assumed for all the other $LiY_{1-x}Yb_xF_4$ hosts, as well.) Figure 4 exhibits the temperature dependence of SHP for $LiY_{0.9}Yb_{0.1}F_4$, while Tables I-IV list the values of SHP for all the cases. It should be noted that the values of b_6^0 and b_6^4 were found to be practically zero, within experimental errors, for all the hosts. The temperature dependence of all the SHP has been found to be nonlinear in all the hosts; the absolute values of the parameters are, generally, found to increase with decreasing temperature. As for the dependences of the various SHP on the mole fraction x, the following is noted. The magnitudes of the parameters do not change much with x; these changes being 0.2, 18, and 5% for b_2^0 , b_4^0 , and b_4^4 , respectively. They are probably caused by lattice distortion, since the Y^{3+} and Yb³⁺ ions have unequal radii. Figure 5 exhibits temperature variation of g_{zz} and g_{xx} in the temperature range 4.2–296 K for $LiY_{0.9}Yb_{0.1}F_4$. In all the host crystals, both the g_{zz} and g_{xx} values decrease monotonically as the temperature is decreased from the room temperature, i.e., the g shifts are negative (antiferromagnetic). The same result was found by Mehran et al.¹⁷ in Gd³⁺-doped $EuAsO_4$ and $EuVO_4$ crystals.

FIG. 4. Variation of the spin-Hamiltonian parameters as functions of temperature for $\text{LiY}_{0.9}\text{Yb}_{0.1}\text{F}_4$ crystal. The \bigcirc , \times , and \square represent the values of $|b_2^0|$, $|b_4^0|$, and b_4^4 , respectively. Different parameters are characterized by different scales.

The values of the parameter α , which determines the admixture of the excited state ${}^{6}P_{7/2}$ into the ground state ${}^{8}S_{7/2}$, are also included in Tables I–IV for all the hosts, at various temperatures. α is determined from the relation 18

$$g = (1 - \alpha^2)g_s + \alpha^2 g_p . (4.4)$$

In Eq. (4.4), g_s (=2.0023) and g_p (=1.716) are, respectively, Lande's factors for Gd³⁺ in the ground and first-excited states, while g represents the average of g_{zz} and

TABLE I. Values of SHP for Gd³⁺-doped LiYF₄ at various temperatures. The parameters b_i^m are expressed in GHz, while g_{zz} and g_{xx} are dimensionless, *n* represents the total number of line positions simultaneously fitted to evaluate the parameters. $\chi^2 \equiv \sum_j (|\Delta E_j| - hv_j)^2$, where ΔE_j is the calculated difference in the energy levels participating in resonance for the *j*th line position, v_j is the corresponding klystron frequency, and *h* is Planck's constant. χ^2 is expressed in GHz². α is the coefficient that represents the admixture of ${}^6P_{1/2}$ state in the ${}^8S_{1/2}$ state, as given by Eq. (4.4).

$T(\mathbf{K})$	289	245	198	140	79	51	22	4.2	
g _{zz}	1.9901±0.0025	1.9903	1.9929	1.9911	1.9913	1.9915	1.9911	1.9900	
g_{xx}	$1.9908 {\pm} 0.0025$	1.9906	1.9920	1.9904	1.9914	1.9903	1.9920	1.9897	
b_{2}^{0}	$-2.4863{\pm}0.0085$	-2.5149	-2.5426	-2.5711	-2.5918	- 2.5990	-2.6010	-2.6002	
b_{4}^{0}	$-0.0578 {\pm} 0.0015$	-0.0580	-0.0585	-0.0590	-0.0596	-0.0595	-0.0594	-0.0600	
b_{4}^{4}	$0.3047 {\pm} 0.0046$	0.3073	0.3107	0.3129	0.3143	0.3135	0.3130	0.3150	
b_{6}^{0}	$-0.0008{\pm}0.0037$	-0.0004	-0.0003	-0.0004	-0.0004	-0.0009	-0.0002	0.0000	
b ₆ ⁴	$0.0017 {\pm} 0.0095$	-0.0024	0.0001	0.0012	-0.0002	0.0099	0.0069	-0.0046	
n	106	106	106	106	106	84	105	113	
χ^2	0.0391	0.0127	0.0268	0.0282	0.0350	0.1362	0.1791	0.0470	
α	0.20 ± 0.04	0.20	0.19	0.20	0.20	0.20	0.19	0.21	

TABLE II. Values of SHP for Gd³⁺-doped LiY_{0.9}Yb_{0.1}F₄. For notations see the caption of Table I.

T (K)	289	245	198	140	79	51	22	4.2
g.,,	1.9882±0.0030	1.9871	1.9855	1.9829	1.9868	1.9792±0.0040	1.9653	1.9661
g _{xx}	1.9920±0.0030	1.9924	1.9933	1.9904	1.9927	1.9879 ± 0.0040	1.9747	1.9757
b_2^0	$-2.4830{\pm}0.0125$	-2.5108	-2.5348	-2.5591	-2.5856	$-2.5753{\pm}0.0145$	-2.5647	-2.5644
b_{4}^{0}	-0.0559 ± 0.0020	-0.0583	-0.0586	0.0590	-0.0591	$-0.0575 {\pm} 0.0030$	-0.0599	-0.0596
b ⁴ ₄	0.3114±0.0055	0.3101	0.3129	0.3158	0.3236	$0.3285{\pm}0.0075$	0.3352	0.3245
b_6^0	0.0009±0.0055	-0.0012	-0.0009	-0.0014	-0.0009	-0.0010 ± 0.0075	-0.0055	-0.0038
b_6^4	-0.0057 ± 0.0105	-0.0094	-0.0095	-0.0107	-0.0105	-0.0259 ± 0.0145	-0.0091	-0.0134
n	107	107	108	105	104	104	93	92
χ^2	0.0622	0.0749	0.0943	0.1068	0.0893	0.1364	0.2021	0.2624
α	0.21 ±0.05	0.21	0.21	0.23	0.21	0.25 ±0.05	0.33	0.33

 g_{xx} . It is found that this admixture increases with decreasing temperature for $\text{LiY}_{1-x}\text{Yb}_x\text{F}_4$ $(x \neq 1)$ crystals, whereas for LiYF_4 its value is practically independent of temperature.

As for the temperature dependence of SHP, the parameters b_{2}^{0} , b_{4}^{0} , and b_{4}^{4} are found to fit reasonably well, in the temperature range 4.2 K < T < 300 K, to the quadratic function, $a + bT + cT^2$, for both the LiYF₄ and $LiY_{0.9}Yb_{0.1}F_4$ hosts, the only hosts for which wellresolved EPR spectra can be observed down to liquidhelium temperature. The values of the constants a, b, c, and the corresponding χ^2 values for the various parameters are listed in Table V. A quadratic temperature dependence of b_i^m was also observed by Low and Zusman¹⁹ for Gd³⁺-doped LaAlO₃ in the temperature range 20 K < T < 300 K. According to them, the temperature dependence is due mainly to the changes in the crystal field. One expresses $b_2^0 = AV_{ax}(1 + BV_{ax})$, where V_{ax} is the axial crystal-field strength, and A and B are complicated constants depending on a number of mechanisms; in particular, the spin-orbit coupling, the spin-spin interaction, and the energy separation of the Gd^{3+} excited states from the ground state. The constants A and B do not depend significantly upon the temperature.¹⁹ Thus, the temperature dependence of b_l^m is mainly caused by the changes in V_{ax} , the axial crystal field. In order to explain the quadratic temperature dependence of b_l^m , V_{ax} is, then, expected to be predominantly linear in the temperature range 4.2-300 K.

V. ZERO-FIELD SPLITTING

It is interesting to study the dependence of Gd^{3+} zerofield splitting in the $LiY_{1-x}Yb_xF_4$ hosts on temperature (T) and on the mole fraction (x). To this end, the eigenvalues of the spin-Hamiltonian matrix were calculated for H=0 for the various host crystals. The overall zero-field splittings were then separately least-squares fitted to polynomials up to second power in x and in T. Satisfactory fits were found to these quadratic polynomials. The results are as follows.

A. Dependence on temperature

The zero-field splitting ΔE of Gd^{3+} in LiYF_4 and $\mathrm{LiY}_{0.9}\mathrm{Yb}_{0.1}\mathrm{F}_4$ hosts, the only crystals in which wellresolved spectra could be observed down to liquid-helium temperature, can be fitted, in the temperature range $4.2 \mathrm{K} < T < 300 \mathrm{K}$, to the following quadratic function:

	LiY _{0.8} Yb _{0.2} F ₄				$LiY_{0.7}Yb_{0.3}F_4$			
T (K)	296	198	79	40	289	198	140	100
g _{zz}	1.9810±0.0045	1.9788	1.9729	1.9597	1.9877	1.9857	1.9802	1.9699
g _{xx}	$1.9897 {\pm} 0.0045$	1.9878	1.9880	1.9780	1.9913	1.9911	1.9902	1.9863
b_{2}^{0}	-2.4653 ± 0.0145	-2.5161	-2.5575	-2.5410	-2.4805	-2.5243	-2.5486	-2.5463
b ⁰ ₄	$-0.0599{\pm}0.0030$	-0.0598	-0.0588	-0.0541	-0.0582	-0.0595	-0.0616	-0.0608
b4	$0.3148 {\pm} 0.0075$	0.3185	0.3337	0.3470	0.3158	0.3185	0.3341	0.3361
b_{6}^{0}	$-0.0016{\pm}0.0075$	-0.0017	-0.0001	0.0003	0.0010	-0.0005	-0.0007	-0.0014
b_{6}^{4}	$-0.0144{\pm}0.0185$	-0.0345	-0.0208	-0.0140	-0.0111	-0.0150	-0.0268	-0.0106
n	102	104	103	92	104	106	106	100
χ^2	0.1711	0.1683	0.2071	0.2632	0.0444	0.0990	0.2219	0.2352
α	0.24 ±0.06	0.26	0.28	0.34	0.21	0.22	0.24	0.29

TABLE III. Values of SHP for Gd^{3+} -doped Li Y_{1-x} Yb_xF₄ (x = 0.2, 0.3). For notations see the caption of Table I.

TABLE IV. Values of SHP for Gd^{3+} -doped Li $Y_{1-x}Yb_xF_4$ (x = 0.4, 0.6, 0.8, 1.0). For notations see the caption of Table I.

	Li	Y _{0.6} Yb _{0.4} F ₄		LiY _{0 4} Yb _{0.6} F ₄	$LiY_{0.2}Yb_{0.8}F_4$	LiYbF4
T (K)	290	240	175	290	286	290
g _{zz}	1.9782±0.0045	1.9790	1.9680	1.9852±0.0060	1.9762	1.9717
g_{xx}	$1.9867 {\pm} 0.0045$	1.9894	1.9846	$1.9964 {\pm} 0.0060$	1.9916	1.9860
b_{2}^{0}	$-2.4620{\pm}0.0145$	-2.4895	-2.4954	$-2.4775{\pm}0.0165$	-2.4937	-2.4812
b_{4}^{0}	-0.0601 ± 0.0030	-0.0566	-0.0566	$-0.0601{\pm}0.0035$	-0.0645	-0.0681
b_{4}^{4}	$0.3252{\pm}0.0075$	0.3268	0.3402	0.3512 ± 0.0090	0.3330	0.3209
b_{6}^{0}	$0.0016 {\pm} 0.0075$	0.0027	0.0024	-0.0009 ± 0.0090	-0.0001	-0.0033
b_{6}^{4}	$-0.0277 {\pm} 0.0185$	-0.0161	-0.0157	$-0.0177 {\pm} 0.0210$	-0.0231	0.0108
n	107	103	105	107	104	102
χ^2	0.2215	0.1890	0.3031	0.6297	0.6561	0.6298
α	0.26 ±0.06	0.25	0.30	0.25 ±0.07	0.30	0.33

$$\Delta E(T) = a' + b'T + c'T^2 .$$
 (5.1)

The values of a', b', c', and the corresponding χ^2 values are included in Table V. The temperature dependence exhibited by Eq. (5.1) can be easily understood, if one takes into account the temperature dependence of the spin-Hamiltonian parameters b_l^m , as discussed in Sec. IV.

B. Dependence on the mole fraction (x)

A reasonably good fit of ΔE values at room temperature can be made to the following quadratic function:

$$\Delta E(x) = 29.6861 - 0.5273x + 0.6062x^2 . \tag{5.2}$$

FIG. 5. Temperature variations of the g values for the various hosts. The (g_{zz},g_{xx}) values are represented by (\bigcirc,\times) , (\bigcirc,\blacksquare) , (\diamondsuit,∇) , and (\Box,\bigtriangleup) for $\operatorname{LiY}_{1-x}\operatorname{Yb}_xF_4$; x = 0.1, 0.2, 0.3, and 0.4, respectively.

The fit represented by Eq. (5.2) includes the values x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0, and is characterized by a χ^2 value of 0.08 GHz².

VI. SUPERPOSITION MODEL CALCULATION OF SHP (b_i^m)

According to the superposition model of Newman⁶⁻⁸ the SHP (b_i^m) can be expressed as linear combinations of single-ligand contributions to the intrinsic parameters $\overline{b}_n(R_0)$, which depend on the ligand *i*, as follows:

$$b_l^m = \sum_i \overline{b}_n(R_i) K_n^m(\theta_i, \phi_i) , \qquad (6.1)$$

where

$$\overline{b}_n(R_i) = \overline{b}_n(R_0)(R_0/R_i)^{t_n} .$$
(6.2)

In Eqs. (6.1) and (6.2), (R_i, θ_i, ϕ_i) are the coordinates of ligand *i*, and R_0 is a particular bond length, used as a reference. The K_n^m in Eq. (6.1) are angular functions.⁸ For the present considerations, they are specifically

$$K_{2}^{0}(\theta,\phi) = (3\cos^{2}\theta - 1)/2 , \qquad (6.3)$$

$$K_4^0(\theta,\phi) = (35\cos^4\theta - 30\cos^2\theta + 3)/8 , \qquad (6.4)$$

$$K_4^4(\theta,\phi) = (35\sin^4\theta\cos4\phi)/8$$
. (6.5)

For $\operatorname{LiY}_{1-x}\operatorname{Yb}_x\operatorname{F}_4$ crystals, one considers the eight ligand fluorines, which consist of four nearest and four nextnearest neighbors to a Gd^{3+} ion, substituting a Y^{3+} , or Yb^{3+} ion. This is shown in Fig. 3. The required values of (R_i, θ_i, ϕ_i) for LiYF_4 and LiYbF_4 are given in Refs. 11 and 16. In order to evaluate the intrinsic parameters, $\overline{b}_n(R_0)$, the required lattice constants of $\operatorname{LiY}_{1-x}\operatorname{Yb}_x\operatorname{F}_4$ were estimated in accordance with Vegard's law, 12-14 as given in Sec. II. One can now express

$$\overline{b}_{2}(R_{0}) = b_{2}^{0} / [a(R_{0}/R_{1})^{t_{2}} + b(R_{0}/R_{2})^{t_{2}}], \qquad (6.6)$$

$$\overline{b}_{4}(R_{0}) = b_{4}^{0} / [c(R_{0}/R_{1})^{t_{4}} + d(R_{0}/R_{2})^{t_{4}}], \qquad (6.7)$$

$$\overline{b}_{4}'(R_{0}) = b_{4}^{4} / [e(R_{0}/R_{1})^{t_{4}} + f(R_{0}/R_{2})^{t_{4}}].$$
(6.8)

		b ⁰ ₂	 b_4^0	b4	ΔE
	a' (GHz)	-2.6025	-0.0598	0.3139	31,1166
24	$b'(10^{-5} \text{ GHz/K}^{-1})$	5.096	0.494	1.356	-51.36
	$c'(10^{-6} \text{ GHz/K}^{-2})$	1.232	0.082	-0.158	-15.04
	$\chi^2(10^{-4} \text{ GHz}^2)$	0.16	0.002	0.03	23.5
LiY _{0 9} Yb _{0 1} F ₄	a' (GHz)	-2.5654	-0.0591	0.3318	30.7032
0.7 0.1 4	$b'(10^{-4} \text{ GHz/K}^{-1})$	-2.468	-0.054	-1.244	26.94
	$c'(10^{-6} \text{ GHz/K}^{-2})$	1.887	0.048	0.167	-21.95
	$\chi^{2}(10^{-3} \text{ GHz}^{2})$	0.26	0.005	0.1	31.4

TABLE V. Values of the constants required to fit the SHP: $b_1^m = a + bT + cT^2$ and the zero-field splitting: $\Delta E(T) = a' + b'T + c'T^2$. The χ^2 values characterizing these fits are also included.

In Eqs. (6.6)–(6.8), R_1 and R_2 are the distances of the nearest and next-nearest fluorine neighbors from the Gd^{3+} ion, while $R_0 = (R_1 + R_2)/2$. As for the numerical values of the coefficients a, b, c, d, e, f, they are listed in Table VI for the various hosts. In the superpositionmodel calculation one needs to know the value of the power t_n in Eq. (6.2). For $\text{LiY}_{1-x} \text{Yb}_x F_4$ crystals, which have the same crystal structure as those of Scheelite crystals, t_2 has been assumed to be equal to 1, which is the same as that used by Newman and Urban⁸ for Scheelite hosts. A plot of \overline{b}_2 values as a function of x at room temperature is displayed in Fig. 6. As for the value of t_4 , it is determined from the condition $\overline{b}_4 = \overline{b}'_4$, where these intrinsic parameters are determined from the values of the parameters b_4^0 and b_4^4 , using Eqs. (6.7) and (6.8), respectively. For LiYF₄ the values of t_4 turn out to be -58.8, -57.6, -57.3, and -57.1 at T = 298, 198, 140, and 93 K, respectively. This yields an average value of $t_4 = -57.8$ over the range 93–298 K. This value is, however, much greater in magnitude than those determined for Gd³⁺-doped cubic-metal fluoride hosts MeF₂ (Me=Cd, Ca, Sr, Pb, Ba), for which $t_4 = -5.60$, -6.14^{2} , -4.86, -15.50, -7.43, respectively,²⁰ and for Gd³⁺doped hexagonal hosts RF_3 (R = La, Ce, Pr, Nd), all of which have the same value of t_4 (=14).²¹ The abovementioned t_4 values for $\text{LiY}_{1-x}\text{Yb}_x\text{F}_4$ were, however, calculated without considering any distortions of the positions of F^- ions, caused by the substitution of a Gd^{3+} ion for Y^{3+} , or Yb^{3+} ion; the latter ions do not have the same ionic radii as that of Gd^{3+} . In the absence of any knowledge of what these distortions are, some simple distortions were considered in order to see their effect on t_4 . For example, reductions by the same value $\Delta\theta$ of all the eight vertical angles θ_i for the fluorine ions (Fig. 3); yield the t_4 values to be -21.3, -12.5, and -3.3 for $\Delta\theta$ equal to 4°, 5°, and 6°, respectively. This means that a reduction in the values of all θ_i by $\Delta\theta=5.5^\circ$ yields a t_4 value, which is consistent with those for MeF₂ (Ref. 20) and RF_3 hosts.²¹

VII. TEMPERATURE DEPENDENCE OF THE INTRINSIC PARAMETER \bar{b}_2

The change in the value of b_2^0 with temperature can be reflected into the change in the value of the intrinsic parameter \overline{b}_2 with temperature. It has been suggested^{17,22} that the effect of thermal expansion (contraction) of the lattice on \overline{b}_2 is rather small. Taking into account the change in lattice constants over the temperature range 93-290 K for LiYF₄,⁹ the change in the value of b_2^0 is estimated, using Eq. (6.6), to be about 22%, while the total change in the value of b_2^0 as evaluated from experimental data is about 100%, which is much larger than 22%. The extra change in b_2^0 (about 78%), over and above that due to thermal change of lattice constants, can be explained to be due to the modulation of the crystal field by thermally excited phonons. The latter can be accounted for by the application of the isotropic Einstein model of lattice vibrations, according to which²³

$$\overline{b}_2(T) = \overline{b}_2(RL) + K_2 \coth(\hbar\omega/2k_BT) . \tag{7.1}$$

In Eq. (7.1) \hbar is Planck's constant divided by 2π , k_B is

TABLE VI. Values of the (dimensionless) coefficients a, b, c, d, e, f required in Eqs. (6.6)–(6.8) for the various LiY_{1-x} Yb_xF₄ hosts.

x	а	b	С	d	е	f
0.0	-1.090	1.731	-0.372	-1.061	12.526	2.466
0.1	- 1.090	1.729	-0.372	-1.063	12.526	2.469
0.2	- 1.091	1.727	-0.371	-1.065	12.526	2.472
0.3	-1.091	1.725	-0.371	-1.067	12.524	2.475
0.4	-1.091	1.723	-0.370	-1.069	12.524	2.478
0.6	- 1.092	1.720	-0.370	-1.073	12.522	2.484
0.8	-1.092	1.716	-0.369	-1.078	12.521	2.489
1.0	- 1.093	1.712	-0.368	-1.082	12.519	2.495

FIG. 6. Plot of the intrinsic parameter $\overline{b}_2(R_0)$ for $t_2 = 1$ as a function of x at room temperature for the various Gd^{3+} -doped $\mathrm{LiY}_{1-x}\mathrm{Yb}_x\mathrm{F}_4$ hosts.

Boltzmann's constant, and ω is the average frequency of phonons in the lattice of LiYF₄. Assuming a typical value of $\omega = 10^{13} \text{ s}^{-1}$ for LiYF₄,²⁴ the values of K_2 and $\overline{b}_2(RL)$ are estimated, from a fit of \overline{b}_2 values to the temperature, according to Eq. (7.1), to be $K_2=0.0354$ GHz and $\overline{b}_2(RL)=-4.332$ GHz. The spin-phonon interaction constant K_2 can be calculated using the theory of vibronic effects.²⁵ Its magnitude is found to be proportional to $\langle u^2 \rangle V_{\text{OL}}/R^2$, where $\langle u^2 \rangle$ is the mean-square displacement of the atoms, V_{OL} is the appropriate mean orbit lattice interaction energy, and R is the rare-earth metal to fluorine distance. The value of K_2 as found here, from the fit to Eq. (7.1), is found to be of the same order of magnitude as that for Eu²⁺-doped alkalinefluoride crystals,²⁶ although R for LiYF₄ is somewhat smaller than those for the alkaline-fluoride crystals.

VIII. Gd³⁺-Yb³⁺ EXCHANGE INTERACTION

In this section the $Gd^{3+}-Yb^{3+}$ exchange-interaction constant, considering only the nearest and next-nearest neighbors, is estimated for the paramagnetic host $LiY_{0.9}Yb_{0.1}F_4$. To this end Δg , the shift of $Gd^{3+}g$ value from that in the isostructural diamagnetic host $LiYF_4$ at liquid-helium temperature is used;²⁷ $\Delta g = g^{p} \cdot g^{d}$, where g^{p} and g^{d} are the g values in the isostructural paramagnetic $(LiY_{0.9}Yb_{0.1}F_4)$ and diamagnetic $(LiYF_4)$ hosts. (It is noted that the shape-dependent g shift due to the magnetization of the $LiY_{0.9}Yb_{0.1}F_4$ sample at liquid-helium temperature^{27,28} is zero in the present case, since the sample chosen for measurement was of spherical shape. As well, $LiY_{0.9}Yb_{0.1}F_4$ is the only mixed crystal for which EPR spectra can be recorded down to liquid-helium temperature.)

The spin-Hamiltonian of a $Gd^{3+}-Yb^{3+}$ pair can be expressed as follows:

$$\mathcal{H}_T = \mathcal{H} + \mathcal{H}' + \mathcal{H}_p \ . \tag{8.1}$$

The various terms on the right-hand side of Eq. (8.1) are described as follows. \mathcal{H} is the spin-Hamiltonian of Gd³⁺ ion in crystal field of tetragonal symmetry in LiY_{0.9}Yb_{0.1}F₄; it is given by Eq. (4.2).

$$\mathcal{H}' = \mu_B \mathbf{S}_1 \cdot \tilde{\mathbf{g}}_1 \cdot \mathbf{H} , \qquad (8.2)$$

is the spin-Hamiltonian of the Yb³⁺ ion. In Eq. (8.2), $S_1 = \frac{1}{2}$ is the effective spin of Yb³⁺ in the ground state at liquid-helium temperature (see below), \tilde{g}_1 is the g tensor for Yb³⁺. [The hyperfine interaction energies of the two isotopes ¹⁷¹Yb (nuclear spin $I = \frac{1}{2}$) and ¹⁷³Yb ($I = \frac{5}{2}$) with nonzero nuclear magnetic moments have been neglected.]

$$\mathcal{H}_{p} = J \mathbf{S} \cdot \mathbf{S}_{1} \tag{8.3}$$

represents the $Gd^{3+}-Yb^{3+}$ pair-exchange interaction. In Eq. (8.3) J is the exchange-interaction constant between a $Gd^{3+}-Yb^{3+}$ pair. The g shift in a paramagnetic host from that in a diamagnetic isostructural host (in the present case $LiYF_4$) is expressed using the molecular-field model as^{27,29}

$$\Delta g = zJ \left\langle \overline{\partial E_n / \partial H} \right\rangle / (g_1 \mu_B^2 H) . \tag{8.4}$$

In Eq. (8.4) z is the number of nearest and next-nearest paramagnetic neighbor Yb³⁺ ions to the Gd³⁺ ion in LiY_{0.9}Yb_{0.1}F₄, $\langle \partial E_n / \partial H \rangle$ is the average of the derivatives of the lowest-lying energy multiplet ${}^2F_{7/2}$ of Yb³⁺ at liquid-helium temperature in LiY_{0.9}Yb_{0.1}F₄, and g₁ is the effective Yb³⁺ g factor. It should be noted that distant neighbors beyond the first nearest neighbors are not taken into account as the exchange-interaction constant falls off extremely rapidly with distance (for more details see <u>Ref. 30).</u>

 $\langle \partial E_n / \partial H \rangle$ can be calculated as follows. The ${}^2F_{7/2}$ level of Yb³⁺ splits, in the presence of tetragonal crystalline electric field, into four Kramer's doublets ${}^2\Gamma_7 + 2{}^2\Gamma_8 + {}^2\Gamma_9$;³¹ however, at liquid-helium temperature only the ground-state doublet (${}^2\Gamma_7$) is expected to be populated so that the effective spin of the Yb³⁺ ion is $S_1 = \frac{1}{2}$. Finally,

$$\langle \overline{\partial E_n}/\partial H \rangle = \sum_{i=1}^{2} (\partial E_i/\partial H) P_i$$
, (8.5)

where E_1 , E_2 are the energies of the ground-state doublet of Yb³⁺; P_1 , P_2 are the corresponding probabilities of occupation. For $\mathbf{H} \| \hat{\mathbf{Z}}, E_1$ and E_2 can be expressed, using Eq. (8.2), as follows:

$$E_{1} = -(g_{1z}\mu_{B}H)/2 ,$$

$$E_{2} = (g_{1z}\mu_{B}H)/2 .$$
(8.6)

Assuming Boltzmann distribution the probabilities are

$$P_i = \exp(-E_i/k_B T) / \sum_{i=1}^{2} \exp(-E_i/k_B T)$$
, (8.7)

where E_i is given by Eqs. (8.6) and k_B is Boltzmann's constant. Thus,

$$\langle \overline{\partial E_n} / \overline{\partial H} \rangle = g_{1z} \mu_B (P_2 - P_1) / 2$$
 (8.8)

Finally, the total exchange interaction between Gd^{3+} and

its nearest and next-nearest paramagnetic Yb^{3+} neighbors can be expressed, using Eq. (8.4), as

$$J' = zJ = 2(g_{zz}^{p} - g_{zz}^{d})\mu_{B}H/(P_{2} - P_{1}) .$$
(8.9)

Using $g_{1z} = 1.331$, $g_{1x} = 3.917$, ³² H = 3400 G as an average value for X-band EPR of Gd³⁺, one finds $P_1 = 0.518$ and $P_2 = 0.482$ for $\mathbf{H} \| \hat{\mathbf{Z}}$, $P_1 = 0.553$ and $P_2 = 0.447$ for $\mathbf{H} \| \hat{\mathbf{X}}$, as calculated by the use of Eq. (8.7) at T = 4.2 K. Finally, one computes J' = 6.3 GHz using Δg_{zz} while J' = 1.3 GHz using Δg_{xx} , in Gd³⁺-doped LiY_{0.9}Yb_{0.1}F₄ single crystal. This yields the average value of Gd³⁺-Yb³⁺ pair-exchange interaction $J = 3.8 \pm 2.5$ GHz, averaged over the nearest and next-nearest neighbors, assuming that, on the average, there is one (z = 1) nearest and/or next-nearest Yb³⁺ ion surrounding a Gd³⁺ ion in the LiY_{0.9}Yb_{0.1}F₄ crystal. (It is noted that z = 8 for LiYbF₄. ^{33,34}) This value, estimated using the molecular-field model, taking into account the magnetization of the host Yb³⁺ lattice,²⁷ is to be compared with J = 8.60 GHz, that obtained for LiYbF₄ at room temperature, using the model of Hutchings *et al.*⁴

IX. CONCLUDING REMARKS

The present X-band EPR studies on Gd^{3+} -doped $LiY_{1-x}Yb_xF_4$ single crystals have led to the following conclusions.

(i) The various SHP in all $\text{LiY}_{1-x}\text{Yb}_x\text{F}_4$ exhibit the same, i.e., quadratic, dependence on temperature. This dependence is similar to that for Gd^{3+} -doped LaAlO₃ host.¹⁹

(ii) The Gd³⁺ zero-field splittings (ZFS) depend quadratically on temperature, whereas in the PrF₃ (Ref. 35) and Sm(NO₃)₃·6H₂O (Ref. 36) hosts the Gd³⁺ ZFS depend linearly upon temperature. Further, the present ZFS are about three times those in PrF₃ and LaF₃ hosts,³⁵ and $1\frac{1}{2}$ times that in the Sm(NO₃)₃·6H₂O host.³⁶

(iii) The values of the same SHP for the various

 $LiY_{1-x}Yb_xF_4$ hosts are quite close to each other. This is the same behavior as that observed in the Scheelite host crystals. Newman and Urban⁸ suggested that small variation in the observed parameters for different Scheelite crystals is caused by a rearrangement of the surrounding ions about the substituted ion, making the local environments in the various host crystals quite similar. In the present study, the substituting ions (Gd³⁺) are larger than the host ions (Y³⁺, Yb³⁺); Gd³⁺ ions, thus, push aside the ligand F⁻ ions, forming local environments which could be quite similar in the various $LiY_{1-x}Yb_xF_4$ host crystals.

(iv) The variation of b_2^0 with temperature is predominantly due to the modulation of the crystal field by thermally excited phonons, i.e., due to spin-phonon interaction. The thermal expansion (contraction) of the crystal lattice plays a secondary role.

(v) The average $Gd^{3+}-Yb^{3+}$ exchange interactions with the nearest and next-nearest Yb^{3+} ions in the $LiY_{0.9}Yb_{0.1}F_4$ host is estimated to be 3.8 ± 2.5 GHz at liquid-helium temperature, using the g shift from that in the isostructural diamagnetic host $LiYF_4$.

(vi) The linewidth variation in $\text{LiY}_{1-x} \text{Yb}_x F_4$ hosts with larger x values is very strongly temperature dependent, presumably due to $\text{Gd}^{3+}-\text{Yb}^{3+}$ dipole-dipole and exchange interactions. A detailed theoretical study of the temperature variation of the linewidths is in progress and will be published in due course.

ACKNOWLEDGMENTS

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (Grant No. A4485) for partial financial support. One of us (L.E.M.) also acknowledges sponsorship by the Institute of Low Temperatures and Structural Research of Polish Academy of Sciences (programme CPBP-01.12.2.11— "Structure, phase transitions and properties of molecular systems and condensed phases").

- *Permanent address: Department of Experimental Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
- ¹E. P. Chicklis and C. S. Naiman, IEEE J. Quant. Electron. 8, 535 (1972).
- ²R. K. Watts and W. C. Holton, Solid State Commun. 9, 137 (1971).
- ³Y. Vaills, J. Y. Buzaré, and J. Y. Gesland, Solid State Commun. **45**, 1093 (1983).
- ⁴S. K. Misra, M. Kahrizi, P. Mikolajczak, and L. Misiak, Phys. Rev. B **32**, 4738 (1985).
- ⁵S. K. Misra, J. Mag. Reson. 23, 403 (1976).
- ⁶D. J. Newman and W. Urban, J. Phys. C 5, 3103 (1972).
- ⁷D. J. Newman, J. Phys. C 6, L271 (1973).
- ⁸D. J. Newman and W. Urban, Adv. Phys. 24, 793 (1975).
- ⁹L. Misiak, P. Mikolajczak, and M. Subotowicz, Phys. Stat. Solidi A 97, 353 (1986).
- ¹⁰R. E. Thoma, C. F. Weaver, H. A. Friedman, H. Insley, L. A. Harris, and H. A. Yakel, Jr., J. Phys. Chem. **65**, 1096 (1961).

- ¹¹R. E. Thoma, G. D. Brunton, R. A. Penneman, and T. K. Keenan, Inorg. Chem. 9, 1096 (1970).
- ¹²L. Vegard, Z. Phys. 5, 17 (1921).
- ¹³L. Vegard, Z. Cryst. 67, 239 (1928).
- ¹⁴S. K. Misra and P. Mikolajczak, Phys. Stat. Solidi B 109, 59 (1982).
- ¹⁵A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition Ions* (Clarendon, Oxford, 1970).
- ¹⁶X. Vishwamittar and S. P. Puri, J. Phys. C 7, 1337 (1974).
- ¹⁷F. Mehran, K. W. H. Stevens, and T. S. Plaskett, Phys. Rev. B 20, 1817 (1979).
- ¹⁸R. Lacroix, Helv. Phys. Acta **30**, 374 (1957).
- ¹⁹W. Low and A. Zusman, Phys. Rev. **130**, 144 (1963).
- ²⁰J. Kuriata and W. Pastusiak, Acta Phys. Pol. A 66, 627 (1984).
- ²¹S. K. Misra, P. Mikolajczak, and N. R. Lewis, Phys. Rev. B **24**, 3729 (1981).
- ²²K. N. Shrivastava, Phys. Rep. C 20, 137 (1975).
- ²³S. B. Oseroff and R. Calvo, Phys. Rev. B 5, 2474 (1972).

- ²⁴S. A. Miller, H. E. Rast, and H. H. Caspers, J. Chem. Phys. 52, 4172 (1970).
- ²⁵J. M. Baker, J. Phys. C 12, 4039 (1979).
- ²⁶J. Kuriata, J. M. Baker, T. Rewaj, and N. Guskos, Phys. Stat. Solidi B **120**, K135 (1983).
- ²⁷S. K. Misra and M. Kahrizi, Phys. Rev. B 37, 5890 (1988).
- ²⁸C. Kittel, Phys. Rev. 73, 155 (1948).
- ²⁹M. R. St. John and R. J. Myers, Phys. Rev. B 13, 1006 (1976).
- ³⁰S. K. Misra and S. Z. Korczak, Phys. Rev. B 35, 4625 (1987).
- ³¹X. Vishwamittar, S. P. Taneja, and S. P. Puri, J. Phys. Chem.

Solids 33, 813 (1972).

- ³²J. P. Sattler and J. Nemarich, Phys. Rev. B 4, 1 (1971).
- ³³S. K. Misra and J. Felsteiner, Phys. Rev. B 15, 4309 (1977).
- ³⁴L. M. Holmes, T. Johansson, and H. J. Guggenheim, Solid State Commun. **12**, 993 (1973).
- ³⁵S. K. Misra, P. Mikolajczak, and S. Korczak, J. Chem. Phys. **74**, 922 (1981).
- ³⁶S. K. Misra and P. Mikolajczak, J. Chem. Phys. **69**, 3093 (1978).