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The effective Hamiltonian, obtained from the Hubbard model in the strong-coupling limit, is

diagonalized exactly for a periodic two-dimensional square lattice of ten sites. We obtain the
ground state of the system for any ailing of the lattice and the k-space excitation spectrum for a
single hole. Within our finite-size system, it is found that for very small coupling ratio t/U, each
hole creates a local ferromagnetic environment at least of the size of our system, whereas for in-

creasing t/U, the holes tend to form clusters, induced by antiferromagnetic spin correlations. A
range of t/U exists for which pairing of the holes may be possible.

The recently discovered superconducting copper ox-
ides, which exhibit prominent two-dimensional (2D)
features, provided new impetus2 for the study of various
approximations or limits of the Hubbard model. This
model describes electrons in a single-band crystal and con-
sists of a hopping matrix element (—t) between neighbor-
ing lattice sites, and an on-site repulsion (U) between
electrons of opposite spin. In the simplest case, the ubi-
quitous Cu-0 planes of the superconducting oxides are
modeled by a 2D square-lattice Hubbard Hamiltonian,
with each lattice site representing a Cu02 unit cell.
Theoretical investigations of this single-band model have
not produced a thorough understanding of its ground-state
properties, and whether or not it exhibits a coherent state
that gives rise to superconductivity remains equivocal.

For t/U«1, a convenient reference state is the half-
filled lattice with one electron in each lattice site. There
are two kinds of excitations from this state, holes intro-
duced by doping and spin excitations. Both kinds of exci-
tations and their interplay may be essential to the possible
existence of a condensate. In the present work, we obtain
the ground state of the single-band, strong-coupling Hub-
bard Hamiltonian by exact diagonalization of the Hamil-
tonian matrix for a ten-site periodic lattice. We shall
study the ground-state energy of the system at all possible
fillings of the lattice, the k-space excitation spectrum of
single holes, and the dynamic interaction of pairs of holes.
Our results indicate that for a range of values of the cou-
pling ratio t/U, and for light doping the holes tend to
form pairs. This pairing tendency is observed while the
system exhibits antiferromagnetic correlations. As the
doping increases or t/U increases, the holes tend to form
clusters larger than the pairs. For very small t/U on the
other hand, each hole creates a local ferromagnetic envi-
ronment at least of the size of our finite system. It is
difficult to predict how these conclusions might be affected
in the limit of an infinite-size lattice.

We begin with a brief discussion of the effective Hamil-
tonian, which is obtained from the Hubbard model in the
strong-coupling (large-U) limit by second-order perturba-
tion theory, 3" and acts on the Hilbert space of states with

each lattice site occupied by at most one electron. The
effective Hamiltonian, defined on a 2D square lattice with
M sites and N electrons, can be conveniently separated in
three terms H, ff Hi+H2+H3, with distinct physical
content. The first term Hi allows the holes to hop by one
site; the second term H2 counts the number of nearest-
neighbor (NN) pairs with opposite spins or exchanges
their spins; and the third term H3 allows hopping of the
holes by two sites, via NN pairs of opposite spin, with or
without spin exchange. For a detailed discussion of the
Hamiltonian see Ref. 5. At half-filling (N M), H, rr is
equivalent to a Heisenberg antiferromagnet with coupling
J 4t /U. Here we diagonalize H, ir for a square lattice
with ten sites and periodic boundary conditions and obtain
the ground-state energy and wave function for all possible
fillings of the lattice. Details of the calculations have been
discussed elsewhere. 5 In the following all energies will be
given in units of t. This leaves the ratio t/U as the only
parameter, which is proportional to the antiferromagnetic
coupling.

The magnetic properties of this system were investigat-
ed in Ref. 5. Suffice to say that the system exhibits four
phases as a function of the doping fraction x X/M
(X M —N) and the coupling ratio t/U. In two phases,
which we shall call FC and AFC, the system exhibits
short-range ferromagnetic and antiferromagnetic correla-
tions, respectively. In a third phase, called AF, the spin-
spin correlations are consistent with antiferromagnetic or-
der extending to the largest possible distance of our finite
lattice. Finally, we have verified that for small enough
t/U and the smallest possible doping (x 0.1, one hole in
our finite lattice), the system orders ferromagnetically (F
phase), as predicted by Nagaoka's theorem. s In an
infinite system, a single hole is expected to induce long-
range ferromagnetic order only for vanishing small r/U.
The occurrence of this phase at nonzero values of t/U is
connected to finite-size effects (one hole is equivalent to
10% doping).

We consider first the ground-state energy of the system
as a function of lattice filling at various values of t/U It.
is very easy to extend the discussion to fillings of the lat-
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.(X) -h, (X)+h2(X)+h3(X) . (2)

Notice that (yo(0) ~H; ~ yp(0)) Epb;p, where Ep is the
ground-state energy of the half-filled state. For the case
x 0.1, our ten-site system contains one hole and the
eigenfunctions can be characterized by a k vector:

I yg(l)) = ge' 'gc, I a, r;),
a

(3)

where i runs over the lattice sites, r; is the position of the
hole, and a runs over all possible spin configurations.

tice higher than one electron per site by noticing that the
system with X doubly occupied sites maps to that with X
holes. Thus, the total energy of the system with Xdoubly
occupied sites and that with X holes differ exactly by XU.
The ground-state energy E(n) as a function of the band-
filling factor, defined as n=N/M, is shown in Fig. l.
E(n) is independent of t/U for t/U ~ 0.01, and has a glo-
bal minimum at n =0.5, which is consistent with exact re-
sults for finite lattices in the U ~ limit of the Hubbard
Hamiltonian. 7 At n 0 5, .half of the sites are unoccupied
and the other half are occupied by a single electron. Thus,
on the average, each electron has a NN hole and full ad-
vantage can be taken of the hopping energy. Adding elec-
trons to this system restricts their motion without any
significant gain from coupling energy (t/U is very small);
on the other hand, reducing the number of electrons leaves
too few carriers in the system. In either case, the total en-
ergy is increased, making the quarter-filled band the
global ground state for small t/U. For t/U~0. 25, a
different shallow minimum appears at n 1 which eventu-
ally becomes the global minimum. For t/U 0.40 E(n)
looks remarkably similar to the "insulating case" de-
scribed by Anderson, though at these values of t/U it is
not clear how well H, fr approximates the Hubbard model.

We discuss next the properties of the system at small
dopings, namely x 0.1 —0.2.9 Let us define

h;(X) -(yo(X) I H~ ~ yo(X))

(pp(0) I 0& ~ leap(0)), i =1,2,3, (1)

where
~ yp(X)) is the ground-state wave function of the

system with X holes. The total energy, relative to the
ground-state energy of the half-filled state, is given by
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Since we are dealing with a finite system, the k space con-
sists of ten independent vectors: four of them are generat-
ed from (3n/S, n/5) by x/2 rotations, another four are
generated from (2 n/54 n/5) by x/2 rotations, and the set
is completed by the (0,0) and (n, n) vectors. The symme-
try of the real-space lattice results in equal eigenvalues for
vectors connected by n/2 rotations. The energy of the
one-hole system relative to the energy of the half-filled
state, at various k vectors can be obtained from Eqs. (1)
and (2) by replacing

~ yp(X)) for Xe0 in Eq. (1) with the
wave function of Eq. (3). The total energy given in Table
I for representative values of t/U in each magnetic phase,
shows very small dispersion in k. This corresponds to a
large effective mass for the hole. In Table I we also show
the contribution of the different h; terms to the total ener-

gy for t/U 0.1 where the dispersion is somewhat more
pronounced. A comparison of the It; values at the

t
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FIG. 1. The ground-state energy E(n) of the system vs filling

of the band n N/M for various values of t/U.

TABLE I. The total energy at diA'erent k vectors in the various magnetic phases for the one-hole sys-
tem. For t/U-0. 1 the contributions of the different terms h ~, h2, h 3 to the total energy are also given.

r/U Phase (0,0) (3z/5, z/5)
(k„,ky)

(4z/5, 2z/5)

0.032
0.034
0.036
0.040
0.1

0.2

F
FC

AFC
AF
AF

AF

AI

h2
h3

—2.426
—2.354
—2.289
-2.160
—0.715
—2.927

2.494
—0.282

1.252

—2.417
—2.331
—2.285
—2.206
—1.323
—2.505

1.514
—0.332
—0.312

—2.371
—2.300
—2.250
—2.181
—1.272
—2.623

1.683
—0.331
—0.098

—2.400
—2.348
—2.295
—2.190
—0.727
—2.838

2.317
—0.205

1.206
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different k vectors indicates that the dispersion comes
predominantly from the H2 term which gives rise to the
antiferromagnetic coupling of spins. The ground state is
characterized by k (0,0) in the F and FC phases, by
k (tr, tr) in the AFC phase and by k (3tr/S, x/5) (or its
tr/2 rotated partners) in the AF phase. This last vector of
our finite k-space set is the one closest to the ~k, ~

+
~ k» ~

=tr boundary in the 2D Brillouin zone, where the
Fermi level of the noninteracting (U 0) Hubbard model
is located at half-filling.

The expectation values hi(X)/X, h2(X)/X, h3(x)/X,
and the total energy e(X)/X, per hole, are shown in Fig. 2
as a function of t/U for the systems with one (x 0.1)
and two (x 0.2) holes. There are pronounced breaks in
the three expectation values when the system changes
magnetic phase. The different magnetic phases are indi-
cated on the hi curves of the one- and two-hole systems.
The total energy per hole is lower in the two-hole sys-
tem'o" in all phases (FC, AFC, AF), except when the
one-hole system develops perfect ferromagnetic order for
t/U &0.033 (F phase). This fact can be interpreted as
indication that in an infinite system, at sufficiently low

t/U, each hole will induce a local ferromagnetic environ-
ment, at least equal to the size of our finite system, which
facilitates its hopping. This conjecture does not exclude
the possibility that two such ferromagnetic "po-
larons" are bound in a larger antiferromagnetic environ-
ment. '2 Going from ferromagnetic to antiferromagnetic
correlations, the hopping energy h i is reduced both in the
one- and in the two-hole systems, reflecting the relative
difficulty of holes to hop by a single site. For t/U & 0.065
the two-hole system gains more energy per hole from the
hopping term than the one-hole system [h i(2)/2 & hi(1),
see Fig. 2]. Thus, in the antiferromagnetic environment

the presence of two holes enhances their individual hop-
ping energy, which may be attributed to a correlated
motion of the holes.

The term h2 gives the potential energy of the hole rela-
tive to the half-filled state, which increases with the cou-
pling ratio t/U, since the existence of holes breaks antifer-
romagnetic bonds. In the two-hole system, the potential
energy is smaller than in the one-hole system (see Fig. 2),
because the two holes may be found with a finite probabil-
ity at NN sites thereby reducing the number of broken
antiferromagnetic bonds relative to being at further
neighbor distances. Finally, the term'h3 is insignificant
with respect to the other two terms for small t/U. This
term begins to make a non-negligible contribution to the
total energy only at the highest values of t/U considered,
and its magnitude is almost identical in the one- and two-
hole systems.

The total energy per hole provides insight to the behav-
ior of holes at higher doping fractions (x & 0.2) as well.
Let us define the binding energy per hole as

b(X) -le(X) -X.(l)]/X.
The quantity b(X) is shown in Fig. 3 for X 2, . . . , 5 as a
function of t/U. An interesting feature is the existence of
a range of t/U for which b(2) is lower than any other
b(X) (see Fig. 3). The two-hole distribution function for
the various distances (multiplied by the number of neigh-
bors at each distance in the unit cell, i.e, four neighbors at
r I, four at r J2 or 2, and one at r JS, see Ref. 5) is
shown as an inset at the lower left corner of Fig. 3. When
the two-hole system develops antiferromagnetic correla
tions (t/U&0. 04, see Fig. 2), the probability of finding
the holes at NN sites (r 1) starts to increase rapidly at
the expense of further neighbor (r J2,2, 45) occupation
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FIG. 2. The expectation values h I, h2, h3 and the total energy
e, per hole, vs t/U for the one- and two-hole systems. The mag-
netic phases are indicated on the h I curves.

FlG. 3. Binding energy b(X) per hole vs t/U for various dop-
ings X. The inset at the lower left corner is the two-hole distri-
bution function for X 2. The inset at the upper right corner is
the binding energy b(X) vs X for a particular t/U.
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probabilities (Fig. 3, inset). Furthermore, it is striking
that b(4) (b(3) for any value of t/U despite the higher
hole concentration at X 4, indicating that in a system
with even number of holes the binding energy per hole is
lowered due to pairing. This feature of b(X) is shown
more clearly in the inset at the upper right corner of Fig. 3
for a particular value of t/U. The shape of b(X) vs X
remains the same throughout the region 0.08~ t/U
~ 0.16. In this region, the system may be thought of as a
collection of pairs with repulsive interpair interactions
manifested by (b(4) ) ( ~b(2) (. These results suggest
that when pairing of all the holes is possible the energy of
the system is minimized, and that pairing at short dis-
tances tends to be favored in the antiferromagnetic re-
gions. '3

For values of t/U larger than 0.16, Fig. 3 shows that
b(2) is no longer the lowest binding-energy curve. As t/U
increases, so does the value of X for which b(X) is lowest,
which suggests that clusters of more than two holes are
preferred. Gathering the holes into clusters creates the
least possible disturbance in the antiferromagnetic back-
ground, by breaking the smallest number of bonds. Thus,
for large t/U the strong antiferromagnetic correlations in-
duce the formation of clusters. For somewhat lower
values of t/U, due to competition from hopping energy,
the antiferromagnetic background can only support the

formation of pairs. The pairs are the smallest mobile
units that possibly condense to the zero-momentum state.

The present study provides evidence that, within the
finite-size system considered here, in the region of antifer-
romagnetic correlations the holes show a tendency to form
pairs. It is intriguing that the range of t/U at which pairs
tend to form contains the values that this quantity is be-
lieved to assume in the superconducting copper oxides
(0.05-0.10). Although off-diagonal long-range order can-
not be studied in finite lattices like the one considered
here, the tendency for pair formation is consistent with an
It/2e flux quantum observed in flux quantization experi-
ments. '4 In our finite system, we find pairing of the holes
to be favored in the antiferromagnetic environment, but
cannot exclude the possibility of ferromagnetic polarons
(whose minimal size may exceed that of our system) being
bound in an enlarged antiferromagnetic region.
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