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Polarization effects in magnetic resonance: Application to a chainlike system
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We present a theoretical and experimental study of "low-frequency" magnetic resonance. We

show that the usual theory fails to correctly describe magnetic resonance, at frequencies of the order
of the linewidth or smaller than the linewidth, in anisotropic systems. Bloch equations must be gen-

eralized in order to include two damping terms: one in the oscillating field polarization direction,
and the other in the direction perpendicular both to the oscillating field and to the static field.

These damping terms may be very different from each other. In particular, we focus on the case of a
linear chain of spins with exchange and dipolar interactions, for which the damping is zero in the

chain direction: Signal enhancement and line shift arise, especially when the oscillating field polar-

ization axis is parallel to the chain axis, and such effects are strongly dependent to the polarization
orientation. A microscopic theory based on the memory-function formalism which describes the

polarization is fully given in this paper. It takes into account all nondiagonal terms of the

frequency-dependent susceptibility tensor. For the linear chain it turns out that there is a perfect
correspondence between phenomenologic theory and microscopic theory for two preferred orienta-

tions of the static field: parallel and perpendicular to the chain axis. This means that the relaxation

of a total spin component can be considered as exponential for these orientations, with respective

rates 1/T2, =0 and 1/T2, . We consider also the real case by taking into account phenomenologi-

cally interchain interactions (1/T„&0). Experiments have been performed on the quasi-one-

dimensional compound (CH3)4NMnC1, (TMMC), using a homemade spectrometer, at frequencies

ranging between 25 and 225 MHz. All expected effects have been verified and we deduce the low-

frequency —low-field damping 1/T2, ——5)& 10' rad s ' and 1/T2, ——10' rad s '. For all field orienta-

tions, the line measurements are found in excellent agreement with the theory. Previous studies in

TMMC are discussed in light of these results.

I. INTRODUCTION

It is well known that magnetic resonance phenomena
result from the combined application to a paramagnetic
sample of an oscillating magnetic field B& and a static one
Bo. Usually the oscillating field is linearly polarized but
one does not bother about the polarization direction, pro-
vided that the orthogonality condition be fulfilled

(B,lBo). For the calculation of the resonance line it is
convenient to split the oscillating field into two circular-
ly polarized components and to neglect the effect of the
"wrong" component that rotates reversely to the magnet-
ic moments. This is, in fact, an approximation since the
effect of a linearly polarized field cannot be, in general,
reduced to the superposition of the effects produced by
two rotating fields: an example is the multiquanta transi-
tions occurrence when a strong B& is applied. However,
if we consider the linear response only, such phenomena
do not appear. It can be shown, starting from Bloch
equations, that the spectrum is then composed of a
Lorentzian line centered at the Larmor frequency (coo)
and another symmetrical one at —coo, the "mirror" line,
these lines being related to the above-mentioned circular
components.

Thus it seems that a "superposition rule" holds for the
linear response. ' However, this result is only valid for an
isotropic spin damping in the xy plane, perpendicular to
the static field (supposed to be directed along Oz); it is al-
ways assumed in the Bloch equations, i.e., same damping

constant 1lT2 for the spin component along Ox and Oy.

This assumption does not hold for crystalline samples
with anisotropic interactions. An example is given by a
linear chain of spins. If the spins are coupled by isotropic
Heisenberg exchange and anisotropic dipolar interac-
tions, it turns out that the total spin component along the
chain axis c is conserved: Indeed this component com-
mutes with the secular part of the dipolar interaction,
which means zero spin damping. Let us apply the oscil-
lating field B& in the chain direction; in the case of zero
spin damping the absorption line profile is a 5 function.
In fact, one has also to apply a static field Bo, perpendicu-
lar to B&, and thus to c: the spin component along c is no
more a constant of motion since Bo induces a coupling
between spin components via the Zeeman Hamiltonian.
However, this spin damping decreases when Bo is
lowered so that the absorption line profile tends towards
a 5 function when co~0. The line is quite different for an
oscillating field polarization perpendicular to the chain
axis. A peculiar behavior is thus expected at low fre-
quencies in such a system.

We have reported experimental evidence of this "polar-
ization effect" in a previous paper. We investigated the
low-frequency electron spin-resonance spectrum in

(CHi )4NMnC1& (TMMC) which is one of the most perfect
one-dimensional magnetic compounds known to date. At
high frequencies (X band) a small shift studied by
Natsume et aI. is a remnant of the polarization effect.

It is the aim of the present paper to discuss in more de-
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tail the polarization effect, theoretically and experimen-
tally, showing that it dominates the magnetic resonance
spectrum at "low" frequencies. By low frequencies we
mean the frequencies of the order of (or smaller than) the
spin damping terms in a sample.

Two theoretical approaches of these phenomena will be
successively developed. In both cases we shall calculate
the resonance line profile (linear response) of a system of
coupled spina with inagnetic moments M; = —yAS, (y is
the gyromagnetic ratio) for a given oscillating frequency
co, when the static field 80 (conventionally directed along
Oz) is varied. It is supposed here that all moments have
the same gyromagnetic factor and though the calculation
is implicitly made for electronic spins (in order to com-
pare it with experiment), it is clear that it can be general-
ized to any kind of spin system. In this paper we consid-
er the "high-temperature" case, i.e., A'co &gkT so that the
line profile is directly related to the autocorrelation func-
tion G, (t)=&S (t)S (0)), S being the projection of
the total spin S onto the oscillating field B&, the angular
brackets & ) denote the statistical average. The ab-
sorption line is indeed proportional to the frequency
Fourier transform of G~(t).

Our first approach, which is described in Sec. II, is
phenomenologic; the behavior of magnetic moments is
described by means of macroscopic Bloch equations with
different dampings acting upon spin components. By
solving the system of Bloch equations, we obtain the line
profile and the spin motion under the inhuence of fields.

A microscopic interpretation of the phenomena is
given in Sec. III. The starting equation is the equation of
motion of spin operators, involving the Hamiltonian of
the system. The resonance line profile is rigorously ob-
tained by taking into account all cross-correlation terms
which are usually neglected. The polarization effects de-
scribed above arise in fact from some of these terms.

In Sec. IV these results are applied to a linear chain of
spins since considerable effects are expected for such a
system. Interchain interactions which remove the diver-
gence of the line at low frequencies are considered. We
also studied the longitudinal relaxation, the oscillating
field now being parallel to the static field. This is not, of
course, a polarization effect but anisotropic damping is
also shown with this configuration.

Section V is devoted to the experimental setup, espe-
cially to a detailed description of the sensitive magnetic
resonance spectrometer which was used for the low-

frequency experiments. In Sec. VI we present experimen-
tal data obtained at room temperature in TMMC, giving
evidence of the effects discussed previously. Finally, Sec.
VII contains the summary and conclusions of the work.

II. PHENOMENOLOGICAL INTERPRETATION

A. The line profile

We want to find the resonance line profile within the
linear-response approximation. In this case it does not
depend on the spin-lattice relaxation time, nor on the os-
cillating field amplitude 8&. However, it may be a func-
tion of the field polarization. We thus write the following

set of generalized Bloch equations, with different spin-
damping parameters:

dS„ S„(t)—co,S (t)—
dt '' T

dS S,{t)
co—,s„(t)

For convenience the static field is expressed into the an-
gular frequency unit ~, =ySO.

Let us take the oscillating field polarization along the x
direction. We know that the time-averaged power at (an-
gular) frequency is, for high temperatures fico «kT, pro-
portional to the Fourier transform of the correlation
function G„=&s„(t)s„(0)). However it is more con-
venient to consider the Laplace transform (with p =ico)
of G„(t), I „(co). The real part of this function, 1 „'(co), is

the physical quantity directly related to the absorption
line.

In the isotropic case (Tz„——T2 ——Tz), it is known that
the spectrum is composed to two Lorentzian lines, such
that

r„'(~)= &s„&
(co —co )'+

T2
2

+
(co+co, )'+

T

2

r„( )=&s„')
T2„(co, )c'o+(co'ITi~ )— (3)

The spectrum for the "perpendicular configuration, " i.e.,
8, being directed along Oy, is obtained following the
same method,

2

r;(~)=r„'(~)-, .
QPz

(4)

The two configurations give similar results only in the
high-frequency range (coTz~ &&1) since co=co„ the spin

with &S„)=NS(S+1)/3, N being the number of ions
with spin S.

In this section, for the sake of clarity, the damping is
supposed to be field independent. In fact, it ean be a
complex function of the static field, giving rise to a non-
Lorentzian line and to a "dynamic shift. "

Indeed the mirror line resonating at ~, =—~ can be
neglected for co» liTz. One observed the usual reso-
nance line at a field co, =co, its "width" —defined as the
half-linewidth at half-amplitude —being he= 1 /T2. The
same result is obtained for any oscillating field polariza-
tion in the xoy plane.

Now let us consider the 1 lT2„=0 case. Our problem
is more easily solved by multiplying Eqs. (1) by S„(0),
performing the statistical average in order to get the
wanted correlation function and then taking the Laplace
transform. We obtain
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components being strongly coupled by the high fields
near resonance. As a consequence, the lines are Lorentzi-
an (except far away in the wings), but with a linewidth of
1 /2 T2y One can say that the rotation is so fast that the
spins experience an isotropic damping which is the mean
value of the real damping in the x and y directions.

As the frequency is lowered, several effects occur in re-
lation to the value of the parameter 5=(coT2 ) '. A
completely different behavior will be observed, as we are
considering the "parallel line" I „'(co,co, ) or the "perpen-
dicular line" I «(co, co, ).

'I'he first effect to be observed (even for low values of 5)
is an asymmetry of the line: in the parallel configuration
the low-field peak of the line derivation is larger than the
high-field peak. This is because the absorption is zero at
zero field. The opposite deformation is found for the per-
pendicular configuration.

A second-order effect is a line shift which occurs only
for I,', the corresponding line taking its maximum at a
field such that

2

COz =CO +4 4 CO

T2y

25

~hl

v) 20
V'

L

15

10

It should also be noted that, in the isotropic case [Eq.
(2)], there is a shift resulting from the superposition of the
main line and the mirror line: the maximum is thus shift-
ed towards low fields, according to the relation
co, = co —( I /T~ ).

In the low-frequency case (coT2 «1), the most re-
markable feature is the large enhancement of I", in con-
nection with a narrowing of the line. At resonance, I"
has a value which is nearly independent of the damping
term

(s„')
2'

and the line would tend towards a 5 function as co~0.
We can approximate this behavior since at zero field S, is
a constant of motion and I ' becomes then singular. Of
course there is no divergence of the rf absorbed power
since this last quantity is, in fact, proportional to
co I „'(~), one co term coming from the induction law and
the other one from the Boltzmann factor.

The perpendicular line suffers no such variations, being
always maximum at the Larmor value co, =co, with the
value I" =(S„)T2 . However, its width becomes com-
parable to the parallel line value bco-(co/T2 )' . The

//L-~
0 0.& 02 03 04 05

FIG. 1. Magnetic resonance lines for two oscillating field
orientations. The static field is applied in the z direction. The
damping along Ox is 1/T2„——0 and the damping along Oy is
1/T». Upper lines: The oscillating field B& is applied along Ox.
Lower lines: B, is applied along Oy. The lines are calculated in
reduced units from Eqs. (3) and (4).

Larmor value is indeed remarkable since the absorption
is then isotropic,

I „'(co,=co)=I «(co, =co) .

A graphic illustration of these effects is given in Fig. 1.
If we now solve the general case (1/T2, &0) with the

same method, we obtain

1 CO

[co, +(1/T2„T2 )]+

[co, —co +(1/T2, T2 )] +co [(1/T2„)+(1/T2«)]

and a similar result for I ' with the parameters T2 and
T2 being interchanged. It is interesting to examine the
influence of a small 1/T2„on the polarization effect de-
scribed above. We can see from (7) that at low frequen-
cies, the line spectrum is again described by (3) but with

1
+T T2x 2y

1/2

I

the field co, being replaced by an "effective field"
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100

so that new differential equations involving '"'S are ob-
tained. Then the '"'S are obtained as a series of Fourier
components

+ oo

(n)S ~ ( n)S im cot
a ~ m a

10

The coefficients of the development '"'S are obtained by
identification of co", and e' "' terms; since S is real one
has '"' S ={'"'S )'. In the steady state (n =0) the spin
components are zero except o 'S, =(S, ) =So, i.e., the
spin polarization along the static field. If we consider
then the linear response {n =1) we have

1
0.01

t ttl
0,1

l I t ital
1

I t tttil
10

4) ~py

So [ico+ ( 1/T2„) ]
[ico+( I /T2~ )][ico+(I/Tz„)]+co,

(~)S =(~)S
~ [ico+1/T2„]

FIG. 2. Ratio of the resonance signals in the parallel (B,~~0x)

and in the perpendicular (B,~~Oy) configuration, plotted vs the
frequency in reduced units.

If co& 1/T2„ the line amplitude is reduced and is max-
imum at zero field. At higher frequencies the resonance
field now corresponds to

T

1N-
2x

but a remarkable feature is that the line maximum is
again approximately given by Eq. (6). In any case the po-
larization effect may be observed but the line enhance-
ment is limited to a value (Tq„/Tz~ ) (see Fig. 2).

S„(t) and S (t) can be written as (ct coscot +b sincot), the
parameters a and b depending on the field and the damp-
ing terms. So, in general, the resulting motion of the spin
projection in the xy plane is elliptic. However the motion
becomes approximately circular at resonance, when
~ &&1/T2, for the isotropic case

S~( t) = —,'co,So T2cos(cot),

S„(t)= —,'co&So T2sin(cot) .

Now, if we again consider the case 1/T2 ——0, we ob-
tain

COz

S„(t)= co&So
(

2 2)2+ ( 2/T2

B. The spin motion

We consider now the time resolution of the Bloch
equations, the oscillating field and the longitudinal relax-
ation being included. These equations are

ds = —co,S —S /T2
dt

dS
=co,S„(S/T2 ) co,S,c—os(cot—),

dt

ds,
=co,S cos(cot)+((S, ) —S, )/T),

dt

with co, =yB„ the field B,cos(cot) being directed along
the x direction.

The usual way of resolution consists of expanding a
component S as in the following:

X (co, co )cos(cot)+ — sin(cot)
T2g

S~(t)= coiSo
(co2 co2)2+(co2/T2

X cos(cot) —(co, —co )sin(cot)
2p

The motion is also circular at Larmor frequency (co, =co).
A quite different motion occurs at resonance (co, =co/
T2 ) in the low-frequency case, as is shown in Fig. 3. It
corresponds to

S„(t)=—,'co,So(T2 /co)' [cos(cot)+sin(cot)],

S (t)= —,'co,SoT2 [cos(cot) —sin(cot)] .

The extremity of the vector S describes an ellipse with el-
lipticity (coTz )'~ . It is seen here that the spin polariza-
tion in the xy plane is mostly near the x direction.
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sx
often be expressed in angular frequency units. The sys-
tem is first supposed to be submitted to an oscillating field
B&(t)=B&cos(cut}directed along the x direction, the static
field being, as usual, parallel to the z axis.

The general theory of Kubo-Tomita shows that the
mean power absorbed by the sample is, in the limit of
high temperatures (Rco«kT, k being the Boltzmann
constant), proportional to the real part I „' of the Laplace
transform of the autocorrelation function of the total spin
component S„,

Sy I „(co)=J t', S„(0}S,(t))e ' 'dt .
0

(9)

It is convenient to introduce the ladder operators
S+ ——S„+iS .

If we put down G &(t)=(S (0)S&(t)) and its Laplace
transform I ti(co) (a,P=z, +, —) we get

I „(~)=—,'[I (~)+ I (ai)+I ()+I (~)]

(10)

FIG. 3. Spin motion projected onto the xOy plane, in the case
coT» ——0.05. The static field is directed along Oz and the oscil-
lating field is directed along Ox. The circle represents the
motion at the Larmor frequency; the ellipse represents the
motion at resonance. The spin spends half the time between A-
A' and B-B' (heavy lines).

III. MICROSCOPIC INTERPRETATION

In the usual theory it is of common practice to neglect
correlations terms which are zero at zero time (G and

G++). Actually, a derivation taking into account all
these terms can be performed. Details of the calculation
are given in the Appendix. The absorption profile is a
function of nine complex terms labeled a;, b, ck
(i,j,k =1,2, 3). Among these, only three terms, a„a2,
a3, are considered by usual theory. One obtains

(S„') „r ——
2 d

with

Electron spin-resonance spectra are usually described
by means of the Kubo-Tomita theory. However this
theory breaks down in some cases. A first example con-
cerns systems for which time-dependent spin correlation
functions decrease very slowly, such as in low-
dimensional systems where spin dynamics are character-
ized by diffusion. A description within the "memory
function" formalism (or Mori formalism) becomes neces-
sary. Another limit of the validity of the Kubo-Tomita
theory is reached when the oscillating frequency has a
value comparable to the linewidth. The reason is that the
theory does not take into account nondiagonal com-
ponents of the susceptibility tensor. This fact was clearly
recognized by Kubo and Tomita themselves and more
recently by Lagendijk. However, the correction terms
were not considered until recently since they are negligi-
ble in almost all cases while the calculations are compli-
cated. The question was raised by Natsume et al. who
observed at the X band in quasi-one-dimensional TMMC
an anomalous shift depending on the azimuthal angle y
(the angle between the oscillating field and the plane
defined by the static field and the chain axis).

In this section we want to obtain a rigorous expression
of the magnetic resonance spectrum (linear response} of a
spin system with Hamiltonian H. For convenience, in the
following, the static field (co, =yBO) the Hainiltonian,
and other terms of interest (linewidth, line shift) will

a1 C2

d= b, a2 —C3 (13)

c1 —b2 a3

Another field configuration is interesting, the so-called
"relaxation configuration, " corresponding to an oscillat-
ing field applied along the z axis, i.e., parallel to the static
field. For such a case Eqs. (9) and (10) are valid with the
proviso that S„ is replaced by S,. We get

(14)

with

1 2 61 2

We have obtained compact expressions for the magnet-
ic resonance absorption, which are exact in the limit of
linear response and for high-temperature conditions. It
should be added that extension to low temperatures is
possible through the use of Kubo transforms' instead of
correlation functions.

The a, b, c terms are expressed as functions of memory
functions K &(co, co, ) and of characteristic frequencies

n =a&(a~ ~ai+b~+c2)+(b2 —c, )(b& —c3) . (12)

d can be written as a determinant
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co &, given in the Appendix. In fact, at high tempera-
tures, static shifts resulting from anisotropic spin-spin in-
teractions may be ignored so that all terms ~ & are negli-
gible except co+ ———m, and ru +

——co, .
The terms K

&
are at most of the order of the

linewidth, so that the terms a&, a2, and a3 are predom-
inant. Taking co, &0 we thus have

&s„'& 1I „(a),co, ) =I (16)

T ) ( a), ) =K„(co =0,co, ) . (18)

One can also consider the case of a spin Hamiltonian of
axial symmetry, so that the S, component is conserved.
This situation occurs for a linear chain of spins when the
static field is para11e1 to the chain axis. Symmetry con-
siderations show that

which is the relation used for the description of the high-
frequency spectrum of TMMC. It corresponds to the
case coT2»1 defined in Sec. II. In the same way the
high-frequency relaxation profile is given by

&s') (s')I,(co, co, ) = (17)
a3 i~+K„(co,co, )

The relaxation of S, towards its equilibrium value is usu-

ally nearly exponential with a time constant T],

(S,(0)S,( t }) = ( S,') e

with

k tt(t)=([HD, S ]e" ' '[Stt, HD]) l(sttstt) .

i (1—P)Lt ' ex+ z ct (20)

The cutoff frequency co, is then evaluated when possible.
In quasiperfect one-dimensional (1D) systems such as
TMMC, the same (dipolar) interactions are responsible
for both the line broadening and cutoff mechanism, so
that the linewidth and cutoff frequency are closely relat-
ed: co, -hen, co, is generally dependent on the orientation
and magnitude of the static field. The effect of the Zee-
man operator can be factorized as

(gM ' ex+ z g —M) (gM iLext g —M) ™z

We then have correlation functions of the form

( t) ( g Me
i(1—P)Leg M'

)LJ

The main difficulty is in the calculation of these func-
tions, which is complicated by the presence of the projec-
tor in the propagator. In fact, here, the exchange term is
usually strongly prevailing so that approximations can be
made. Symmetry properties of H,„also allow
simplifications. All correlation functions are disregarded
if M +M'=0. The effects of operators P and HD are no-
ticeable essentially at long times, when the diffusive pro-
cess resulting from the conservation of total spin by H,„
is damped by dipolar interactions. The simplest approxi-
mation consists in representing phenomenologically this
mechanism by an exponential damping term"' (but oth-
er functional forms may be chosen):

&s„'&

a& a2
(19) ( g Mg —M(t)) ™zi

(21}

the time dependence of Akl now being governed solely

by H,„. From rotational symmetry it has been shown"
that this time dependence is the same for all M values.
For the cutoff zone, this point will be cleared up later.
For the moment we cautiously define a particular co, for
every type of function.

The memory functions [which are such that
k'tt(t) =k,&+(t)] are given in terms of correlation func-

tions

for all frequencies. Of course there are no polarization
effects in this case.

IV. APPLICATION TO A LINEAR CHAIN OF SPINS

A. General formulation of the spectrum

In this section we shall consider the case of a linear
chain of spins corresponding to the experimental case of
tetramethylammonium manganese chloride (TMMC). At
this stage, interchain interactions and spin-lattice relaxa-
tion are ignored. The spin Hamiltonian is the sum of
three terms: the Heisenberg exchange term
H,„= 2J g; S; S;+„the Zee—man term Hz co,s„and-—
the dipolar term HD which can be split according to the
value of the total magnetic number M (I=0,+1,+2) as
in the following:

Hti= gDM= g gF; A;, ( &j) . .

M M ij

Accordingly, the Liouville operator can be written as

~ex+~z+LD

The memory function k tt(t) is given by Eq. (A5) in the
Appendix:

—I CO

M(t) =q KT(t)e

9KT«}= g I
t —j

(22)

& s,+s,+s„-(t)s;(t)&

(s,s (23)

being the bulk function occurring within the Kubo-
Tomita theory' (S; is the spin at site i and S,. has its
usual significance).

Resultant expressions for the a, b, c terms can be ob-
tained from the Laplace transform of q&M(t), eteM(co) and
the known dipolar coefficients. They are listed in Table I.
The dipolar frequency corresponds to Ay /c where c is
the smallest separation between two ions in the chain.
The chain axis c is defined by spherical coordinates
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TABLE I. Theoretical expressions of the line-shape parameters for the linear chain case.

a, =i (co+co, )+( ,6—koo[(1—3cos 8) {{},{co+co,)

+(sin 8cos 8)[6/0{co)+4/2(co+2co, )]+(sin 8)4},(co —co, )]

a2 i——(co—co, )+( —,6)coD [ (1—3cos 8) P&(co —co, )

+(sin 8cos 8)[6/0(co)+4{{}z(co—2co, )]+(sin 8){{},{co+co,)]

a3 i——co+( —,6 )coD [ (2sin'8cos 8)[P&(co+co, )+P~(co—co, )]

+{2sin~8)[gz(co+2co, )+P(co—2co, )]]

b&
——( —,6 )coDe '~[ (1—3 cos 8)(sin 8)[4 &( co+co, ) +{b,( co co—, )]

+(6 sin'8cos'8)go(co)]

b2 ——(,96 )co~~e '~[2(1 —3 cos28)(sin8cos8){{},(co—co, )

—(4 sin'8 cos8)P, (co—2co, ) —(2sin'8 cos8){{},(co+ co, ) ]

b, =( —,'6 koDe '~[ (1—3 cos 8)(sin8cos8){t,(co+co, )

—(2 sin'8 cos8)gz(co+ 2co, ) —(sin'8 cos8)$, (co—co, )]

c& ——( —,6
)cooe'~[ 2(1—3 cos 8)(sin8cos8)f, (co+co, )

(4 s—in'8 cos8)P,(co+ 2co, )—{2 sin'8 cos8){b,( co co, )—]
c2 —( —,', )coDe "~[ (1—3c so' 8)(si 'n 8)[ {{}( co+co) +P, ( co co, )]-

+ (6sin'8 cos'8)P, (co) ]

c, =( —, )coDe'~[ (1—3 cos 8)(sin8cos8)P, (co —co, )

—(2 sin38 cos8)P, (co—2co, ) —(sin 8 cos8)t}}((co+co, ) ]

(8,y). The absorption spectrum for any orientation of
the chain axis with respect to the static field is obtained
through Eqs. (11)—(15) for the two oscillating field
configurations of interest. At high frequencies we know
that it is essentially represented by 1/a2 (resonance
configuration) and 1/a3 ("relaxation" configuration). In
the first case, besides the main line corresponding to
~=co„ there is a half-field line occurring through the
function P(A=co —2co, ) which peaks at Q=O. In the
same way the relaxation spectrum is characterized by two
secondary lines corresponding to P(co —co, ) and
P(co —2co, ).

Now some interesting features will be discussed.

8. Symmetry in a zero static field

In zero applied dc field, the only relevant orientation
parameter is the angle between the chain axis and the os-
cillating field. Symmetry conditions are implied in the
following.

(i) If the chain axis is rotated in the yOz plane (corre-
sponding to gal=90') I „must be 8 independent: the
zero-field signal is a constant in this plane.

(ii) On the other side, for y=O, one has
r„(8+9O ) =r, (8).

By setting co, =0 the expressions for n, d, and n' be-

come somewhat simpler,

n =2a3[a, +bccos(2y)]+cc[cos(2qr) —1],
d =(a, +bc)[a3(a, bo) —ccz], —

bo

p,(~)=p, (~)=p,(~)=p(~) . (24)

Such a result is especially interesting and is a generali-
zation of the relation (21) previously established only for
the exchange interaction. We note that it is implicitly as-
sumed in usual treatments of high-frequency magnetic
resonance in one-dimensional systems. In that case, how-
ever, the spectral density {{}(co)is considered to be a func-
tion of 0 through the cutoff frequency which is related to
the linewidth: the static field breaks the symmetry. At

with bo ——e "%
&, co ——e '+c

&, being y independent.
Then, for g=90', one sees that, according to condition
(i),

2d!n =a, +bc

=i co+ ', coD [ (cos 8—sinz8)2$, —(co)

+sin 8cos 8[$2(co)+3/&(co)]I

does not depend on 8, so that it follows necessarily that
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zero field P(co) does not depend on 8.
We easily obtain the absorption amplitude for any

orientation of c in the yOz plane,

a, =i (co+co, )+( A/2),

az i——(co —co, )+( A/2),

I „'(co,oi, =0)= (S„')
co +AD

(25)

and

b =—e
A

1 2
c ——e

A
2 2

7

with A o ,'a——)p—P(co)

Now let / =0'. One has

n a3

a, (a i
—bo) —co'

a) —bo
2a3(ai —o)—

The change of 8 into 8'=8+90' leaves co unchanged
while

a, (8)—bo(8) =a3(8'),

ai(8') —bo(8')=a, (8) .

With these relations we see that condition (ii) is fulfilled.
For any orientation of c in the xOz plane we have

Aocos28r,'(~,~, =0)= &S„')
co +AD

(26)

If the oscillating field was directed along Oz the absorp-
tion should be

Aosin 8
I",(co, co, =0}=(S, )

co +Ao
(27)

These two last relations are, of course, modified by in-
clusion of the interchain interactions in the model.

C. Some general properties

1(co, —co, )=1 (co, co, ),
I ( —co, ai, )=I'(co, co, ) .

It is to be noted that n
' and d (and I, ) do not depend on

y, awhile n may be split into a y-dependent terra and
another one with a 2y periodicity.

For 8=0' there is no y dependence, in agreement with
Eq. (19). This is obvious in view of the fact that polariza-
tion effects are caused by nonsecular terms of the dipolar
interaction.

D. The polarization efFect

For our orientation of interest, 8=90', one has

(S„') a, +a, +b, +c,r„=
2 a)a2 —b]c2

with

(28)

The absorption is given in terms of the function values
$(Q) with Q=co, cokco„and co+2co, . In the high-
temperature limit (%co«kT), one has P( —Q)=P(Q).
Other results are

I",=(S„) (oisin y+co, cos y) . (29)
(co co~ )—+co A

It corresponds exactly to the relations obtained in Sec. II
by using Bloch equations, corresponding to y=O' [Eq.
(3}]and 90' [Eq. (4)]. We can make the identification

1/T2y ——A . (30)

All the conclusions derived previously in Sec. II are
valid again and we do not repeat them. In the calculation
A was treated as a real parameter. In fact, at low fre-
quencies its imaginary part A" is quite negligible and
otherwise gives rise to a small shift (known in the litera-
ture as the "dynamic shift"}.

We note that at zero field for y =0', one has
I „(co,=0}= (S, ) /i ~, the same result being obtained for
I, with the static field being applied along the chain axis
(8=0'). Thus if the oscillating field is applied along the
chain axis the susceptibility P(co) is zero at any frequency
and can be taken as a reference. This property is main-
tained if one applies a static field also in the chain direc-
tion. On the other hand, since the line amplitude at reso-
nance varies such as co ', it is seen from Eq. (9) that, at
low frequencies, X"(co} tends towards a constant value
(1/kT) & S„').

Of course, experimental deviations to these properties
imply the existence of other sources of dampings and al-
low their evaluation. This is the topic of Sec. IV E.

E. Additional sources of damping

We have so far considered intrachain dipolar interac-
tion as the only cause of damping. Of course all nonspin
conserving interactions must be taken into account. We
refer here to the TMMC case. The crystalline field acting
on the Mn + ion gives rise to a single-ion anisotropy
which has presumably the same symmetry axis (the chain
axis) as the intrachain dipolar coupling, and thus plays
the same role. Other anisotropic exchange terms can be
neglected. In fact, main contributiong result from
hyperfine interactions and interchain couplings. The
hyperfine contributions to damping is isotropic and in-
volves two-spin correlation functions. The interchain
contribution is rather difficult to calculate with accuracy.
A chain is surrounded by six equidistant neighboring
chains. %'e can make a reasonable hypothesis by assum-
ing that the resulting damping is nearly isotropic. As a
consequence the "nondiagonal" b and c terms resulting
from those interactions can be neglected. Let interchain

A =—', coD [P(co+co, )+P(co —co, )],
coinciding with Ao at zero dc field. The absorption
profile is then
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and hyperfine contributions be represented by B. We add
8 to the "diagonal" terms a &, a z, a 3. Just as in Sec. IV D
we consider the polarization effect. For L9=90', y=0' the
calculation yields

( A +B)(a),+ AB+B )+BEr, =(s„')
(co, —co + AB+B ) +co ( A +2B)

(31)

This corresponds exactly to relation (7) in Sec. II if we
made the substitution

A +B~1/T~ B~1/T~„. (32)

The phenomenologic model coincides thus exactly with
the microscopic theory, the damping being split here into
an intrachain contribution and an extraneous one.

F. Exponential relaxation

We consider the spin relaxation as being "exponential"
if there is an identity between Eq. (7) obtained from
Bloch equations and Eq. (11}derived from first principles.
Thus the amplitude and the shape of the lines can be de-
scribed by means of two damping rates. This is indeed
the case for the linear chain of spins when the static field
is perpendicular to the chain axis (8=90'), and one can
determine a damping rate in the chain direction
1/Tz, ——0 and a damping rate in a perpendicular direc-
tion 1/Tz, ——A (the latter being complex and variable
through the frequency and field dependence of the spec-
tral densities).

It may be asked whether the identity found for 8=90'
can be generalized to any orientation of fields. Is the
spectrum anisotropy of the linear chain of spins fully de-
scribed by a single anisotropic damping parameter? In-
tuitively, the damping in a direction making an angle a
with the chain axis should be, in the low-field —low-
frequency range, I/T ~~i——(I/Tz, )sin a. The identity
holds for 8=0' if the damping is field independent (i.e.,

1/Ti, ——Ao) but unfortunately it breaks down at other
orientations. The spin relaxation does not occur ex-
ponentially, even for a zero applied static field. If it did,
one should have

I /Tz„
r(~, ~, =0)=(s„')

co +(1/Ti„)
(33}

T~ being the damping rate in the oscillating field direc-
tion.

When the chain axis is varied in the xOz plane, this re-
lation cannot be identified with Eq. (26), owing to the
cos 0 term. On the other hand, if the chain axis is varied
in the yOz plane, Eq. (33) is in agreement with Eq. (25).
This is because the relaxation in the direction perpendic-
ular to the chain is indeed exponential. A condition for
exponential relaxation is I,=((S, )/a3): it is fulfilled
for 0=90. Nevertheless, at low fields, the spectral densi-
ties of correlation functions can be treated as constants so
that the full spectrum anisotropy can be determined from
knowing 1/Tz, only, through the microscopic theory.

V. EXPERIMENTAL APPARATUS

Measuring broad lines at low frequencies is rather deli-
cate since the line amplitude varies as co, the square of
the angular frequency. Difficulties were overcome by us-
ing large samples and a very sensitive spectrometer.

Single crystals of (CH~)4NMnC1~ (TMMC) were grown
by slow evaporation at 30'C of a stoichiometric acidified
aqueous solution of MnClz 4HzO and (CH3)4NC1. Sam-
ples weighing up to 6 g could be obtained.

The low-frequency spectrometer used in the present ex-
periments works in the frequency range 15—250 MHz.
The scheme of the setup is shown in Fig. 4. A resonator
containing the sample is placed inside the air gap of an
electromagnet (Varian, 9 in. ). The radio-frequency oscil-
lations in the resonator are sustained by the very loose in-
ductive coupling of a broadband multistage amplifier.
The signal is detected at the output of the last unsaturat-
ed amplifier stage.

The resonator is heavy and large, allowing stable tem-
perature and mechanical rigidity. This leads to high per-
formance: good frequency stability, high quality factor,
and thus large sensitivity and good signal-to-noise ratio.
At low frequencies (25 MHz) the resonator is a simple I.C
circuit. Near 200 MHz a helicoidal quarter wavelength
resonator' is used. At intermediate frequencies, between
75 and 140 MHz, a tunable resonator was built up (Fig.
5). Here the wrapped length of the helicoidal conductor
is non-negligible compared to the wavelength, and this
conductor is charged at its free end through an adjustable
capacitor. With these resonators the field 8, is so much
more homogeneous as the frequency is lower. At 200
MHz the field inhomogeneity over the sample bulk is
about 30%%uo.

The amplifier has three stages: a preamplifier with
bandwidth 5 —500 MHz and gain 29 dB; an intermediate
stage with bandwidth 1.5 —500 MHz, gain 27 dB, and
power 300 mW; a power amplifier (1 W) with bandwidth
10-420 MHz and gain 26 dB. This last stage is used as a
limiter (i.e., in saturating conditions), so that the reinject-
ed power in the resonator remains constant. Attenuatogs
reduce the total loop gain to about 70 dB in order to ob-
tain the maximum allowable signal at the detector. After
detection the signal is passed through a low-pass filter
(bandwidth 1 Hz) and then feeds a recorder after com-
pensation of the dc level.

When scanning the field one measures directly the ab-
sorbed energy variations in the resonator. The direct
recording method is advantageous for the theoretical
analysis and the comparison with formulas derived in
preceding sections. The first experiments were carried
out with the best filling factor (corresponding to the
configuration B, ~~

the chain axis c). A signal-to-noise ra-
tio as high as 150 should be achieved in this way at 25
MHz. Then the need of rotating the samples leads us to
design new resonators (Fig. 6), but with a poorer signal-
to-noise ratio. Besides the noise, the main sources of er-
ror are dc drifts and a slightly field-dependent absorption
of the empty coil circuit.
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FIG. 4. Scheme of the low-frequency magnetic resonance spectrometer.

In order to improve the signal-to-noise ratio especially
at lower frequencies, a magnetic modulation (at frequen-
cy 80 Hz) was incorporated and the derivative of the ab-
sorption line was yielded by a lock-in detector.

VI. EXPERIMENTAL RESULTS AND COMMENTS

Experimental evidence of the polarization effect was
shown in a previous paper. Here we compare in more
detail the theory presented above with experimental re-
sults obtained in tetramethylammonium manganese
chloride (TMMC):(CH3)4NMnC13. In this compound the
distance between neighbor Mn spins within a chain is

0

c =3.247 A while neighbor chains are separated by 9.151
A. It can be inferred that the contribution of interchain
interactions to the resonance spectrum is much smaller
than intrachain ones. In other words the spin-damping
coefficient along the chain I/Tz, (which is zero in the
case of fully isolated chains) is certainly much less than
1 lT2„ the damping along a transverse direction. Our
aim is to obtain accurate values for these damping terms.
We recall that the oscillating field is chosen to be applied
in the x direction while the static field is applied in the z
direction.

Let us consider at first the parallel line, i.e., for the os-

LLLLLLLLlLRLLLLLLL' 1' iLLLL\LLLLLLLLLLLLLl 1'

5 1'\'LLL LLLLLLLLLLL%% L LLLRLLL\LLLLLLLLLLLL1

LLLLLLLLYLLLL\LLLLLLLLLLLLLLLLLLLLL'

f)W
ILLLllLREHLlllllllllllLNllllllllll

25 MHz 225 MHz 200 MHz tranverse

J»IIII~~'
I

75 MHz to 140MHz

FIG. 5. Cross sections of the different resonators used in the
experiments.

FI~. ~G. 6. Open view of a resonator with a sample rotation
mechanism.
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cillating field 8& being directed along the chain axis. The
theoretical absorption is given by Eq. (7) with T2„——T2„
T2„——T2, . One remarkable feature of the low-frequency
spectrum is the important increase of I,' characterized
by a maximum value I,',„=((S„)/2') [Eq. (6)], which
is nearly independent of damping terms. Absolute values
of I „' can be measured by comparing the TMMC signal
with the Lorentzian line yielded by a sample of free radi-
cal diphenyl picryl hydrozyl (DPPH). Let N and N' be
the number of spins S and S', respectively, in TMMC and
in DPPH samples. For DPPH one has

b,co being the half width at half-height of the line (in an-
gular frequency units) and with

(S„' ) =N'S'(S'+1)/3, (Sx ) =NS(S+1)/3 .

Signals were carefully measured at several frequencies,
the samples being, in each case, in the same oscillating
field distribution. Knowing the spin numbers from the
weight of the samples, S=—,', S'= —,', one obtains for
TMMC the reduced inverse amplitude I ' = (S„)/
2I „',„, which should be equal to co. Results are plotted
in Fig. 7. In fact Eq. (6) is valid in the frequency range
1/T2, & co «1/T2„ in good agreement with experimen-
tal results.

1 1
a), (res) = co-

2f 2c
(34)

It becomes zero for a value of co somewhat below 1/Tz, .
Near this value, it can be shown that co, (res) is extremely
sensitive to 1/Tz, but only weakly to 1/T2, . The value
of I/T2, can be obtained in this way. Experimental data
are shown in Fig. 8 and compared with Eq. (34). A good
fit is obtained with 1/T2, ——5&&10 rads ' and 1/T2,
=10' rads'. These values are also in good agreement
with the experimental data of Fig. 7.

Now we compare the parallel line to the perpendicular
one. Figure 9 shows the derivative absorption spectrum
in TMMC measured at a frequency of 25 MHz for these
two configurations. Both lines have approximately the
same width but the ratio of their maximum amplitude is
about 18, approximately T2, /T2, . The theoretical points
are obtained by derivating Eq. (7) with respect to co, and
using T2, ——Tz„T2~ = T2, for the perpendicular line.
The agreement is good considering the weakness of the
perpendicular signal which is superimposed to a parasitic

The field corresponding to maximum absorption, here-
after called the "resonance field" is, to a high degree of
accuracy, given by the following relation:

(10 &ad s )

FICx. 7. Reduced inverse amplitude of the resonance absorp-
tion in TMMC as a function of the frequency. The circles are
experimental points. The solid line corresponds to Eq. (6). The
dashed line is obtained from Eq. (7) with the damping parame-
ters 1/T2, ——5.0)(10' rad s ' and 1/T&, ——10' rad s

8
I

u (10 rad s')

FIG. 8. Resonance field in TMMC as a function of the fre-
quency. The circles are experimental points. The lines corre-
spond to Eq. (34), with several values of the damping parame-
ters.
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signal.
Let us now consider other orientations. Experimental-

ly we first vary the chain axis orientation in the (8, ,80)
or the xOz plane (using spherical coordinates, this is the
q&=0' plane). At 25 MHz one observes a marked varia-
tion of the derivative line (Fig. 10), the spectrum flatten-
ing as the angle 0 between the chain axis and Bp is re-

duced. For 0=0' one can again describe the spectrum by
means of the phenomenological theory: the spectrum is
given by Eq. (2) with T2 ——T2„as long as the damping
can be considered as a constant. For other orientations
we have shown in Sec. IVF that the phenomenologic
model is no more valid. Nevertheless we tentatively com-
pare the amplitude and shape of the lines with Eq. (7).

25 MHz

,100 ,200 , 300 ,400
HQ (G)

) 500 ,600

fa)
05

~~
C

Q

ints

o:Theoretical points

m~lL jw
F V +~ 'I '~& J

(b)

I-200 I
-100 100 200 300 ,400

Ho (G)
)500

FIG. 9. Derivative absorption spectrum in TMMC at 25 MHz for two oscillating-field polarizations. (a) Parallel to the chain axis;
(b) perpendicular to the chain axis. The static field is perpendicular to the chain axis and to the oscillating field. In (b) the gain has
been increased by a factor of 10 and the baseline has been plotted together with the signal. The circles are theoretical points obtained
with the damping parameters 1/T2, ——5.0)&10 and 1/T2, =10' . The amplitudes are scaled on the maximum signal in the parallel
configuration.
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FIG. 10. Derivative lines in TMMC at 25 MHz for several orientations of the chain axis in the (BO,B&) plane. 8 is the angle be-
tween the chain axis and the static field Bo. The amplitudes are scaled on the maximum signal for 8=90'.

Let us choose 0=60'. The spectrum should be described
by 1/T2~ ——1/T2, and by 1/T2„which has to be obtained
from the experimental line. A value of 1/T2, ——8)&10
rad s ' gives a good fit for the line shape but not for the
amplitude: we compare the maximum amplitudes of the
derivative lines, respectively, for 8=90' and 0=60'; it is
found that the theoretical ratio between them is 2, while
the experimental ratio is only 1.4. It is necessary to use
the theory presented in Secs. III and IV, especially Eqs.
(11)—(13), Table I, and Eq. (24). The polarization effect
was described with parameters A (intrachain contribu-
tion) and 8 (interchain contribution). The low-
frequency-low-field condition allows us to write
P(Q) =P(0) so that A is a constant appearing in all terms
of Table I. The correspondence with the previous
(phenomenologic) description is given by

8 = 1 /T2c &
r4 = 1 /T2~ —1 /T2c

The agreement with theoretical points is very good, not
only for shapes but also for amplitudes (all amplitudes
have been scaled to the maximum value of the 0=90 re-
sult). Thus, we distinguish the intrachain contribution
A =9.5 X 10 rad s ' and the interchain one (the
hyperfine contribution is supposed to be negligible here)
B =0.5&10 rads

If the chain orientation is varied in the plane yOz per-
pendicular to (B,, BO), corresponding to g=90, there is
another interesting feature: the signal at zero dc field
must be a constant, owing to the symmetry of the system.
This is indeed experimentally verified (Fig. 11). The

agreement with theory is also very good, except when the
dc field orientation is near the chain axis. The reason is
that, in this case, spin-damping coefficients can no longer
be considered as constants. In fact, we have shown in
Sec. IV that spin dampings are field and frequency depen-
dent through the spectral densities P(Q), where Q takes
the values co, cokco„co+2cu, . While sweeping the dc field

through the line, the spin damping is thus varying, The
spectral densities are expected to vary appreciably for
0 ~ co„ the cutoff frequency. In zero-applied dc field, co,
is isotropic and presumably of the order of the maximum
linewidth (in field unit, 500 G or larger). This explains
why the deformation occurs for broader lines, near 8=0'.
The analysis is intricate because co, is a function of the
amplitude and the orientation of the dc field.

In zero dc field the absorption in the resonance
configuration (B,lBO) and the absorption in the relaxa-
tion configuration (B,~~BO) are, of course, the same. They
are described by the same damping term. It results that
I „(8+90')=l, l8). This means that 1/Tz, coincides
with the relaxation rate 1/T„measured along the chain
axis, in the same way 1/T2, coincides with the relaxation
rate 1/T„measured in the transverse direction. This
identity is broken when a dc field is applied in the z direc-
tion, T, and T2 varying differently. Thus the quantities
we measured correspond to the low-field —low-frequency
1/T, values. We discovered recently that some years ago
absorption measurements with relaxation configuration
were performed in TMMC by Van Noort. ' The
"characteristic frequency" studied by this author corre-
sponds in fact to 1/T&. He obtained at zero dc field, re-
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p(0)= I q&Kr(t)e 'dt .
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If we use the usual spin decoupling, yzz is found to fol-
low a diffusive law for times D ' « t & 1/m„

6p'

45

30

pO

0 500 1000 1500
I r I I I I I t I I I I I I I I I I I I

Ho (G)

FIG. 11. Absorption lines in TMMC at 225 MHz for several
orientations of the chain axis in the plane perpendicular to the
oscillating field 8&. 8 is the angle between the chain axis and
the static field. The amplitudes are scaled on the maximum sig-
nal for 8=90'. For the sake of clarity the signal baselines for
successive orientations are shifted by a constant value. The ex-

perimental zero-field signal amplitude is isotropic in this plane.

spectively, 4.9&&10 for the high-frequency field parallel
to the c axis and 9.2)& 10 in the perpendicular case. This
is in good agreement with our low-field results

1/T2, ——(5+0.2 ) && 10' rad s

1/Tz, ——(10+0.5) X 10 rad s

The interchain contribution 8 was evaluated by Lauer
and Benner. ' They measured the linewidth in Cu-doped
TMMC at the magic angle and did not verify at very high
frequencies the expected relation hco ~ co

' resulting
fIoxn spin diffusion. They cxplaincd this by thc iQAucncc
of the interchain contribution. They deduced a value as
high as 70 G in pure TMMC. This is more than twice
the value we obtained at low frequencies. It is possible
that Lauer and Benner did not probe at the high frequen-
cies used (up to 44X10' rads ') the difFusion zone of
the correlation function. In fact, if one considers two-
spin correlation functions, the diffusive processes do not
establish before a time 10 ' s (Ref. 16) and this situation
probably holds for the function pic(t) considered here.
Doping delays the onset of diffusive behavior. Not let us
compare the value found for A with the theoretical one.
We calculate A = Ao =—', ~2DP(0) with

This gives the main contribution to $(0). Here the spin-
diffusion coeScient D is expressed in frequency units,
a=6 9X10' rads ' in TMMC, ' g(x)= g„",n

and coD ——irty /c =9.5X10 (rads '). The cutoff fre-

quency is of the order of the maximum linewidth (i.e., for
8=0'). Let us choose co, =10' rads '. We obtain
A =2.0&&10' rads ', approximately twice the experi-
mental value. In fact the disagreement is not surprising
since it has been observed by a number of researchers, '

but the reasons for the discrepancy are not clear. Cheung
et al. ' tried to explain it by a temperature effect and by
relaxing the cutoff condition, co, =+Ace, where a is
chosen between 1.5 and 2. However the temperature
dependence is not shown by experiments at the magic an-

gle. ' Other invoked causes are the failing of the spin-
decoupling procedure or the existence of an anisotropic
single-ion term, with the same symmetry as the dipolar
term.

Measurements by Siegel and Lagendijk' have shown
that, for the 0=90' orientation, the linewidth increases
slightly as the frequency is raised from 2 to 18 GHz.
These authors explained their results on the basis of a
mode-coupling theory. In fact this effect is easily ac-
counted for by Eq. (29).

VIII. CGNCLUSION

We have shown here that magnetic resonance spectra
at low frequencies (i.e., of the same order of the linewidth
or lower than the hnewidth) are incorrectly described by
the usual theories.

From a phenomenologic point of view, Bloch equations
must be generalized by including two damping rates
terms: a parallel one (1/Tz„), corresponding to the
oscillating-field polarization direction B„and a perpen-
dicular one (1/Tz~) corresponding to the direction per-
pendicular both to BI and to the static field Bo. In highly
anisotropic systems these terms may be very different
from each other. The limiting case is attained with the
isolated linear chain of spins: the damping rate in the
chain direction is zero. As pointed out in a previous
Letter this is in relation with the total spin conservation.
At high frequencies the spectrum may be, in fact, de-
scribed by a single damping term which is the average of
1 / T2z and 1 / Tzy But when the frequency is lowered,
the spectrum becomes more and more sensitive to the
parallel damping term. When studying the spectrum an-
isotropy, the oscillating field polarization direction be-
comes indeed a relevant experimental parameter, allow-
ing the measurement of the damping term in each direc-
tion. In particular, at low frequencies, the zero-field ab-
sorption becomes proportional to the parallel damping
time.

A microscopic theory which describes correctly all
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these features incorporates all nondiagonal components
of the frequency-dependent tensor. The usual theory
takes into account diagonal terms only. This is
equivalent to an averaging of the parallel and the perpen-
dicular damping rates.

In the case of an isolated chain of spins, a perfect
correspondence between phenomenologic and microscop-
ic theories is observed for preferred orientations of mag-
netic fields. If the static field is parallel to the chain axis
or perpendicular to it, the spectrum is described by
means of two damping terms; in the chain direction
(1/Tz, ——0) and in the perpendicular direction (1/T2, ).
The microscopic theory allows the calculation of 1/T2,
and shows that it is dependent on the static field ampli-
tude.

In real systems one has to take into account interchain
interactions. In TMMC they are mainly dipolar, imply-
ing here also four-spin correlation functions, but with
two spins belonging to a chain and the others to a neigh-
boring one. We have not calculated the corresponding
contribution: we rather assumed that it was isotropic
and deduced its value from experiment.

The important low-frequency effects observed in
TMMC result from the high ratio of intrachain-to-
interchain dipolar interactions, caused by geometric
reasons. We remark that T2, /T2, is nearly equal to the
inverse cube of the ratio of the intrachain-to-interchain
ion separation. On the contrary, the compound
CsMnC13 2H20 is characterized by good one-dimensional
exchange properties but the structural lattice is rather
three dimensional: only very weak polarization effects
are observed in this case. '

Low-frequency ESR experiments are not commonly
performed since poor signal-to-noise ratio is expected.
However such studies provide significant information on
anisotropic systems. In TMMC measurements were
made easier in spite of broad linewidths because we were
able to grow large crystals and the signal was enhanced
by the polarization effect. In fact our apparatus sensitivi-
ty allows studies in less favorable samples (with lower
spin value or lower one-dimensional character).
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APPENDIX: DERIVATION OF THE
MAGNETIC RESONANCE LINK PROFILE

The starting point is the evolution equation

BS =—[H,s (t)]—:iLS (t) .
t A'

(Al)

The kinetic equations characterizing the spin dynamics
are deduced by using a method introduced by Zwanzig.
The relevant variables of the system being (S+,S,S, )

one defines a projection operator P (Ref. 20) such that

s, &s x) s (s,x& s, &s,x&

&s s, & &s,s &

(A2)

The following relations are especially useful:

PS =S~

(S Pf(t))=(S f(t)),

PS (t)=iP—LIPS (t)+(1—P)S (t)I

with

f (t) being any time function.
It must be understood that these relations are exact

as far as the crossed static correlations (S+S, ),
(S+S+ ). . . ., are zero, which is expected in the follow-
ing.

After some algebraical manipulations it can be shown
that

(1 P)S (t)=e" —' '(1 P)S~(0)+i —je" ' " '(1 P)LPS,(r)«—
so that

Gp(t) =i (S L—PSp(t) ) —J'& S.Le" 'i" '(1 P)LPSp(r) )dr —.

Now we replace PSp(t) by using Eq. (A2). Usually, here also, correlation terms which are zero at zero time are
neglected. However in our derivation all terms will be considered.

A set of coupled equations is obtained,

a
G p(t)= pico, G„13(t) Jdrk, (t —r—)I, (r),

0
(A3)

with the characteristic frequencies

~.p= (S.Lsp) /(spsp )

and the so-called memory functions

k p(t)=(S L(1—P)e"' ' '(1 P)LSp)/(SpSp )—.

(A4)

(A5)
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By Laplace transforming Eq. (A3) we get

icier p(ro)=(S S~)+[iso it K—r(ru))I ip(ra) . (A6)

TABLE II. Theoretical expressions of the line-shape parame-
ters in the general case. K & are the memory functions and co &

are the characteristic frequencies.

Let X, Y, Z be, respectively, I + (co), I (co), I, (ro)
and X', Y', Z' be, respectively, I +(ra), I ++(c0),
I,+(ra). The desired function is

I „(ru)=-,'(X+ Y+X'+ Y') .

The X, O' Z functions are obtained from the coupled
equations (A6), which can be exactly solved as

a, =i{~—~+ )+K,
a3 ——i (co—co„)+K„
~2 =ltd —K
c& =&co+z —K+z
C 3 = 1 cOz + —Kz +

with

a2 ——i(co—co ++K
bl = l co++ —K++
b3 =lMz — Kz-
c2 = 1 co —K

a,X=b, Y+c(Z+(S+S ),
a2F =b2Z+c2X,

a3Z b3X+c3 Y .

The coeScients a „a2. . . , are given in Table II as a func-
tion of the characteristic frequencies and t;he memory
functions. In the same way, X', Y', and Z' can be ob-
tained from the system

a X'=c Y'+b Z'+(S S

a, V=c,Z'+b, X',

Q3Z =c3X +b3

n =a3(a, +a2+b, +cz)+(b2 —c, )(b3 —c3), (A8)

d = a1a2 3 1b2C3 Q3b1C2

—b1b2b3 —cl2b3cl clc2c3 (A9)

I

r, (co)=(s,') „, (A 10)

with

If the oscillating field is polarized along the z axis —the
so-called relaxation configuration —the absorption line
profile is given by the Laplace transform of (S,S,(t)).
The reasoning is quite the same as before and we then get

Finally we get

(s,sr„(~)= (A7)

1&2 bl 2 (Al 1)

A11 other cases of orientation can, of course, be calculat-
ed in this way.
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