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Measurements of x-ray fluorescence versus grazing incidence angle at fixed incoming photon en-
ergy can provide useful information on surface and interfacial microstructure. A matrix formula-
tion suitable for analysis of radiant energy flow inside a layered material, and hence angular fluores-
cence emission, is presented, and a vector scattering model is employed to account for the effect of
interfacial roughness. Good agreement between experimental results of x-ray fluorescence yield and
the model calculations has been obtained in a semiconductor heterostructure and a superlattice sys-

tem.

I. INTRODUCTION

Recently there has been considerable interest in the
study of various types of layered synthetic materials.
Successful preparation of quantum well structures and
heterojunctions by epitaxial growth has led to significant
progress in the fundamental understanding of two-
dimensional electron systems, and also the advent of a
new semiconductor technology. Despite extensive work
in the past on the physical and structural properties of
layered systems, a fundamental barrier to a more efficient
use of these new synthetic materials in optical and elec-
tronic devices has been the lack of understanding of mi-
croscopic structures in the vicinity of interfaces and im-
purity atoms. Innovative approaches to microscopic
probing, especially nondestructive characterization, of
microstructures in layered synthetic materials (LSM’s)
would seem highly desirable.

X-ray fluorescence measurement offers an important
advantage for probing the microstructures due to its ele-
ment selectivity. The fluorescence yield (FY) resulting
from a given atomic species is determined by the depth
profile of the atoms and the variation of energy flow in
the material. Hence, by measuring the FY as a function
of the field distribution, which can be controlled by vary-
ing the grazing incidence angle, the atomic profile of a
given species in a complex material system can be selec-
tively probed.

The presence of interfaces in heterojunctions and su-
perlattices gives rise to a mismatch of the optical con-
stants between adjacent layered materials. The field is
different from that in the bulk, depending on the proper-
ties of the constituent materials and the microstructure of
the interfaces. The FY measurements can therefore pro-
vide information on the optical constants and thickness
of the layers, as well as the interfacial roughness in LSM.
Since the fluorescence energies of different atomic species
are usually well separated, the effect on interfacial rough-
ness due to different constituent atoms can also be inves-
tigated by this element-selective technique.

In the present work we introduce a matrix formulation
of the energy flow, which is applied to the analysis of FY
from layered materials. Our connection formula for cal-
culating the electric and magnetic field intensity at any
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depth inside a LSM takes into account the effect of un-
correlated surface and interfacial roughness by means of
a vector scattering model. Although the x-ray FY tech-
nique has been used in the past for studying LSM’s, this
method for quantitative analysis of FY and interfacial
roughness in layered materials has hitherto not been
found in the literature.

A brief review of previous work is given in Sec. II. Our
model of using a matrix formulation for calculating the
energy flow in a LSM and for analyzing the FY in a LSM
with interfacial roughness is presented in Secs. III and
1V, including a consideration of the different cases of s
and p polarization of the x rays. By way of examples, this
model is then used to compute the FY of two different
LSM systems in which very good agreement with the ex-
perimental results has been achieved. This comparison is
given in Sec. V.

II. BACKGROUND

There exist two approaches to the problem of x-ray in-
teraction with finite multilayered systems. The first one
is based on the dynamical theory of Darvin-Princ and
Ewald,! ~® and the second is based on the optical elec-
tromagnetic wave solution of the Fresnel equation
(OEMF) on each interface.”® Hanke e al.® have recent-
ly demonstrated the equivalence of both methods.

Electromagnetic wave propagation in a layered struc-
ture in the visible regime has been the subject of investi-
gations for many years, starting with the pioneering work
of Airy in 1833.° A review of the early papers on this to-
pic can be found in Born and Wolf” and Berning.® The
problem of x-ray propagation in a stratified media was
considered for the first time by Kiessing!® and then by
Parratt.!! They observed grazing-angle specular
reflectivity on stratified absorbing media and described
this phenomenon in the framework of the OEMF theory.

Although many different types of “imperfections” may
exist in a LSM, for example interfacial roughness, com-
positional variations, bulk inhomogeneities, and composi-
tionally graded interfaces (see the discussion in Ref. 12),
there exists a common belief that the predominant factor
which deteriorates the device performance of LSM’s is
surface and interfacial roughness. In the grazing in-
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cidence angle regime, roughness can be regarded as un-
correlated since the radiation covers a large distance in
the lateral direction between interfaces.'® For this reason
we will focus our attention mainly on the roughness “im-
perfection” in the proposed model of fluorescence emis-
sion from LSM'’s.

In 1974 Eastman'* extended the classical scalar treat-
ment of surface roughness by Beckmann and Spizzichi-
no'® (see also bibliography given by Elson and Bennett!®)
to uncorrelated interfacial roughness in stratified media
in the visible region. In 1979 Carniglia!” incorporated
additive interfacial roughness and uncorrelated bulk in-
homogeneities to this theory. At the same time a vector
model of light scattering on multilayer dielectric mirrors
with rough interfaces was developed by Elson and co-
workers'® and independently by Croce.' In 1980 this
method was used by Névot and Croce?® to describe the
grazing-angle reflectivity of multilayer structures in the
x-ray regime. In the same year Bousquet et al.?' pro-
posed a vector theory for calculating scattered radiant
energy in any direction; however, this method requires a
knowledge of the autocorrelation and cross correlation
function on each interface. More recently Vidal and Vin-
cent,?? using a generalized reciprocity relation,”? have
presented a new vector method describing specularly
reflected and transmitted x rays in LSM’s with uncorre-
lated interfacial roughness.

One can distinguish two different phenomena pertinent
to grazing incidence: evanescent-wave effects (below the
critical angle) and standing-wave effects (above the criti-
cal angle). Standing-wave fluorescence (SWF) from crys-
tal surfaces has been investigated for many years.?*~3*
However, evanescent-wave fluorescence (EWF) has only
recently become the subject of experimental studies on
crystal surfaces®® = and liquids.** The first EWF and
SWF experiment on a LSM was performed by Barbee and
Warburton®®*! in 1984. In the subsequent years several
reports about angular FY in multilayer structures were
published.*?~**

It has been proven that angular FY in the grazing-
angle regime can provide very precise information on the
atomic structure of the surface or interfaces. Due to its
element sensitivity this method is very well suited to ob-
tain the position and distribution of impurity atoms
within the material or adsorbed atoms on surfaces. FY
can also be employed in order to obtain optical constants,
layer thicknesses, and other parameters which are needed
to describe the LSM’s.

It appears that evanescent- and standing-wave fluores-
cence from multilayer systems is a promising new tech-
nique which is moving forward rapidly and will have
many potential applications in fundamental research as
well as in some practical areas.

In the present work, the angular x-ray fluorescence
yield from stratified media is calculated and the influence
of surface and interfacial roughness is studied; these re-
sults are compared with some experimental data.

III. GENERAL DESCRIPTION OF THE MODEL

In the proposed model of fluorescence yield from
LSM’s in the grazing incidence regime, we utilize the
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OEMF matrix theory of x-ray interaction with stratified
media, incorporating Vidal and Vincent’s vector model of
radiation scattering on uncorrelated interfacial rough-
ness. We consider a stratified material system shown in
Fig. 1. Each layer is characterized by a complex refrac-
tive index obtained from the quantum theory of disper-
sion,"? assuming that the permeability constant is unity
for x rays. The refractive index for the jth layer has the
form

A,=1-8;+ip; . ()

The first medium is vacuum (or air) with 8,,8,=0.

We also assume that all “imperfections” can be de-
scribed in terms of surface or interfacial uncorrelated
roughness, which is a reasonable approximation for
grazing-angle incidence of x rays in LSM’s grown by
molecular-beam epitaxy (MBE).!>!* In order to describe
the x-ray interaction with a layered system, we will em-
ploy the OEMF theory in its matrix representation,
modified by the introduction of characteristic scattering
matrices. These matrices are obtained from the vector
scattering theory proposed by Vidal and Vincent,?? and
they describe specular scattering on rough interfaces with
uncorrelated roughnesses. Diffuse scattering will be
neglected as it is generally known to be 2 or 3 orders of
magnitude weaker than specular scattering,'® although
for extremely small (6/6-<<1) and extremely large
[R (8) << 107°] grazing angles diffuse scattering can be
comparable with specular scattering.* The notation used
in the present paper is shown in Fig. 1.

1IV. ELECTRIC AND MAGNETIC FIELD
AND ENERGY FLOW IN LSM
WITH ROUGH INTERFACES

A. s polarization

Let us consider an interface j between two homogene-
ous media (see Fig. 1). In medium j, which is located
above the jth interface, the total electric field, polarized
perpendicular to the plane of incidence, can be decom-
posed into two components: transmitted field E;* and
reflected field E ]’".7'8 The total electric field in the jth
layer can be written as follows:

E;(r)=E"(r)+E; (1) ()
n n ﬁ - + n; 1 i - n
(o] o 9; 1 J gj 6]41 I+ N gN 9; S
E. E}(z0) +
- - +
o 1°%0 Ej(z)) z.EjH(zj) Enlzn) Es
Zo . J /L In
7/ z
N -
Es E;(zo)  Ej(z))/ | \Ein(z)) EX(z,)
9* . 9_* - +
9[ ) Gj«1-1 eN
X

FIG. 1. Schematic representation of reflection and refraction
for stratified homogeneous media.
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where (see the Appendix)

Ej+(r)=ﬁjexp(iﬁjz)exp(iko,‘x) , (3a)
E; (r)=Bexp(—ip,;z)explikq, x) , (3b)
ki =k;cosb;=k; cos0; =k; =k, , (3c)
p;=k;sinb;+ia;=(k3A} —kinicos’0)'* . (3d)

6, will be referred to as the refraction angle in the medi-
um j. The notation p; is introduced to emphasize that p;
is a complex quantity.

At this point we would like to emphasize that the elec-
tric field in a LSM is an inhomogeneous plane wave*647
with a complex wave vector k; and an attenuation vector
a; perpendicular to interfaces; i.e., planes of constant am-

plitude are parallel to boundaries.
J

Ef (z) exp[ —ip; 1 1(z —z;)] 0
E  \(z;) | 0 explip; ,1(z —2;)
~ Eff(2)
= j+1(2 —'Zj) EJ_+1(Z)

We now take into account the influence of a rough in-
terface [with a mean plane parallel to the (xy) plane] on
the electric field in the medium. According to Ref. 22,
after some transformation, one can obtain the following
scattering matrix §J- describing the influence of a rough
Jjth interface on the field (assuming a normal distribution
of the deviation from the mean plane in the real inter-
face):

J
Si=—— . At A\ Ae aln (6)
T B A A
where
o =expl — (b1 ;70321 72
e =exp[—(p;,,—p;)03/2]. (7b)

o, is the rms roughness parameter of the jth interface.
The roughness description presented here is valid for any
o /A ratio but not in a region where surface plasmons are
present.

Using (4), (5), and (6) we can write a connection formu-
la describing the electric field rearrangement along the z
axis:

Ef(z;)| _ o | Ef  (2) "
- =LS;T; (z—2;) | _ .
Ef(z) |~ HRitie 2 TEH B (2)

It is interesting to note that in our model the electric field
due to a rough interface now has a discontinuity at the
interface (cf. Refs. 18 and 22).

In the substrate where no reflection occurs, we can
define a P,y matrix to relate the field at the substrate Eg"
to that at the top surface (see Fig. 1):

Following the OEMF method we can find the matrix TJ
which connects the electric field components below and
above the jth interface:

E;f(z;) L[ Ei* (z))
E(z;) 7 7 1) |Efa(z)
_|Efa(zp)
=I; Ejii(z) 4)

where 7; and ?J are the Fresnel coefficients for s polariza-
tion.

The matrix T, (z —z;) describing the connection be-
tween the electric field at point z; on the jth interface and
that at some point z (z; <z <z; ;) within the (j + Dth

layer can be written in the form

E  (2)
E (2)
(5)
r
ﬁ0N=I~0§0T1(21_20)715172(22_21).'-TNgN (93)
where
5 J oh)
= o2 p%
and finally
E{ (z4) Egt(zy)
EO_ (ZO) =P0N 0 (90)

Now we can find the electric field at any point z in the
LSM for z; ; <z <z; using the P;y matrix defined in the
following:

Py=I8T, ((z;,,—z)  IySy (10a)
based on the fact that
Ej+(2) _ _ Es+(zN)

The electric field Eg (zy) in the substrate, below the Nth
interface, can be found from (9c¢):

E0+(Z()) Ei
Eg(8,zy)=—— 2 - —L (1
AT At

where E; is the amplitude of the incoming x rays with s
polarization. After substitution of (5), (10b), and (11) into
(2) the total electric field at any point z (z; _; <z <z;) can
be written in the form
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E;(6,2)={p{Yexp[ip;(z; —2)]
+piYexpl —ip;(z; —2)|}E, /pQY
=E (6,2) . (12)
For z > zy (i.e., in the substrate) one can obtain
Es(0,2)=Ey_ (2)
=explips(z —zy)]E; /pSY =E,(6,z) . (13)

The magnetic field can be found from Maxwell’s equa-
tions for any point z (z; | ; <z <z; and u;=1):

H, (6,2)=p;(0) E; (6,2)—E[(6,2)]/k, , (14a)
H,=0, (14b)
H,(0,2)=ko (O E[ (0,2)+E(6,2)1/ky . (14c)

The time average of the density of radiant energy flow,
i.e., the Poynting vector P(68,z), can be obtained from the
following formula:*®

P(6,z)=Re(S)=C{(Re(ExXH*)) (15)

where Re means the real part, { ) the time average, and
C is a multiplicative constant. In terms of components
we have

P.(0,z)=Re(S,)=C(Re[E,(6,2)H,(6,2)*]) , (16a)
P,=0, (16b)
P,(6,z)=Re(S,)=—C(Re[E,(6,2)H,(6,2)*]) ,

(16c¢)

where Ey(6,z) is defined by (12) or (13). After some ma-
nipulation one can obtain

P; (6,z)=Cngcos{ | E;* | *+ | E; |?
+2|E| | E |cos[(2k;sin6;)z
+a;—B;1} , (17a)
P,(0,2)=(C/ky){k;sin6,( | E;* |2— | Ej |?)
—2|E/"| | E; | a;sin[(2k;sin6;)z

+a;—B;1} - (17b)
In the substrate, i.e., zy < z:
P (8,2)=Ccos® | E§ | ?, (18a)
P, (0,2)=Ckgsind | E§" | */k, , (18b)

where subscript S refers to the substrate. It can be seen
that energy flows in the plane of incidence. We would
like to emphasize that the planes of constant energy flow
lie parallel to the interfaces, in agreement with our earlier
results that the planes of constant amplitude of the elec-
tric and magnetic fields are parallel to the interfaces. The
normal component of density of energy flow (17b) is pro-
portional to the difference between normal components of
the Poynting vector of transmitted and reflected waves,
as expected, but also contains a cross product term which

A.KROL, C. J. SHER, AND Y. H. KAO 38

is proportional to the magnitude of the attenuation vec-
tor. Due to this term one should expect the appearance
of interference effects between the transmitted and
reflected waves in an absorbing medium. The tangential
component of the density of radiant flux (17a) is propor-
tional to the sum of transmitted and reflected fluxes plus
a cross product. Interference effects for this component
are always expected (even for a nonabsorbing medium)
for oblique incidence.

The critical angle for a LSM is defined as the grazing
angle at which the specular reflectivity reaches half of its
maximum value, or the inflection point.'” For a hetero-
structure, this can be estimated to be v25.!%!!

As an example, we consider the simplest LSM, i.e., a
heterojunction consisting of a thin layer on a substrate.
The dependence of the magnitude of the z component of
the Poynting vector is shown in Fig. 2 for a ZnSe/GaAs
heterostructure with a 200-A ZnSe layer on a GaAs sub-
strate. As expected, for an incidence angle of 2 mrad,
which is below the critical angle [see Fig. 2(a)], P, de-
creases rapidly with z. At 30 A below the surface P, is
very small, which can be compared with the penetration
depth. For an incidence angle equal to the critical angle
6. [see Fig. 2(b)] the radiation is present in the entire
structure. For 6> 0. [see Fig. 2(c)] energy can be
effectively transmitted into the substrate and one can ob-

10.0 4 (a)
i 2 mrad
N |
o™ 5,044
) 4
1
0.0 ¥ ‘ , ‘
0] 100 200 300 400
6 mrad
300 400
A fe) 10 mrad
9.0+
CLN
2]
‘o i
I e———
70 r ; : = ,
0] 100 200 300 400

Depth ()

FIG. 2. Calculated magnitude of the normal (z) component
of the normalized Poynting vector vs depth in a ZnSe(200
A)/GaAs heterostructure shown at 2, 6, and 10 mrad grazing
angle, for 9.7 keV energy of incoming photons with s polariza-
tion. The solid line represents the result obtained for a hetero-
structure with no roughness; the dotted line represents the re-
sult obtained for a heterostructure with 10 A of rms roughness.
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serve weak oscillations of P,(8). Under this condition,
the effect of rough interfaces leads to a slight enhance-
ment of the magnitude of this component.

The density of energy flow parallel to the interfaces is
shown in Fig. 3 for the same heterostructure as in Fig. 2.
The primary difference in the behavior of this component
versus the normal component is that now we do observe
strong oscillations of its magnitude for large angles of in-
cidence [see Fig. 3(c)]. Let us also note that the tangen-
tial component is much stronger than the normal com-
ponent due to grazing angle of incidence. We do observe
a jump of the energy flow at the rough interface. This is
a consequence of our model of scattering.

The magnitude of the density of energy flow normal-
ized to the incoming beam intensity inside the thin layer
of ZnSe on GaAs is shown in Fig. 4. For z=2 A, i.e,
very close to surface [see Fig. 4(a)], the Poynting vector
vanishes only for §=0 and gradually reaches its max-
imum at the critical angle. For higher angles it decreases
with pronounced oscillations, displaying increasing
period and decaying amplitude. At z=100 and 198 A
[see Figs. 4(b) and 4(c)], i.e., in the midpoint of the ZnSe
layer and very close to the interface, respectively, the
Poynting vector vanishes for subcritical incidence angles,
as is expected from the penetration depth estimation for

0.41 (a) 2 mrad
o< 0.2
0.0 —_— : }
(0] 100 200 300 400
6 mrad
0.0+ - — - : - ; . )
o} 100 200 300 400
10 mrad
n-)(
0.8+ T -+ \\ )
0 100 200 300 400
Depth (R)

FIG. 3. Calculated magnitude of the tangential (x) com-
ponent of the normalized Poynting vector vs depth in a
ZnSe(200 A)/GaAs heterostructure shown at 2, 6, and 10 mrad
grazing angle, for 9.7 keV energy of incoming photons with s
polarization. The solid line represents the result obtained for a
heterostructure with no roughness; the dotted line represents
the result obtained for a heterostructure with 10 A of rms
roughness.

- o
307 () 2R
P
2.0
1.0
0.0 . . .
0 10 20
2.0
(b) 100 &
P | [
1.04 P ~N~——
]
0.0 , . . , ,
0 10 20
0.0 , . . .

0] 10 20
Angle (mrad)

FIG. 4. Calculated magnitude of the normalized Poynting
vector vs grazing angle in a ZnSe(200 A)/GaAs heterostructure
shown at depth 2, 100, and 198 A, for 9.7 keV energy of incom-
ing photons with s polarization. The solid line represents the
result obtained for a heterostructure with no roughness; the dot-
ted line represents the result obtained for a heterostructure with
10 A of rms roughness.

this angular domain. At z=100 A, in the vicinity of the
critical angle, the magnitude of the Poynting vector rises
rapidly and reaches its maximum, which is about 50%
lower than the maximum at z=2 A, and then decreases
with some oscillations, whose period is longer than the
period of the oscillations at position z=2 A. At z=198
A the magnitude of the energy flow does not exhibit any
maximum, instead, it rapidly rises for angles close to the
critical angle, and then reaches its limit, which is the
magnitude of the incoming energy flow. One can also see
weak oscillations. A common feature of these curves is
that in the high angle regime they saturate to some con-
stant level below the incoming beam intensity. The pres-
ence of roughness may enhance the magnitude of energy
flow slightly and smear our oscillations in the region
above the critical angle. As we will later observe, the os-
cillations in the magnitude of the density of energy flow
are correlated with oscillations in the direction of energy
flow. We would like to point out that these oscillations
are an interference effect in stratified media.

In LSM’s the Poynting vector lies in the plane of in-
cidence, but in contrast to bulk materials (for s polariza-
tion), the direction of energy flow defined by the angle ¢,
is in general different from the refraction angle 6;:

P,

tang; = #tanb,;=C, (19)

Jx
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where C; is constant for the jth layer.
In Fig. 5 the dependence of the ¢; upon z is shown for
a ZnSe/GaAs heterostructure along with the refraction
angle 6, for purposes of comparison. For a small, sub-
critical grazing angle [2 mrad, Fig. 5(a)] energy flows in
an almost constant direction that is very close to the re-
fraction angle (i.e., approximately parallel to the surface)
throughout most of the epilayer and then, as expected, a
very small portion of radiant energy flows in the direction
described by constant value of the refracted angle in the
substrate For the critical grazing angle [6 mrad, Fig.
(b)] ¢; remains constant and sllghtly smaller than the re-
fractlon angle in a depth of 100 A below the surface, and
then gradually arises and reaches the constant value 6, in
the substrate. A very interesting behavior is visible for
grazing angles exceeding the critical angle [10 mrad, Fig.
c)]. We observe oscillations of the angle of energy flow
with increasing amplitude whose period can be estimated
using (17):

L =m/(ksinf) . (20)

But, as we see, the average direction of the energy flow is
almost in the angle of refraction.

In Fig. 6 the dependence of ¢,(z,0) versus incidence
angle is shown for a ZnSe/GaAs heterostructure As
mentioned before, at z=2 A below the surface the direc-

1 (a)
200 l
o :3 2 mrad
o -
'9 | i
10.0 4
o} 100 200 300 400
1 (b
4.0 ,l————
u - e
" | 6 mrad
s
0.0 - - . : -
(0] 100 200 300 400
90.07 (c)
—_ 1 ™ & 10 mrad
-
T 80.04
o .
70.0 T T T r - .
0 100 200 300 400

Depth (R)

FIG. 5. Comparison of direction of energy flow with direc-
tion of real part of wave vector. The dotted line represents the
calculated direction of the Poynting vector vs depth in a
ZnSe(200 A )/GaAs heterostructure shown at 2, 6, and 10 mrad,
for 9.7 keV energy of incoming photons with s polarization.
The solid line represents the angle of refraction in the appropri-
ate layer.
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FIG. 6. Comparison of direction of energy flow with direc-
tion of real part of wave vector. The dotted line represents the
calculated direction of the Poynting vector vs grazing angle in a
ZnSe(200 A)/GaAs heterostructure shown at depth 2, 100, and
198 A, for 9.7 keV energy of incoming photons with s polariza-
tion. The solid line represents the angle of refraction in the
ZnSe layer.

tion of energy flow oscillates rapidly around the refrac-
tion angle in the domain 6> 6., as expected from (19)
[see Fig. 6(a)]. At the midpoint, i.e., at z=100 A, the
direction of energy flow does not oscillate as frequently
[see Fig. 6(b)]. In the vicinity of the interface, at z=198
A [see Fig. 6(c)] it gradually approaches the value of the
refraction angle with increasing incidence angle.

The physical situation in superlattices is more involved
because the additional appearance of the Bragg standing
wave is expected. As an example we will consider a
Pt/Cx 30 LSM with a 5-A top layer of Hf. Below the
critical angle, radiation penetrates a LSM very shallowly
[only a few layers, see Figs. 7(a) and 9(a)]; above this an-
gle x-rays penetrate the whole multilayer system [see
Figs. 7(b) and 9(b)]. As we can see, the uncorrelated in-
terfacial roughness enhances the density of energy flow
(see Figs. 8 and 10). When the Bragg condition on LSM
interfaces is fulfilled [see Figs. 7(c) and 9(c)] the Bragg
standing wave is observed. The normal component of the
density of energy flow is significantly enhanced due to un-
correlated roughness, but the general features of both
components are very similar. The parallel components of
the density of energy flow obtained for a LSM without
roughness oscillate rapidly, with the amplitude decaying
relatively quickly, and with well-defined nodal and an-
tinodal planes. The position of these planes is a function
of the incidence angle (see Figs. 11 and 12). The presence
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of uncorrelated interfacial roughness results in the ap-
pearance of a constant level of the density of energy flow
in the direction parallel to the interfaces and a decreasing
magnitude of oscillations which, however, decay much
more slowly than in the case without roughness. We see
that the difference between nodal and antinodal planes is
not so well defined in the presence of roughness. Al-
though energy density in the antinodal planes close to the
surface with roughness is smaller than without it, below
some critical thickness this relationship is reversed,
which may have important experimental consequences.

B. p polarization

In the case of p polarization the incoming field ampli-
tude E, can be decomposed into two components: paral-
lel Eg.(z5) and perpendicular Eg,(z,) to the interface
(see Fig. 1), where

E,=Eg,(zy)=E,sinf , 21a)
E,=Eg,(zyg)=—E,cos0 , (21b)

and the magnetic field has only one component:

10.0 ~
(a)
| 2 mrad
aN 50
e}
0.0 . ( . .
0 400 800
10.0~ (b)
\ 10 mrad
] i
N
o 5.0 o
o
]
0.0 . . .
0 400 800
(c) 21.2 mrad
o™ 1
0.014
A\K\“
0.0 - . - — ,
o) 400 800
Depth (A)

FIG. 7. Calculated magnitude of the normal (z) component
of the normalized Poynting vector vs depth in a Hf(5
A)/{Pt(17.3 A)/C(14.4 A)} X 30/C superlattice shown at 2, 10,
and 21.2 mrad grazing angle, for 9.6 keV energy of incoming
photons with s polarization. The thin line represents the result
obtained for a superlattice with no roughness; the thick line
represents the result obtained for a superlattice with 3 A of rms
roughness. Note that 21.2 mrad is the Bragg angle on the inter-
faces of this superlattice at that energy.
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H,=Hg (zo)=nuE,/p 21c)

where u is the permeability. We should consider every
field component independently. To this end we define ap-
propriate matrices for solving the Fresnel equations for
the boundary conditions on interfaces and the perturba-
tion due to scattering as follow:

1! P
I =—1, ) (22)
e tja rf(,
and
. : e —(P;,)%;" ?ja(af—a;)
S‘az— ~ ~ ~— S 23
J 1——(’r‘ja)2 rja(ej+—ej ) g —(’r’jm)zéfr 23)

where a=x, z, é‘j+, and é‘j" are defined by (7a) and (7b)
and 7, 7., are the Fresnel coefficients for the a com-
ponents.** The LSM will now be represented by matrices
P or P in a similar way as in (9a) or (10a). For exam-
ple, the a component of the total electric field at point

z;_y<z <z;is given by

10.0
| (a)
o 50
©

00+
(e} 400 800
97.5 (b)
D.N
< J
° 92.5
87.5 T T T - T y
(e} 10 20 30 40
] (c)
25.01 —_—
& 1
(o)
- 20.04
. x
15.0 — T - T T )
900 920 940 960
o
Depth(A)

FIG. 8. Calculated magnitude of the normal (z) component
of the normalized Poynting vector vs depth in a Hf(5
A)/{Pt(17.3 A)/C(14.4 A)}x30/C superlattice shown at 10
mrad grazing angle, for 9.6 keV energy of incoming photons
with s polarization. The thin line represents the result obtained
for a superlattice with no roughness; the thick line represents
the result obtained for a superlattice with 3 A of rms roughness.
Top: full superlattice; middle: first three layers; bottom: last
three layers.
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E;o(6,2)=p{lzexp[ip;(z;—2)]

+P£1Yaexp[—iﬁj(zj—2)]]E6tx /p(l){va .

(24)

The magnetic field can be written in the form
(zj_1<z <zj)

=H,(6,2) . (25)

J

P.(6,2)=—C(Re{(Ef +E; [PEj* —E;;*) koo (EF*+E;*)1} /kg)

Jx

P,(6,2)=C(Re{(Ejf +E;) [P} (Ef*—Ep*)—koy (EF*+E;*)1} /ko) .

In the substrate (z > zy)
P,(0,z2)=—C{{Re[Esp(Es.*)]—cosb | E | *}) ,
(28a)

(a)
PX
0.2 2 mrad
0.0 L - v T r
(e} 400 800
1 5] (b)
Py M\ 10 mrad

) " 400 800

4.0
' (c)
P 1 21.2 mrad
2.0
0.0
0 400 800
Depth (A)

FIG. 9. Calculated magnitude of the tangential (x) com-
ponent of the normalized Poynting vector vs depth in a Hf(S
A)/{Pt(17.3 A)/C(14.4 A)} % 30/C superlattice shown at 2, 10,
and 21.2 mrad grazing angle, for 9.6 keV energy of incoming
photons with s polarization. The thin line represents the result
obtained for a superlattice with no roughness; the thick line
represents the result obtained for a superlattice with 3 A of rms
roughness. Note that 21.2 mrad is the Bragg angle on the inter-
faces of this superlattice at that energy.

[
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The time averages of the components of the Poynting
vector are

P,(6,2)=—C(Re(E,H})) , (26a)
P,(6,2)=0, (26b)
P,(6,2)=C(Re(E,H})) . (260)

Also in this case energy flows in the plane of incidence
and we have (z;, _; <z <z;)

(27a)

(27b)

P,(8,2)=C{(Re(ps) | Es, | 2/kg—cosORe(ESLES*)) .
(28b)

In the hard x-ray regime and at a grazing angle of in-

0O 10 20 30 40

910 930 950
Depth (R)

FIG. 10. Calculated magnitude of the tangential (x) com-
ponent of then normalized Poynting vector vs depth in a Hf(5
A)/{Pt(17.3 A)/C(14.4 A)}X30/C superlattice shown at 10
mrad grazing angle, for 9.6 keV energy of incoming photons
with s polarization. The thin line represents the result obtained
for a superlattice with no roughness; the thick line represents
the result obtained for a superlattice with 3 A of rms roughness.
Top: full superlattice; middle: first three layers; bottom: last
three layers.
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FIG. 11. Calculated magnitude of the tangential (x) com-
ponent of the normalized Poynting vector vs depth in a Hf(S
}.)/[Pt(17.3 A)/C(14.4 .3;)] % 30/C superlattice shown at 16.4,
17.2, and 20 mrad grazing angle, for 12 keV energy of incoming
photons with s polarization. The thick line represents the result
obtained for a superlattice with no roughness; the thin line
represents the result obtained for a superlattice with 3 A of rms
roughness. Note that 16.4 mrad is the Bragg angle on the inter-
faces of this superlattice at that energy.

In the hard x-ray regime and at a grazing angle of in-
cidence the calculated and observed differences between s
and p polarization are smaller than 1% for most of the
materials. For this reason we will not consider the trans-
verse magnetic wave (TM) mode separately.

C. Mixed case

In the general case the electric and the magnetic fields
of incoming radiation can be decomposed into three or-
thogonal nonvanishing components. As a consequence
one should expect that the Poynting vector does not lie in
the plane of incidence (cf. Ref. 47). However, the devia-
tion from the plane of incidence for hard x-rays is so
small that in most practical cases it can be neglected.

V. FLUORESCENCE YIELD IN LSM
WITH INTERFACIAL ROUGHNESS

A. Formulation of the problem

If the incoming photons are energetic enough to
fluoresce atoms in the LSM, the angular fluorescence
yield will depend on the energy flow at the fluorescent
atoms, the dynamical absorption, and the concentration
of the atoms. In other words, the fluorescence yield of
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FIG. 12. Calculated magnitude of the tangential (x) com-
ponent of the normalized Poynting vector vs depth (z) in the
first three layers of a Hf(5 A)/{Pt(17.3 A)/C(14.4 A)}x30/C
superlattice shown at 16.4, 17.2, and 20 mrad grazing angle, for
12 keV energy of incoming photons with s polarization. The
dotted line represents the result obtained for a superlattice with
no roughness; the thin line represents the result obtained for a
superlattice with 3 A of rms roughness. Note positions of nodal
and antinodal planes.

atoms is proportional to the energy loss per unit length,
i.e., in the direction normal to the interfaces of stratified
media. In our model we will neglect the angular depen-
dence of energy losses due to the Compton effect, phonon
scattering, higher shell fluorescence, self-absorption, and
other processes. This means we assume that the same
portion of absorbed radiant energy is converted into
fluorescence emission which in turn does not suffer self-
absorption or scattering on its way to an external detec-
tor.

Let us consider a rectangular wave front of the incom-
ing radiation with width wg and of unit height (in the
direction perpendicular to the plane of incidence). We
can find the time average of the total radiant flux of the
incoming beam (F}y), the reflected beam (F,;), and the re- -
fracted beam (F,) at the LSM surface (z =z;):

Fi0(6,2)=w0i(20 )P,»(Q,Z) , (29a)
F,,(6,z)=w,,(z,)P,(6,z) , (29b)
F,(0,z)=w,(zy4)P,(6,2) , (29¢)

where P;, P,, and P, are the time average of the density
of energy flow in the incoming, reflected, and refracted
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wave, respectively. We will assume that, for grazing in-
cidence, the width w, of a wave front in the jth layer is
constant. One can easily derive the following formula:
)
w,=wo, TI Sinldy iz )] (30)
k=0 sm[dﬁk(zk )]

where the angles ¢, | ,(z;) and ¢, (z, ), defined in (19), de-
scribe the direction of energy flow at the point z; in the
(k + Dth and kth layers, respectively.

Now we are in a position to calculate the angular
fluorescence yield (FY), normalized to the incoming flux,
from the LSM region between z=0and z <z; ;:

Fo—F,,—F F,
Y(@)=C——F——L=C|1-—R -
o) Fo F,
j—1 sin (z,)] P;(6,z)
—cli—r-T1 [dr1(2z)] Py

k=0 Sin[¢,(z,)] Pi(6,2)

(31

where R is the reflection coefficient and C is a multiplica-
tive constant.

An obvious consequence of this model is that fluores-
cence from a homogeneous bulk sample is expected to be
the simple complement of the total external reflectivity
curve. In the following paragraphs we will consider FY
in the evanescent- and standing-wave domains.

B. Evanescent- and standing-wave fluorescence
from LSM’s

As an example let us analyze the angular FY from a
ZnSe/GaAs heterostructure with different layer
thicknesses of ZnSe as is predicted by our model [shown
in Figs. 13(a) and 13(b)]. For an extremely thin layer (5
A) FY arises almost linearly with incidence angle, and
then reaches a broad maximum at the critical angle, after
which it gradually decreases to some small value. With
increasing thickness the maximum in FY increases its
height and slightly shifts towards a higher angle. Its
half-width odecreases, reaches its minimum for a layer
about 250 A thick, and increases again for thicker layers.
The OEMF model predicts the appearance of oscillations
on the high angle side of these maxima. The period of
these oscillations is inversely proportional to the layer
thickness and their amplitude decays with increasing an-
gle. At very high angles all these curves reach some con-
stant level which increases with layer thickness. The gen-
eral shape of the FY curve changes for thicker layers [see
Fig. 13(b)], the maximum becomes broader, and in the
limit of infinite thickness we expect this curve to be the
complement of reflectivity for a bulk sample.

The influence of uncorrelated roughness on angular
fluorescence emission from a ZnSe/GaAs heterostructure
is shown in Figs. 14(a) and 14(b). As expected, increasing
the surface rms roughness results in a change of the
shape of the FY curve in the subcritical domain (evanes-
cent wave). The FY is now enhanced and this enhance-
ment reaches its maximum at the critical angle. Above
the critical angle the enhancement rapidly decreases and
is negligible at twice the critical angle. In the standing-
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FIG. 13. Calculated normalized fluorescence yield (FY) from
the ZnSe layer of a ZnSe/GaAs heterostructure vs normalized
grazing angle (A =60/60,) using ZnSe layer thickness D as a pa-
rameter for each FY plot; (a) from 5 through 400 1&, for in-
cidence radiation energy 9.7 keV with s polarization and (b)
from 400 through 2800 A, for incidence radiation energy 9.7
keV with s polarization.

wave region the presence of surface roughness affects the
amplitude of FY oscillations and as a result the oscilla-
tions become less pronounced.

Obviously the interfacial roughness does not affect
evanescent FY. Above the critical angle the presence of
roughness lowers the average magnitude of FY and extin-
guishes the amplitude of its oscillations. The influence of
interfacial roughness is significant even at three times the
critical angle but is decreasing along increasing incidence
angle. The influence of this ‘“‘perturbation” on FY is
strongest for an incidence angle slightly above the critical
angle but is an order of magnitude weaker than the effect
of surface roughness at its maximum.

In Figs. 15(a) and 15(b) angular FY from a
Hf/(Pt/C) <30 LSM predicted by OEMF theory, with
various roughness parameter values, is shown. The
evanescent portion of the FY curve from the 5-A Hf top
layer [see Fig. 15(a)] increases almost linearly with graz-
ing angle as is expected from the angular dependence of
the magnitude of the Poynting vector in a thin layer [see
Fig. 4(a)]. The FY from the Pt layers [see Fig. 15(b)] rises
sharply in the vicinity of the critical angle, which resem-
bles the behavior of the Poynting vector in a thicker layer
[see Figs. 4(b) and 4(c)]. The Hf FY exhibits a maximum
at the critical angle, as is expected from our previous
analysis, and exhibits almost the same shape of angular
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FIG. 14. (a) Calculated normalized fluorescence yield from
the ZnSe layer of a ZnSe/GaAs heterostructure vs normalized
grazing angle ( A =6/6.) using surface rms roughness (denoted
S) as a parameter for each FY plot; from O through 20 A, for
radiation energy 9.7 keV with s polarization. (b) Same as for (a),
but using interfacial rms roughness (denoted S,) as a parameter
for each FY plot; from O through 20 A, for radiation energy 9.7
keV with s polarization.

FY as from ZnSe/GaAs heterostructure with a 5 A thin
layer [see Fig. 13(a)] although it is modified by some
features due to multilayer effects: high-frequency weak
oscillations and Bragg peaks. As expected, the FY from
the Pt layers resembles that obtained from a very thick
layer of ZnSe [see Fig. 13(b)] in a ZnSe/GaAs hetero-
structure, but with some superimposed structure due to
the above-mentioned superlattice effects.

In order to analyze the influence of uncorrelated
roughness on FY from the system, we calculated fluores-
cence emission from the LSM with different roughness
parameters [see Figs. 15(a) and 15(b)]. For simplicity, in
the calculation we assumed that for all interfaces the rms
roughness parameters are the same. We do observe the
same pattern in the influence of roughness on the
evanescent- and standing-wave portion of the FY from
the superlattice as from the heterostructure. The subcrit-
ical domain of the curve is enhanced due to surface
roughness while the above-critical domain is diminished
due to interfacial roughness. The amplitude of the oscil-
lations in the FY is also diminished due to roughness.

When the Bragg diffraction condition on the LSM in-
terfaces is fulfilled, a very interesting behavior in the an-
gular FY is expected. If the nodal planes of the Poynting
vector are in the Pt layers [6=16.4 mrad, see Figs. 11(a)

and 12(a)], at an angle which coincides with the first
Bragg reflection peak, then a minimum of fluorescence
from these layers is expected [Fig. 15(b)]. On the other
hand, if the antinodal planes are in the Pt layers [6=17.2
mrad, see Figs. 11(b) and 12(b)] one should expect a max-
imum in the Pt FY [Fig. 15(b)]. However, as was men-
tioned before, surface and interfacial roughness dimin-
ishes the difference between the magnitude of the nodal
and antinodal planes of energy flow. Consequently, the
predicted minimum in the FY curve becomes shallower
and the maximum is smaller, with the increasing of the
rms roughness parameter. Similar behavior in the FY
from the top thin layer of Hf is expected [see Fig. 15(a)].
However, in this case of OEMF theory predicts the ap-
pearance of an antinodal energy flow plane in the Hf lay-
er [6=21.2 mrad, see Fig. 9(c)], i.e., a maximum of Hf
FY at the first Bragg reflection peak, and nodal plane,
i.e., a minimum at a slightly higher angle. This coin-
cidence between angular position of the first Bragg
reflection peak and antinodal plane in the HF layer
versus nodal planes in Pt layers results in weakening the

FIG. 15. (a) Calculated normalized fluorescence yield from
the Hf layer of a Hf(5 A)/{Pt(17.3 A)/C(14.4 A)} X 30/C super-
lattice vs grazing angle using surface and interfacial rms rough-
ness (denoted S), as a parameter for each FY plot; from 0
through 15 A, for incidence radiation energy 9.6 keV with s po-
larization. The maximum at 4=21.2 mrad is due to the an-
tinode of a Bragg standing wave in the Hf layer. (b) Calculated
normalized fluorescence yield from the Pt layers of a Hf(5
A)/{Pt(17.3 A)/C(14.4 A)} X 30/C superlattice vs grazing angle
using surface and interfacial rms roughness (denoted S), as a pa-
rameter for each FY plot; from O through 15 A, for incidence
radiation energy 12.0 keV. The maximum at 4=17.2 mrad is
due to the antinode of a Bragg standing wave in the Pt layers.



8590

Bragg-diffraction-related maximum on the Hf FY curve
versus Pt FY.

The Bragg standing-wave fluorescence from a LSM is
also strongly influenced by layer thickness fluctuations.
A Debye-Waller-like factor is usually used to describe the
effect of this imperfection on reflectivity. The influence
of this “perturbation” on LSM reflectivity was studied by
Spiller and Rosenbluth.** By means of OEMF theory in
its recursive version they obtained a reduction of the
Bragg peak reflectivity and an enhancement of the
reflectivity between them. This in turn will smear out
Bragg-related features on the FY curve; however, it
should not affect the general shape of angular fluores-
cence emission from LSM’s.

Another important factor which can affect FY from a
LSM is the macroscopic surface-substrate slope error (see
discussion in Refs. 40 and 41). As a result of this error,
the angle of incidence is only well defined locally and one
should expect broadening of the maxima in FY with a
width roughly proportional to the slope error magnitude.
The effect of this perturbation is similar to the effect of
the divergence of the incident radiation.

C. Experimental examples

The x-ray experiments were performed at the Cornell
High Energy Synchrotron Source at the C-2 station. The
sample was positioned on a goniometer driven by step-
ping motors with 0.01 mrad angular resolution. A two-
crystal Si(111) monochromator with very narrow slits
was used in order to provide highly collimated and mono-
chromatized radiation. The intensities of the incoming
and scattered beams were measured using ion chambers
while the fluorescence emission was detected using scin-
tillation counters equipped with filters.

The samples studied were ZnSe/GaAs heterostructures
obtained by the MBE method.’® The measured fluores-
cence signal is shown in Fig. 16. By fitting the experi-
mental Zn angular FY curve, excited by radiation with
9.7 keV energy (shown in Fig. 16), we concluded that in

1.04
0.84

0.6 1

0.4

FY (Arb. Units)

0.2 °

0.0 T T
00 0.005 0.010

0.015 0.0|20 0.625
A(rad)

FIG. 16. Comparison of experimental normalized fluores-
cence yield with calculation based on the model proposed in this
paper for a ZnSe(200 A)/GaAs heterostructure at incident pho-
ton energy above the Zn absorption K edge (9.7 keV, s polariza-
tion). Dots: experiment; line: calculation based on Eq. (31)
with surface and interfacial rms roughness equal to 10 and 25 A,

respectively.
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this ZnSe/GaAs heterostructure the top roughness pa-
rameter is 105 A and the interfacial roughness parame-
ter is 25+5 A. The high value of interfacial roughness
prevents us from detecting oscillations in the angular re-
gion above critical angle. These independently found rms
roughness parameters are consistent with those obtained
from total external reflectivity measurements.>

In order to verify the proposed OEMF model, we rein-
vestigated experimental angular fluorescence yield of Hf
and Pt in Hf/(Pt/C) X 30/C LSM obtained by Barbee and
Warburton.*®*! The result is shown in Figs. 17 and 18.
By fitting the experimental curves we estimated surface
and interfacial rms roughness parameters to be 311 and
7x1 A, respectively. We conclude that incorporation of
uncorrelated interfacial roughness into the OEMF model
improved significantly the quality of the fit, especially at
the Bragg diffraction angle. The weak oscillations in FY
predicted by the OEMF theory are apparently below the
resolution of the experiment.

VI. CONCLUSIONS

Although only a few experimental examples were ana-
lyzed in this paper, we have demonstrated the feasibility
of grazing-angle fluorescence as a nondestructive experi-
mental method for the investigation of surface and inter-
facial roughness and other imperfections in layered syn-
thetic materials. This method is especially suitable for
studies of imperfections in thin surface layers since the
position of maximum energy flow can be controlled by
the incidence angle, and the escaping fluorescence emis-
sion does not suffer significant self-absorption. Another
virtue of this method is its element sensitivity which in
some cases allows us to focus our attention on some
selected layers within the LSM.

We proposed the relatively simple OEMF matrix mod-
el for calculating the angular x-ray fluorescence from a
LSM with uncorrelated interfacial roughness. The model
is suitable for both crystalline and amorphous layer struc-
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FIG. 17. Comparison of experimental normalized fluores-
cence yield obtained by Barbee and Warburton (Refs. 40 and 41)
with calculation based on the model proposed in this paper for a
Hf(S A)/{ Pt(17.3 A)/C(14.4 ;‘.)] X 30/C superlattice at incident
photon energy above the Hf absorption L;; edge (9.6 keV).
Dots: experiment; line: calculation based on Eq. (31) with sur-
face and interfacial rms roughness equal to 3 and 7 A, respec-
tively.
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FIG. 18. Comparison of experimental normalized fluores-
cence yield obtained by Barbee and Warburton (Refs. 40 and 41)
with calculation based on the model proposed in this paper for a
Hf(5 A)/{Pt(17.3 A)/C(14.4 A)} X 30/C superlattice at incident
photon energy above the Pt absorption Ly; edge (12.0 keV).
Dots: experiment; line: calculation based on Eq. (31) with sur-
face and interfacial rms roughness equal to 3 and 7 A, respec-
tively.

ture. The OEMF model provides us with information on
radiant energy flow in the LSM. It can also be used for
the calculation of specular reflectivity and transmissivity
in stratified media, and can be easily extended to describe
other imperfections, such as layer thickness fluctuations,
bulk inhomogeneities, slope errors, etc.
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APPENDIX

The total electric field E;(r) in the jth layer of stratified
media is

E;(r)=E (r)+E; (1) (A1)
where

Ejf(n)=A4explik) 1), (A2a)

E;j (n)=B,explik; ') . (A2b)

ﬁf and ﬁ; are the complex wave vectors for the
transmitted and reflected field, respectively. A4 j and Bj
are the complex amplitudes

(A3a)
(A3b)

2j= | ﬁjiexp(iaj) ,
B;=|B; | expliB3;) .

In the (j + 1)th layer, which is located below the jth
interface, the total electric field is as

Ej+l(r)=Ej++1(r)+Ej_+l(r) (A4)
where

Ejf (D=4, explikf,, 1), (A5a)

Ej(0=B8,, expliky, 'r) . (ASb)

The electric field in a LSM is an homogeneous plane
wave*®47 with a complex wave vector, which can be writ-

ten in the following form:*®

kf =kj +ia, , (A6a)

k; =kj +ia; , (A6b)
where k7, k" are the real wave vectors defining planes of
constant phase for the reflected and transmitted com-
ponents, respectively. a; and aj+ are real attenuation
vectors defining planes of constant amplitude. It can be
easily proven*® that the following equation holds for both

the — and + components:

2 2
; =k(2)fij (A7)
or in terms of its real and imaginary parts:
k}—al=k§[(1-8;7—B}], (A8a)
k;-a;=ko(1-5;)B; , (A8b)

where k=27 /A and A is the wavelength of the incoming
radiation in vacuum.

One can obtain from the boundary conditions that k;
and k; ., are coplanar and lie in the plane of incidence.
The boundary conditions also imply that a; and a;  ; are
perpendicular to the interfaces, which means that planes
of constant amplitude are parallel to the interface. In
vacuum (or air) B,=0 and the reflected field is a homo-
geneous plane wave, hence

ki=1k|=1[k|, (A9a)
a;=|aj | =aj |, (A9b)
6,=60=6; . (A9c)
One can also obtain formulas (3¢) and (3d):
kjx=kjcos8;=k; co80;  1=k; 1, =Koy , (A9d)
ﬁj:kjsian+iaj=(kéﬁj~2—k%nécosze)l/2 , (A9e)

where 6; is the angle between the plane of constant phase
and the interface in the medium j. 6 is the grazing angle
of incidence. From the formulas (A2a), (A2b), (A5a), and
(A5b) we have (3a) and (3b):

(A10a)
(A10b)

Ef(r)= ﬁjexp(iﬁjz)exp(ikOXx) ,

E; (1)=B,exp(—ip;z)explikq,x) .
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