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Rigorous theory for chemical shifts in crystal: Application to graphite
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A rigorous theory for chemical shifts in crystal is developed. In this formalism, it is clearly seen

that the shielding tensor is divided into a demagnetizing term and a microscopic term. The former
is caused by the demagnetizing field and is proportional to the bulk susceptibility. The latter is

caused by a periodic current, which is, in the atomic limit, reduced to the ordinary expression for
the shielding tensor by Ramsey. A new expression for the shielding tensor for the on-site approxi-
mation is derived based on the rigorous theory. The present theory is applied to graphite, and it is

shown that the temperature-dependent part of the observed shift is due to the demagnetizing term.

I. INTRODUCTION

The magnetic interactions between a nucleus and elec-
trons bring about a deviation of the magnetic field experi-
enced by the nucleus from an external field. This
phenomenon is observed in the slight shift of the reso-
nance frequency in an NMR measurement. There are
two kinds of such shifts: the Knight shift and the chemi-
cal shift. The Knight shift is caused by dipole-dipole in-
teractions between the nuclear spin and the electron spin.
It is seen in metals and provides information on density
of states. The chemical shift is caused by the electrons'
orbital motion. Because of the significant dependence on
the local electronic structure near the nucleus, the chemi-
cal shift is used as a powerful probe of the bonding struc-
ture of molecules.

Theoretically, the chemical shift has been studied for a
long time. The general theory of the chemical shift was
given by Ramsey. ' By second-order perturbation theory,
he derived the expression of a shielding tensor consisting
of paramagnetic and diamagnetic terms. Ramsey's ex-
pression is general and applicable to any system in princi-
ple. In the case of large systems, however, it causes a
serious problem. Namely, the long-range parts of the
paramagnetic and the diamagnetic terms are divergently
large and cancel each other. To remove this difficulty,
several refinements have been made, ' but they are
effective only for molecules which are finite systems, so
cannot be applied to crystals.

The chemical shift of periodic lattice was discussed by
Stephen and Hebborn. With the devices used in the cal-
culation of orbital susceptibility, they succeeded in re-
moving the difficulty of large cancellation. In their
theory, however, the demagnetizing term which depends
on the shape of the specimen was discussed with using
the macroscopic theory of classical electrodynamics, so
was not derived microscopically. Furthermore, they
showed only the general expression of shielding tensor
which is too complicated to calculate numerically. This
might be the reason why the importance of their works
has not been recognized and the expression derived by
them has not been used in the actual calculations.

The expressions used in the actual calculations for

II. DIFFICULTIES IN RAMSEY'S THEORY
GF CHEMICAL SHIFT APPLIED TO CRYSTAL

Resonance shift in NMR is defined in terms of the
change of the interaction energy between a nuclear mag-
netic moment p and external magnetic field B as

Eo+bE= —p (1—0) B (2.1)

crystals are based on the Ramsey's expression. The prob-
lem of these expressions is that they are derived with
questionable approximations that ignore the difficulty of
the large cancellation. Such expressions are also dissatis-
factory in the point that they can not include the long-
range part. Vaughan et al. proposed a formalism in
which the long-range part is included as a bulk correction
using the local-field theory. However, usual local-field
theory is valid only for the point magnetic dipole mo-
ment, so cannot be applied to such cases that the magne-
tization is induced by free electrons. Therefore, the for-
malism by Vaughan et al. is not general.

One of the reasons the long-range part has not yet been
discussed seriously is its smallness in most materials.
Usually, the orbital susceptibility is so small that the bulk
correction is not needed. However, high-resolution mea-
surement of NMR shift in graphite was recently per-
formed and the shift largely related to the susceptibility
was reported. To explain the observed fact, a rigorous
chemical shift formalism for crystal is needed.

In the present paper, we derive a general chemical shift
expression for crystals. For this purpose, we calculate
the shielding tensor in a different way from the formal-
isms proposed so far. Before we see method's details, in
Sec. II we clarify the difficulties in the ordinary chemical
shift formalisms applied to crystal. In Sec. III, the new
method of calculation of the shielding tensor is described,
where the current density is shown to be divided into
magnetizing terms and microscopic terms. In Secs. IV
and V, the magnetizing term and the microscopic terms
are discussed in detail, respectively. In Sec. VI, the
present formalism is applied to explain the observed
NMR shift in graphite. In the present paper, we use the
unit 6=1.
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where 0. is called shielding tensor. In the case of chemi-
cal shift, this interaction energy is expressed as

~(p)+ ~(d)

2

1 rXJhE ——p.— d T
c r3

where J is current density defined as

(2.2)

(p)
2m c

(d) e . r I—rr2 2
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2mC T

(2.5)
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If we take Landau gauge

(2.3)

is obtained. This is not convenient for crystals, since it is
not explicitly seen that the shielding tensor is indepen-
dent of the gauge of the vector potential. In spite of this
inconvenience, Ramsey's expression has been used for the
calculation of crystals. As is the wave function of the
system, the Bloch orbital is adopted and expressed as a
linear combination of atomic orbitals:

A= —,'B Xr (2.4)
g(k —— —g A(„(k)e'" (t)q'(r R—) .

1

P P (2.6)

for vector potential and calculate the first-order term of
the current density in the external magnetic field,
Ramsey's expression

Substituting it into (2.5) and neglecting the terms except
for R=O, which we call on-site approximation, hereafter,
the expressions

(k') A( ~(k ) A(v(k ) A(&(k )

e(.(k') —e((k)

X 3 ~ ~ L ~ + ~ ~
I (2.7)

2 r I—r
rr' '=

z x x Ai (k)Ar. (k) p„,g,)
(2.8)

are obtained. These are the expressions which have been
used for calculating the crystal shielding tensor. Howev-
er, there are two problems. One is that there is no validi-

ty in the on-site approximation. In Ramsey s expression
(2.5), the matrix elements of angular momentum between
the eigenstates are needed. The matrix elements, howev-
er, are not definite for the extended eigenfunctions as are
Bloch orbitals. Therefore, one cannot assure any validity
in replacing the matrix element (i

~

L
~
j) by the angular

momentum of atomic orbital.
The other problem is that since long-range contribu-

tion is not included, the shift that is proportional to the
bulk susceptibility cannot been explained. In the forrnal-
ism by Vaughan et al. , the long-range contribution is
taken into account using the ordinary local field theory.
In this formalism, the bulk correction is the sum of the
demagnetizing and the Lorentz term:

field V(r) is written as

J= ,
' cpea 8 X Vn—(r ),

where n is the electron density given by

n(r)=Ne ~"" J e ~ d r,

(2.10)

(2.11)

(2.12)

with

M=LB (2.13)

where 7 is

where N is the total electron number. The magnetic field
induced by the current (2.10) can be calculated as

H= —DM+4mM . (2.9) 7= —
3 p(ll((n

2 (2.14)

Here, D is the demagnetizing factor. However, this for-
malism is valid only when the current is so localized near
the atoms that the magnetic moment is reasonably ap-
proximated by point dipole. On the other hand, in the
case of free electron, the bulk correction is different from
Eq. (2.9). Kubo' discussed the Landau diamagnetization
with the use of Wigner representation and showed that
the current density of free electrons in a given potential

H= —DM . (2.15)

So, the usual local field theory is not general and the for-
malism which connects these limiting cases is needed.

which is the free electrons susceptibility. The expression
(2.12) is the same as the magnetic field induced by the
magnetization M. Therefore, the bulk correction of free
electrons is only the demagnetizing term:
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III. CALCULATION OF CURRENT DENSITY

As seen in Sec. II, the theories of chemical shift for
crystals which are commonly used are not general and
have some difficulties. To remove the difficulties and deal
with general cases, a rigorous chemical shift formalism
for crystals is needed. For this aim, we calculate the
current density in this section.

From Eq. (2.2), we see that the first-order term of the
current density in external magnetic field is needed to cal-
culate the shielding tensor. In the calculation of current
density for crystals, the Landau gauge is not convenient,
since it is not periodic and causes the unphysically large
cancellation of the paramagnetic term and the diamag-
netic term. A similar situation occurs in the calculation
of magnetic susceptibility. To remove the difficulty of the
large cancellation, the following technique has been suc-
cessfully used. " ' Namely, the vector potential is intro-
duced in the form of

(LK}function' defined as

ik r+(k=e +lo

where ulk is the periodic part of Bloch function

P(k e +Ik

(3.3)

(3.4)

f d k X(j(A(i, (3.5)

Then, the Hamiltonian can be expressed as

&o——g f d k E(((k)~(t ~(„,
l, l'

(3.6)

As will be seen later, we need only terms %o&, in the
calculation of current density, so we omit the term Az
hereafter. To express the Hamiltonian in LK representa-
tion, we expand the field operator in terms of LK func-
tions:

A
A(r) = . (e'q "—e 'q')

1

—= A'+'(r)+ A' '(r), (3.1)

and the limit q~0 was taken in the final expression. In
the calculation of the current density, we also use the
same device.

The Hamiltonian of electrons in the magnetic field is
written as

'2

p ——A + V(r}
I e

2m c

where
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0 is the volume of a unit cell,

j =g f d k yA, „~A(,
„

(3.7)

(3.8)

(3.9)

(3.10)

+v(r) — (p A+ A+p)+ A
2m 2mc 2mc

1'(1 }n =k&((+Pn (3.1 1)

=&o+&i+&2, (3.2)
k+ =k+

2
' (3.12)

where &„is the nth-order term in the magnetic field.
For the basis function, we adopt the Luttinger-Kohn

I

and e((0) is the energy of 1th band at it=0. The current-
density operator is also written in this representation as

J J(p)+ J(d) (3.13)

J(p)

J(d)

g fd k fd k'(X('(,VX(g X((;VX(*(,—)A((,A(g,
2ml t I

2

Ag f d k f d k'&(k+I k A((,A((, .
mC

(3.14)

(3.15)

To calculate the linear term in the magnetic field, we expand the density matrix in powers of the magnetic field:

P =Po+Pl+

where

(3.16)

—pmo
Po

—— e
Zo

1 (( —(((—A, )&o —~o
(o, = — dk, e '&,e

Zo 0

with

Zo =Tr(e ') .
—PWO

(3.17)

(3.18)

(3.19)
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By taking the thermal average, we have the current density term which is linear in the magnetic field.

(J)=Tr(J'~'pi)+Tr(J'"'po)

( J(P) ) + ( J(d) )
2

y fd'k(X,'gVX(„X—(gVX;„)
2m cPl

X[I(k+)(A'+' y)Q(k )+Q(k )(A' ' y)Q(k+)], ,
2

A r fd kXKX(a&(((k).
mcp

(3.20)

(3.21)

(3.22)

In the above expression, 9 is the thermal Green's func-
tion defined as

P ic„A,Q«(k;ie„)= dA, e " G»(k;k)
0

(J'"),+(J")=0, (3.30)

and the first-order term can be written in the limit q~O
as follows:

where

=[('e, +p +(k)—]((' (3.23) y fd'k(X,',VX(, X„—VX,', )
4m cp ((''n

—( TA(q(A, ) A() (A, ') )o=5(k k')G». (k;A, —A.'),
(3.24)

X ( ~y„&y.&)( (e„.A
JmiC (3.31)
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A(~(A. ) = e A(qe

2n +1

and we define

(3.25)

(3.26)

(3.27)

This current has the lattice periodicity and is, on average,
zero in a unit cell. So, hereafter we call this the micro-
scopic current. The magnetic field induced by this
current is expressed as

B "= & rXJ d3r
c r3

Expanding the Green's function of the paramagnetic
current in powers of q as

~ 2

g f d k Tr(IQy„Qy„Q)e„„iBi,,
2m cP

& J'"&=(J'"&,+(J'"),+ & J'"&,+
and using the identity

Qy 9=m aQ

k

(3.28)

(3.29)

where l is defined with the angular momentum L as

l&&. — Xtv &r'kd r .
r

(3.32)

(3.33)

it can be shown that the zeroth-order term of the
paramagnetic current cancels the diamagnetic current

Though the terms higher than this goes to zero as q~O,
we cannot neglect the second-order term,

2

g f d k X(' —.X( —X( —.X(' A (r)
2m cP (,r, n

x(ey a.a,a+a.a,ay e a.sy a,—s a,sy a.—s)„
Jmag (3.34)

This is because J ' is the current which induces the bulk
magnetic moment, as will be discussed in the next sec-
tion.

moment:

M= r&&J 'd r.1

2c
(4.1)

IV. MAGNETIZING CURRENT

In this section, we look into the physical implication of
the current density J 's defined in (3.4). As mentioned in
Sec. III, the total magnetic moment is induced only by
this current. To see this, we calculate the total magnetic

The integral of the above is mainly contributed by the re-
gion with large r, where the oscillation with lattice
periodicity can be neglected. So, the following term in
J 's [see Eq. (3.34)] can be approximated by the average
value in unit cell.
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1, ~ 1 1
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2
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yll' (4.2)

(4.4)

Here, we assumed that the direction of the magnetic field
is parallel to the z axis and the spin factor of 2 is includ-
ed. Therefore, we have the magnetic susceptibility ex-
pression,

X=, g, fd'k Tr(y„Qy Qy„Qy 9) .
4Pp 1

m P „(2lr)
(4.5)

This is just the same as the exact formula for magnetic
susceptibility given by Fukuyama. ' It should be noted
that Fukuyama derived this formula by the use of free en-

ergy, while we have derived it here by calculating current
density. The magnetic field induced by the current

B'g 1/rXJ d
c T

can be calculated similarly as

g mug

r'

(4.6)

(4.7)

To get this expression, the singularity at r=O should be
dealt with carefully. This is the same form as the mag-
netic field induced by the magnetization m and the mag-
netic field H can be expressed as

With this approximation, the magnetic moment can be
expressed as (see Appendix A)

Mz = f mz(r)d

4 2

mz(r)=
z g 3 f d r Tr(y„Qy~Qy„Qy Q)B, (r).

m P „(2n)

H=Ho —Dm (4.8)

[see Eq. (2.14)]. So, the magnetic field induced by the
current J 'g is written as

B 's=(4n. —D)XB (4.9)

V. MICROSCOPIC CURRENT

In this section, we discuss the microscopic current
defined in Eq. (3.32) in detail. In (3.32), the microscopic
current is expressed in terms of LK basis function and
thermodynamic Green s function. In spite of its simplici-
ty, this expression is neither convenient for seeing the
physical implication of this current, nor for calculating
numerically. So, we transform it into a Bloch representa-
tion, in which the thermodynamic Green s function is di-
agonalized and, after the summation over n, is written in
terms of a Fermi distribution function. Since the calcula-
tion is rather lengthy, the details are shown in Appendix
B. The result is as follows:

The total magnetic field induced by electron orbital
motion is the sum of B " in (3.33) and B 's in (4.9).
Therefore, we obtain shielding tensor expression:

o„=[(4m—D)X—];,

g f d3k Tr(l;Qy„ty„Q)E„„,. (4.10)
m cp

In the above, the spin factor of 2 is included. This is the
chemical shift expression for crystal which we propose in
this paper. The first term in (4.10) is the demagnetizing
field contribution and the second term comes from the
microscopic current which has the lattice periodicity and
is free from the ambiguity which occurs in applying
Ramsey's expression to crystal. As will be seen in the
next section, this expression is equivalent to those by
Stephen and Hebborn. In their works, however, the
demagnetizing term which depends on the specimen
shape was introduced by macroscopic arguments. While
in the present paper, the magnetizing term is derived mi-
croscopically.

Jmic Jl+J2+J3+J4+J5 (5.1)

(5.2)

i3Vl; BVllJ = f d'k g f( 2ik + . e„„I,B~~,
4mc

(5.3)

4m c BCI 0 cell BX& Bk V cell Bk V

+m f Vll d r (2ik QI O'I+ )E„&B&,
cell

(5.4)
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4m c l~l. el —el 0 cell x„k~ cell Bk ~

Bel All
+m f R& d r (2ik Q& Vl&. + . )e„„&B&,

cell
(5.5)

Nl; BQ,J = f d k g f& f— d r(2ik Q&'Q&+ )e„&Bq,4mc I I' p v
(5.6)

with

(2ik~ AB+ ) =2ik~ AB+ A — B, (5.7)
aB a~
Bx Bx

0
(2n )' (5.8)

Here we mention that this expression is equivalent to the
volume terms of Stephen and Hebborn. Next, we inves-
tigate several limiting cases.

A. Free electron

For free electrons, the periodic part of the Bloch orbit-
al is constant. Therefore, all the terms vanish due to the
derivative with respect to the wave vector. In this case,
Eq. (4.10},the chemical shift consists only of the demag-
netizing term:

o = (4n D)X —. — (5.9)

The above is consistent with Eq. (2.14). The order of the
chemical shift given by Eq. (5.9) is 10 . This is much
smaller than the order of the Knight shift ( —10 ) for
usual metals.

akF
kF= (5.12)

By taking kF && 1, we have

e''~ s. ~ a0' = kF
me /2A

4
Ac me /2A az

(5.13)

where n is the number of electrons per unit cell. If we
take the values

~ V& ~

/(me /2' )-0.01, a/az —1,
kF —,' to estim—ate the order of the shift, we have

o —1 &(10 (5.14)

This is negligibly small as compared to the magnetizing
term (5.9}. Therefore, the bulk correction by nearly free
conduction electrons is only the demagnetizing term and
the I.orentz term vanishes. For quantitative shielding
tensor calculations in real metals, it must be remarked
that the conduction electrons have rapidly oscillating
core parts in the wave function, the contribution of
which is not included in the estimation of Eq. (5.14}.
Moreover, the contribution by core electrons must be
added to the chemical shift. by the conduction electrons.

B. Nearly free electron

2m Vse"'e'' 1—
(21T) 1)1 9 +2k.g

(5.10)

where g are reciprocal lattice vectors and Vz are Fourier
components of periodic potential. ' If we neglect all the
V except for the smallest value of g, we have the shield-
ing tensor due to the microscopic current for cubic lattice
(see Appendix C):

7T Ac me /2g Qg

1+2kF
ln —4kF

1 —2kF
(5.11)

Here, a is the lattice constant and kF is defined as

We consider only the single-band case and assume that
Fermi level is near the bottom of the band. In this case,
the Bloch function can be approximated within the first
order of periodic potential as

T

C. Atomic limit

For investigating the atomic limit, tight-binding ap-
proximation is useful.

0' g e'" "0,(r —R),
k

(5.15)

Jmic J(P)+J(d) (5.16)

1
Xg pl (r R) . Vpl(r R)— ——

R l

1—A(r —R)—.VP, (r —R), (5.17)
1

2

g fl g & X(r—R)
~
pl(r —R)

~

' . (5.18)
2mc

where P& is atomic orbital. If we neglect the overlap of
wave functions between atoms and the energy dispersion,
the remaining terms are
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The term R =0 is just the same as the expression given by
Ramsey. Furthermore, when the distance between atoms
is large comparing with the extent of atomic orbital, the
contribution from other atoms can be approximated by
localized dipole moment. In this case, we can use the
Lorentz local field formalism. It should be noted, howev-
er, that the current (5.17) and (5.18) are periodic and have
no surface. So, we calculate the dipole sum as follows.

600-

0
000 0

00

0
0 0
0

mic 4m +4 y+ (atom)

3
(5.19)

0 4oo-
0
C
tg

Therefore, the total chemical shift is written as
200 ~~~ ~ ~

~~~ ~ o ~ ~

y+ (atom)4
3

(5.20) I I

5 &0

1000/ T (K )

where o'"' ' is the shielding tensor calculated by the
term R=O in (5.17) and (5.18).

VI. APPLICATION TO THE GRAPHITE AND

COMPARISON WITH EXPERIMENT

The electronic and magnetic properties of graphite
have been studied extensively for a long time. Because of
its quasi-two-dimensionality and semimetallic character,
graphite exhibits many unique properties. The large di-
amagnetic susceptibility is one of these properties. The
measurement of the susceptibility of graphite was per-
formed by Ganguli and Krishnan. ' It was shown that
the component parallel to the c axis is about 40 times as
large as the one perpendicular to c axis at room tempera-
ture and is strongly temperature dependent. The theoret-
ical explanation was given first by McClure. ' He
showed that the interband effect between the bonding vr

and the antibonding m band play an important role.
After his work, more precise calculations' ' were per-
formed and a satisfactory agreement between the theory
and the experiment has now been attained.

Recently, a high-resolution ' C NMR measurement of
graphite was performed by Hiroyama and Kume. It was
shown that the resonance shift parallel to the c axis is
highly temperature dependent and the temperature-
dependent part is proportional to the susceptibility.

To explain the observed NMR shift, we apply the for-
malism developed in previous sections to graphite. First
we consider the magnetizing term. In calculating this
term, the values of the susceptibility and demagnetizing
factors are needed. For susceptibility, we use the experi-
mental value by Ganguli and Krishnan. For the demag-
netizing factor, we take the value of the specimen used in
the experiment by Hiroyama and Kume. Since it is
difBcult to get the absolute shift value experimentally, we
consider only the anisotropy defined with the parallel o

~~

and the perpendicular o.
~ components to the c axis of

graphite as

FIG. 1. Anisotropy of NMR shift in graphite. Open circles
are the observed values cr,b, by Hiroyama and Kume {Ref. 8).
Closed circles are the values of cr,b, —0. „.

ik (R+& )

Ala +0' g A——I (k)e P (r —R —r ),
m, R, a

where e indicate the inequivalent atoms in a unit cell.
We omit the interatomic term and the contribution from
other sites. Furthermore, we omit the derivative of both
energy and coefficients of atomic orbitals AI (k). Then,
the shielding tensor is written as follows:

~(P)+ (d) (6.3)

In Fig. 1, the observed anisotropy o' ' and the value
o' ' —o™gare plotted. From this result, we can con-
clude that the temperature-dependent part of the ob-
served shift is well explained by the term o. ' . Therefore,
the remaining temperature-independent part must be ex-
plained by the term o. ". This is reasonable, because the
values of the remaining part are about 140 and 180 ppm
for inequivalent carbon atoms, which are close to the ex-
perimental values of the NMR shift of atoms in the inte-
rior layers of higher stage graphite intercalation com-
pound (GIC). ' ' Therefore, it might be said that the
magnetization of graphite is caused mainly by the extend-
ed n. electron and the contribution of electron localized at
atom is small.

Next, we calculate the term o™c.However, it is
difficult to evaluate the terms (5.2) —(5.6) precisely. In
this paper, we calculate only the on-site terms which are
expected to be the largest contributions to o. ". For this
purpose, we use the linear combination of atomic orbitals
(LCAO) formalism. The Bloch orbital is expressed as the
linear combination of the atomic orbital.

og =o')( —op (6.1) where
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TABLE I. Calculated results of the NMR shift for graphite within the on-site approximation using
Eqs. (6.4) and (6.5).

Site Component

0'g

+II
Oa

CTy

Oa

Diamagnetic

63.3
63.3
0.0

63.5
63.2

—0.3

Paramagnetic

—451.4
—328.5

122.8
—446.0
—322.9

123.1

Dipole

3.2
—6.4
—9.6

7.0
—14.0
—20.9

Knight

—0.6
—0.6

0.0
14

—1.4
0.0

Total

—385.4
—272.3

113.2
—377.0
—275.1

101.9

f(ei(&) )—f(s( (It))
m2c2 l~l (2m)3 ei(k) —si (It) m (,m2, m3, m4, p

~1m, a ~l'm2a ~1'm 3p~lm4p

(6.4)

2

, f d'k f, 4;,A,„,(W„mc ~ I (2n. )'
r I—rr2

r
(6.5)

These are similar to the ordinarily used expressions (2.7)
and (2.8). The diamagnetic terms are the same. Howev-
er, there are two dift'erences between the paramagnetic
terms. One is the way to average within the Brillouin
zone. In the expression (2.7), integrations on wave vec-
tors of occupied states and unoccupied states are per-
formed independently, whereas in (6.4), the integration is
done on a single common wave vector. The other occurs
when there is more than one atom in a unit cell. In (6.4),
the average on the inequivalent atoms is taken as surnrna-
tion over P, while it is not in (2.7). It should be noted
that the expressions (2.7) and (2.8) are derived with a
questionable approximation in the calculation of the an-
gular momentum. Whereas, in the present formalism,
the validity of approximation is clear and there is no am-
biguity. When there is only one atom per unit cell, the
paramagnetic part of the microscopic term o' ' given by
Eq. (6.4) incidentally agrees with that used by Yamanobe
and Ando and Tsang and Resing. However, their
derivations of o' ' were not based on valid arguments.
Therefore, the magnetizing term cannot be discussed by
the theories of these authors. The fact that their expres-
sion of o' ' is not the same as the correct one Eq. (6.4)
when there is more than one atom in a unit cell might be
originated from the inappropriate treatment of the can-
cellation of the divergent terms.

With the approximated expressions (6.4) and (6.5), we
calculate the shielding tensor. To calculate numerically,
we use the result of the first-principles band calculation
by Saito et al. The result is shown in Table I. In this
table, the inequivalent atoms which have or do not have
the atoms just above and below them in the neighboring
graphite layers are denoted by a or P. The dipole and
Knight shifts are calculated by the method of Ref. 21.
The calculated anisotropies are 113.2 and 101.9 ppm for
the a and P sites, respectively, and they are only two-
thirds of the observed values 180 and 140 ppm. The
reason for the discrepancy between the calculated results

I

and the experimental results might be the on-site approx-
imation adopted in this calculation. Since the overlaps of
atoms are anisotropic, the contribution of nearest-
neighbor atoms may remove the discrepancy.

VII. SUMMARY AND CONCLUSION

In this paper, we have derived a rigorous expression
for the chemical shift in crystal. For this aim, we have
calculated the current density with the use of the
sinusoidal vector potential and the LK basis function. In
this formalism, the shielding tensor is divided into the
magnetizing term and the microscopic term. The mag-
netizing term corresponds to the demagnetizing term in
the ordinary local field theory. It is proportional to the
bulk magnetic susceptibility and depends on the shape of
the specimen. The microscopic term is induced by the
periodic current flowing in the material inner region. It
is gauge independent and free from the large cancellation
of paramagnetic and diamagnetic terms which is inevit-
able in Ramsey's expression.

In the case of the free electron, the microscopic term
vanishes and only the magnetizing term contributes to
the shielding tensor. On the other hand, when the over-
lap between atoms can be neglected and the localized-
dipole approximation is appropriate, the bulk susceptibil-
ity is the same as the atomic susceptibility multiplied by
density. In this case, the shielding tensor consists of the
magnetizing term, Lorentz term, and ordinary chemical
shift of the atom.

Generally, the evaluation of shielding tensor is compli-
cated. However, when the bulk susceptibility is small,
the magnetizing term can be neglected and the main con-
tribution is the on-site term of microscopic term. The
on-site term consists of a paramagnetic component and a
diamagnetic component. The diamagnetic component is
the same as the commonly used expression of chemical
shift in the crystal. However, the paramagnetic com-
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ponent is different from the ordinary one in the way of
averaging over the Brillouin zone. The important point
is that the ordinary expression is derived with a question-
able approximation, while in the present formalism there
is no ambiguity.

To explain the observed NMR shift in graphite, the
present formalism is applied. The temperature-
dependent part of the shift is only well explained by the
magnetizing term and the remaining constant part is
close to the experimental value of chemical shift in higher
stage GIC. This is because the magnetization of graphite
is induced mainly by the extended m electrons. To ex-
plain the constant part of the observed shift, the micro-
scopic term has been calculated within the on-site ap-
proximation using the result of the first-principles band
calculation. The calculated value is about only two-
thirds of the experimental one. This is because the over-
lap between atoms and the energy dispersion in graphite
is not so small as to be neglected. To remove the

discrepancy, more precise calculation beyond the on-site
approximation is needed.
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APPENDIX A

With the approximation (4.2), the total magnetic mo-
ment (4.1) is written as

2 AM=d — gdk„(''— ')
m cP „(2m.)'

x Tr(y.M~~y. &+y ~&y.~A p& y.d.—&y.a,S y~Sy—.~.&) (A 1)

By integrating partially, we have

2p A . q q

8 Pvx

xTr(y„a.a,cy.e+y, Sy.a.a,a y,a.ay.a,—S y,a,Sy.a.—S) . (A2)

To get this expression, we neglect the term of the unphysical surface integral. In a real material, current flows inside
the material and does not extend infinitely. So, we should think that a damping factor is included in the current expres-
sion. Therefore, the surface integral can be neglected.

When the direction of the external magnetic field is parallel to the z axis, we can assume A =0, qz ——0, we need con-
sider only the terms in which v, A, cr, cf,,p a, re x or y. After the calculation of all the terms using the identity (3.29), we
obtain

2'
Mz ——fd r g fd k Tr(y„Qy Qy„Qy Q)(Q„A~—q A")(e'q'+e q')

m P „(2n)3
If the spin factor is included, we get Eq. (4.3).

(A3)

APPENDIX B

In Bloch representation, the microscopic current is expressed as follows:

( Jmic )

where

2 ae, ., ae,*„
d k 2ik~'Mi*qVlii, +Ui'i,

~4m cp

1 . 1 .„1
'en+a ~i' 'en+9 ei" 'en+a

(Bl)

(2m.)', 1 d+ii
Jt'i =k"on+ 6')*k— d r .0 cell l BX&

In taking the summation on n, we must consider the following five cases:

(B2)
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( l ) I = I
' =I";

(2) I =I'~1";
(3) I =I'~1";
(4) I'= I "~1;
(5) I, I', and I" are different from each other.

Here, we list the equations used in the following calculations:

nil, ni. i,d r =
3 5ii (orthogonality),

cell (2m)

+nil, (r)n, „(r')= 35(r—r') (completeness),
(2m )

13 a'-'f
(iE„+p—e, )r (& —i)! Bcpl

(B4)

(B5)

(2n )
m (ei ei—)f ni' „d3r (I&1')

cell

ac(
(I =I'),

(B6)

an;, an, an,*, an, , a., an, , a., an,",

+ d r= n( d r- n, d rak„ax„ax„ak„=i ak„..» ai„ak„.,» ak,

an, , an;. , an;. an,+ik„f ni* d r ik„f— nid r+ (si —e.i)f— d r,
cell k& k„ ce» k, Bk„

(B7)
Eqs. (B6) and (B7) are derived in Appendix D. In the following calculation, we do not explicitly write the factor
(e /4m c)fd k, e„„&B& for simplicity, but we should conceive these factors to be included.

(l) I =I'= I". In this case, there is no contribution because of the factor e„z
(2) I =I'&I". Using Eq. (B3), the current can be calculated as

1 1. . . , 1
~ ~

jti'ji"i(2i—k.ni ni+ )= g j3f j7i(»k.ni ni+
i~i e(ie +",p Ei) (iE—+p s- ac,

fi fi . —
jt'i.j,",(2ik, n;n, + . ),

(~(

The first term is calculated using the completeness relation (B4) as

f n; —. d'r f n; d'r(2ik n ni+ . )
l Bn, Bn,

,„Q'2 Be, »
' Bx„»' Bk„

m af . Bni B'nif i d r(2ik~ni ni+ )0 i Bei ce» Bx Bk„ (B9a)

af-n &a„ak„
and the second term in (B8) is

k„an,f ni' d r(2ik ni ni+ ),
m cell

(B9b)

Bn, , Bn,
g (fi fi. )f ni* — d r f ni*, d r(2ik ni'ni+ )0 ( ( cell Bk& cell Bk ~

2 BS'(* BS'(*

g f, f „dr(2ik ni*ni+ )0'
( cell Bk„Bk

.an(, , ae(
g fi f ni* d r f ni* d r(2ik ni'ni+ .

) .
Q ( (e cell cell Bk ~

7

(3) and (4} I = I "&I' and I'=I "&I. It can be verified that the case (4} is the complex conjugate of the case (3).
larly to the case (2},we obtain

(B10a)

(Blob)
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m2 af d r(2ik 'Ml*nl )+c c.
O , , aE, ak. ..» ak„ (B1 la)

m af 2ik nl + . +c.c. (Bl lb)

m' f( f( —aE( f n( d' (2ik n;n(+ )+c.c. .
I i Ci —Ei Bk» Bk

(5) I, I', and I" are different from each other. In this case, the current is divided into three terms as

(Bl lc)

Jt'(j ("-((2(k.n('n(+ ' ' ' »
( ( ~(. e( —e( E( —e(

t

jtl(„j("„((2ik'M( n(, ~ ), (B12)

It

+ g jt'I"jl"I(2ik 'M(*n(+ ) .
I~I ~ I EI el el s—(—

Since the second term is the complex conjugate of the first term, these two terms are calculated as

m f(
i d r(2ik n("n(+ )+c.c. ,

ll »„k (B13a)

m' f( a&(

Q'
I I E I

—E I Bk,~ X
k„a'M(f n(* d r(2ik n('n( + )+c.c. ,
m cell

(B13b)

m n(, , an
g f(f 'MI' d r 2ik 'M(' + +c.c.0 I cell ak„ It

The third term in (B12) is calculated as

an," an,
m g f( 2ik

I V P

Pl an, , an,
Q f( f 'M(' d r 2ik 'Ml'

Q I cell ak»

(B13c)

(B14a)

(B14b)

, gf(f n(' „dr 2ik 'M(+
I cell ak& ak v

m 2 an( a'M(+,2 g f( f n(' „dr f n(' „dr(2ik, n("n(+ ) .
I I' cell k& cell ak»

t

By summing up the all terms (B9)—(Bl 1), (B13),and (B14),we obtain

(B14c)

(B14d)

i f d r+k„f 'Ml' d r+rn f 'M(' d3r (2ik n(en(+ . . ),0, BEI » Bx„Bk„"»
' Bk„ Bk„dl ' Bk

2 an,* an,
, gf, f „dr(2ik n(n(+ . ),

0, , » Bk„ Bk

a ( a'M(
+m g 2ik nl* + +c.c. ,

(B15a)

(B1sb)

(B15c)

anl* anl
+m g f( 2ik

m' f( f( ae(—
'M,* d r(2ik 'M(*n, + )+c.c. ,0 I I EI —Ct Bk ll Bk

(B15d)

(B15e)
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m fl+, g i d r(2ik nl*nl + )+c.c. ,B&„Bk
(B15f)

e

al f, BE,

O'
I I cl —CI ak

k„an,f ni' d r(2ik nl'ni+ . . )+c.c.
Pl cell

(B15g)

Furthermore, using the Eq. (B7), the term (B15f) can be calculated as

an,* an, ,i f d r(2ik nl"nl+ ),
l~l' El El' cell X& kv

m fl BE( ani BE( Bni+, g k f ni' d r —
„

f nid r (2ik ni'nl, + ),

m fl an, , an;,
k& f nl* d r —k& f nld r (2ik nl nl, + ),

cell Bk cell Bk

(B16)

an,*, an, ,g fl f d r(2ik nl'n(, +. ) .n, ,. ..ii ak„ak,

And the term (B15c) is rewritten by partial integral as

an, an,*—2im gf, nl „—„n,5 „,
(B17)

Here, we assume that the position of an atom is at r =0
and the phase of periodic potential is taken as

Vs
———

~ Vs ~. Further, if we neglect the higher-order
terms in g than the terms with

an; an,—2m2+ fl 2ik So=
a

(+1,0,0), (0, +1,0), (0,0,+1), (C4)

Therefore, we obtain the final expression (5.2)—(5.5).

APPENDIX C

If we keep only the first-order term in Vg, all the terms
except for (5.2) vanish and the microscopic current is
written as

V e'g'
Jmic 2e l d3k y s

A'c (2lr)' s (0 +2g k)'
—$g fr e

B'xg .
(9 +2g k)'

(Cl)

From the Maxwell's equation

for cubic lattice, the shielding tensor is written as

16me 1 d3k 1

(2 )3 so ~ (g2+2k g )2

1

(90+2k Q0)

By performing the integration, we get the Eq. (5.11).

APPENDIX D

By difFerentiating the Schrodinger equation

(C5)

rotB= J,4~
C

(C2) 1

2@i
~ + V(r) 4n =El(kW'll (D 1)

we have the magnetic field induced by the current (Cl).

2 V elg k

Bmic 8~ 1 d3k y g

fi'c' (2n. )3 s~0 (92+2g k)'

with respect to wave vector, we have

VIe —Eg k
g

(0 +2g.k)

(B Xg)XgX (C3)

„ae,'
V —V+@& e'"'

2m P
+—

B +Bkm Xp

(D2)

If we multiply this by P&z and integrate over the unit cell,
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we obtain the lower equation of (B6) and if we multiply
by ziti'z, the upper equation is obtained. Furthermore, if
we multiply by

an;, an, , k„an;.

we get

„an;,„aq,*,
„

Bk
(D3)

Bk f Bkcell Bk

where A, is calculated as

(D4)

V —V+e, e' 'ikr
cell Bk 2m

d r+i f g&'x„V—V+eI e'"'
cell 2m

a; „anie—, gi'+ei e'"' d r+i [( e, f('—) xv+g(' x„ei]e'"'Bk„ak ceH

Bgi',„Bni+-
m ce11 BX Bk&

BE( Bni Bni' Bni an;, an,
ni d r —ei d P +Et d TBk„ceo Bk~ ell Bk„ak~ eel Bk„akim

Bni" Bni k„an(

d T
Bk„

Therefore, Eq. (B7) is derived.
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