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Electronic band structure and nonparabolicity in strained-layer Si-Si; _, Ge, superlattices
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We report a pseudopotential calculation of the nonparabolicity of the conduction and valence
minibands for Si-Si,_,Ge, strained-layer superlattices of period 10-30 A. We find that the
conduction-band nonparabolicity in directions both perpendicular (z) and parallel to the interface
planes is several orders of magnitude larger than that for bulk silicon and is comparable in magni-
tude with the value for bulk GaAs. Along the superlattice axis (z), the conduction-band nonpara-
bolicity is dominated by virtual transitions involving the lowest conduction states and strongly
reflects the energy separation between them. Since this separation depends on strain and layer
widths, the magnitude of this nonparabolicity can be “tuned” over 2 orders of magnitude. In the
valence band, and along the direction parallel to the interface planes in the conduction band, the
nonparabolicity is dominated by virtual excitations across the fundamental gap. The effective
masses are also presented. A comparison is given of the mechanisms determining band nonparabol-
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icity in Si-Si, _, Ge,, GaAs-Ga,_,Al, As, and GaAs-GaAs, _, P, superlattices.

I. INTRODUCTION

Recent calculations by Morrison et al.! using a pseudo-
potential scheme have revealed several interesting
features of Si-Si, ,Ge, strained-layer superlattices. The
effect of strain in Si-Si, sGe, s (001) superlattices grown
on a buffer layer of Siy.sGey,s causes the conduction
electrons to be confined in the silicon layers [Fig. 1(a)].
This is the result predicted by the pseudopotential
method,? in agreement with the experimental findings of
Abstreiter et al.®> However, if the atoms are assumed to
occupy the cubic positions of a conventional unstrained
superlattice, then the electrons are confined in the alloy
layers [Fig. 1(b)]. Therefore, in these structures the strain
not only affects the degree of confinement, but determines
the layer in which the electrons are confined. Quantita-
tive results have also been obtained which demonstrate
the enhanced momentum mixing, brought about by the
combined effects of strain and zone folding. The most
important result is the effect on the optical matrix ele-
ments across the superlattice band gap. In systems with
ultrashort periods the oscillator strength of this transi-
tion is enhanced to within 2 orders of magnitude of that
associated with direct-gap materials (Fig. 2).

The results presented so far are concerned with the
basic features of the electronic structure of the Si-
Si,_,Ge, strained-layer superlattice, e.g., band gaps and
principal transitions. In this paper we report calculations
of higher-order effects in these systems that give a better
understanding of the details of the electronic band struc-
ture. In particular, we concentrate on the virtual-
excitation processes which determine the band curvature
at important k points and compute effective masses and
band nonparabolicities. No such results are available in
the literature.

Dispersion curves are presented showing the variation
in energy through the Brillouin zone for the states near
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the band edges. Nonparabolicities are determined in
directions both parallel and perpendicular to the inter-
face planes for the conduction- and valence-band-edge
states.

We have focused most of our attention on the superlat-
tice conduction band. It turns out that in this case the
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FIG. 1. Sketch of the confined electron states in the conduc-
tion band for (a) the strained model, (b) the “unstrained” model,
and (c) the “unstrained” model with the pseudopotentials shift-
ed by 245 meV.
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FIG. 2. Plot of the oscillator strength, associated with the
transition across the fundamental gap, as a function of the su-
perlattice period.

band curvature is of quite different origin compared to
that reported for other materials, for example, GaAs-
Ga,_,Al As (Ref. 4) and GaAs-GaAs,_,P, (Ref. 5).
The conduction minima in bulk silicon lie along the A
line in the Brillouin zone towards the zone-edge X points.
Consequently, the zone folding along the superlattice
[001] axis causes the position of the folded minimum
within the superlattice Brillouin zone to vary as a func-
tion of the superlattice period. Also, the superlattice
states with energies lower than that of the bulk X point
are found to be quasidegenerate. The band structure in
the region of the bulk minima is nearly-free-electron-like,
and therefore the bands are virtually parabolic. In the
superlattice the enhanced momentum mixing causes new
transitions to be allowed which greatly affect the curva-
ture of the band. The most significant virtual transition
in the short-period superlattices discussed here is that be-
tween the quasidegenerate ground states, which are both
related to the bulk minimum. In contrast, the minima of
the GaAs-Ga,_, Al As (Ref. 4) and GaAs-GaAs;_ P,
(Ref. 5) superlattices are at the Brillouin-zone center, I,
and the principal virtual excitations are between either
the valence states or the conduction states from the fold-
ed bulk X point.

A further difference occurs in the directions parallel to
the interface planes. In the GaAs-based superlattices the
conduction-band curvature in these directions is un-
changed from that of bulk GaAs. In bulk silicon there
are six equivalent conduction minima in the [100], [100],
[010], [010] [001], and [001] directions. As a result of
this symmetry in the energy surfaces the nonparabolicity
is the same in the [100], [010], and [001] directions. In
the Si-Si, _, Ge, superlattice, the effect of strain is to split
the minima into a fourfold- and a twofold-degenerate
state. In the systems considered here the conduction
electrons are confined in the silicon layers, and the
twofold-degenerate minima in the silicon is lower in ener-
gy than the fourfold-degenerate state. Therefore the con-
duction electrons will principally be found in the
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twofold-degenerate minima, which are aligned with their
major axis parallel to the superlattice axis. Thus the non-
parabolicity which affects the transport of electrons in
the direction parallel to the interface planes is determined
by the curvature of the twofold-degenerate minima in the
direction of the transverse mass.

Our results show that the conduction-band nonpara-
bolicity in directions both perpendicular and parallel to
the interface planes is increased relative to that in bulk
silicon, and is comparable to that in bulk GaAs.

In the bulk valence band the maximum is at I', and so
the position of the band extremum (maximum) is
unaffected by the zone folding. The uppermost valence
states are confined in the alloy layers, and the valence
band in the bulk alloy is distinctly nonparabolic. We find
that the nonparabolicity in the superlattice is of the same
order of magnitude as that in the bulk material.

Effective masses for the conduction and valence bands
are also presented. The conduction-band values are only
given for the twofold minima since the effective masses in
the fourfold minima are bulklike.! The zone folding is
expected to affect the longitudinal masses, while the
strain can affect both the longitudinal and transverse
masses. We find that only the conduction-band longitu-
dinal effective mass is significantly different than the bulk
value.

II. METHOD OF CALCULATION

The procedure used for these calculations is based on
the pseudopotential approach of Jaros et al.%” The appli-
cation of this method to Si-Si;_,Ge, strained-layer su-
perlattices is described in detail in Ref. 1. In all the sys-
tems considered here it is assumed that the superlattice is
grown on a buffer layer of Si,_,Ge,, where the layer of y
corresponds to the overall germanium concentration of
the superlattice. In this arrangement the strain is distri-
buted symmetrically in both constituent layers. The lat-
tice constant parallel to the interfaces is taken to be that
of the buffer layer, while the perpendicular lattice con-
stants in each material are calculated by minimizing the
elastic strain energy.®® The superlattice wave functions ¢
are obtained as an expansion of the buffer-layer eigen-
functions ¢,

¢=2 Ank¢nk s (1
nk

where n is the band index and k the wave vector.

Except where stated otherwise, the systems described
in these calculations are Si-Sij Ge, 5 superlattices. It is
assumed that the unit cell contains equal numbers of sil-
icon and alloy atoms, and therefore the buffer layer is
Sip 75Geg 25

The maximum-period superlattice considered here is
27.5 A, the reason for this limitation being as follows.
The superlattice wave functions in Eq. (1) are formed
from an expansion of the bulk eigenfunctions in the
buffer layer. For these calculations the expansion set was
limited to the three uppermost valence bands and the
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four lowest conduction bands. Morrison et al.! have
demonstrated that this is sufficient for calculations with
periods of up to 44 A.

The nonparabolicity of a system determines the extent
to which the band structure at an extremum deviates
from the parabolic form, where the energy E is propor-
tional to the square of the wave vector k. In symmetric
structures a dependence of E on odd powers of & is ruled
out by symmetry. Consequently, the lowest-order correc-
tion to the parabolic relation is given by a term which de-
pends on k to the fourth power, i.e., the energy can be
written as

E=Ak*+Bk*+ --- . (2)

Thus the magnitude of the nonparabolicity is given by
the fourth derivative of the band energy E, with respect
to the wave vector k. Energy-versus—wave-vector
dispersion curves are shown in Figs. 3-5. However, a
calculation of the fourth derivative by a visual inspection
of the curves is impractical and likely to lead to consider-
able error. |

8399

1. 30

1.25

(eV)

ENERGY

I P
FIG. 4. Conduction-band dispersion relations for a 22.0-A-
period Si-Siy sGe, s strained-layer superlattice.

Instead, the value of d*E /dk* is calculated as follows.
Using perturbation theory the fourth order approxima-
tion to the energy in the superlattice band N, for which
the fourth derivative is required, can be written as

E](\;”___ 2 2 2 VsN Vts Vu! VNu _ 2 VIN VNN Vut VNu _ VsN us VNN VNu
s#N t#N u#=N EsNEtNEuN t£N u%N EzZNEuN s#<N u#N E&NEsN
VIZVN|VMN‘2 lelequN'Z
O T D ®
u#N E3N s#N u#N E3NE5N
—
where E,, =E, —E,, and s, t, and u label the superlattice M, (ky)= f u? (ko r)pu, (ko r)dr , (5)

states. The potential terms V are given by a k-p expan-
sion due to Kane,!©

Vi =(#/m ) (k*—k§)8,, +(#/m )(k—ko) M, (ko) .
4)

k, is the wave vector at which the superlattice calculation
is performed, and the matrix elements are
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FIG. 3. Energy-vs—wave-vector dispersion relations for the
three lowermost conduction bands of an ll.O-A-period Si-
Siy sGe s strained superlattice. The dispersion is shown along
the superlattice axis from the Brillouin-zone center, I to the su-
perlattice Brillouin-zone edge P. The energies are measured
from the top of the valence band at I".

p being the momentum operator. By differentiating Eq.
(3) four times with respect to k and substituting for the
matrix elements M,,,.(k,) and the eigenvalues at the wave
vector k, the value of d*E /dK* can be found.

Thus the value of d*E /dK* is given by the product of
four matrix elements divided by the product of three en-
ergies, the energies being measured from the band for
which the nonparabolicity is required. The states nearest
in energy to the relevant band, and between which transi-
tions are allowed, most affect the nonparabolicity of that
band.
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FIG. 5. Conduction-band dispersion relations for a 27.5-A-
period Si-Si, sGe, 5 strained-layer superlattice.
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A much simpler approach can be used initially to
determine qualitatively the factors which affect the non-
parabolicity. Consider that E, is the parabolic approxi-
mation to the eigenvalue equation, where

#2k 2

E,=—*. (6)

Then, in the nondegenerate case it can be shown (e.g., see
p. 12 of Ref. 11) that the second-order correction to this
is to include the effects from other states so that

E(k)=E +§‘,lV;'lz (7)
a < Ea_El ’

where the V. represent the Fourier components of the
periodic potential. Therefore states which are lower in
energy than E, will tend to raise the energy E (k), while
states which are higher in energy will tend to lower E (k).
If the dominant transitions are from the lower-energy
states, then the band in question will bee raised in energy
above the parabolic approximation, and therefore the
value of B in Eq. (2) will be positive. Conversely, if the
higher states dominate in the transitions, then the band
will be pushed below the parabolic form, and so the value
of B will be negative.

Nonparabolicities for two other systems, an ‘“un-
strained” Si-Si;_,Ge, superlattice and a bulklike struc-
ture, have also been evaluated for comparison with the
strained superlattice results. Both systems can be
modeled using this pseudopotential scheme of the
strained superlattice but with minor changes.

The ‘“‘unstrained” Si-Si,_,Ge, superlattice has been
studied previously by Morrison et al.> The atoms are
placed in a cubic arrangement with the lattice constant
throughout the superlattice being that of the substrate.
This represents an unstrained system in the fact that the
atoms occupy cubic lattice positions rather than being
displaced to form tetragonal unit cells as in the strained
model. The unstrained model does not represent a real
superlattice, i.e., one that could be constructed, but is
useful in determining how the strain, as manifested in the
displacement of the atoms, affects the band structure.
The strain also affects the barrier potential,12 and for Si-
Sip sGey s the change is such that electrons in the un-
strained model are confined in the alloy [Fig. 1(b)].2 Con-
sequently, a calculation of the conduction-band nonpara-
bolicity in the unstrained system described above would
result in a value of the band nonparabolicity in the alloy.
Since the electrons in the strained system are confined in
the silicon layers, this would not be a useful comparison.
The situation can be rectified by rigidly shifting the con-
duction bands of the alloy and the silicon relative to each
other so as to obtain confinement in the silicon layers.
For these calculations a shift of 245 meV is applied [Fig.
1(c)].

In the bulklike calculation the atoms are assumed to
occupy cubic lattice positions, as in the unstrained super-
lattice, but the superlattice is filled with either silicon
atoms or alloy atoms.

IIT. NUMERICAL RESULTS

In this section we examine the various features of the
band curvatures and the mechanisms responsible for
these effects. The dispersion and nonparabolicity are dis-
cussed in three subsections. In the conduction band the
effects observed along the superlattice axis are treated
separately from those seen in the directions parallel to the
interfaces since the important virtual transitions are very
different in the two cases. In the valence band the non-
parabolicities in both directions are discussed together.
The effective masses in both bands are discussed in a
fourth subsection. Comparison with a bulklike calcula-
tion has been included where possible.

A. Conduction-band nonparabolicity along the superlattice axis

The results described in this subsection relate to Si-
Siy sGeg 5 superlattices where the unit cells contain equal
numbers of silicon and alloy atoms. The buffer layer is
therefore Sij ;5Geg 5.

In the “unstrained” superlattice calculations the silicon
and alloy conduction bands are adjusted relative to one
another by 245 meV as described in Sec. II. This ensures
that the electron confinement in the conduction band is
roughly the same in both the strained and unstrained
models. The shift also affects the valence band, but the
valence-band potential barrier is large, so any adverse
effects should be limited. Also, the results show that the
band curvature in this direction is virtually unaffected by
transitions from the valence band; therefore any changes
in the valence-band energy levels should have a negligible
effect.

For the bulk calculations the superlattice is filled with
silicon atoms, this being a relevant comparison since in
the superlattice the electrons are confined in the silicon
layers.

The energy-versus—wave-vector dispersion curves
along the superlattice axis are presented in Figs. 3-5 for
periods between 11.0 and 27.5 A. The curves are gen-
erated using a k-p expansion about a superlattice calcula-
tion at a single k point, except in the ll.O-A-period case,
where, due to the size of the superlattice Brillouin zone,
the curve is constructed from k-p calculations about two
k points in the zone. The validity of the k-p method can
be seen by comparing the curves for the two lowest con-
duction bands in Figs. 4 and 5 with those published by
Morrison and Jaros,!® which are the result of a series of
superlattice calculations at various values of k in the
range of [ -P.

The calculated values of d*E /dk* at the Brillouin-zone
center I' and at the folded minimum along the superlat-
tice axis are given in Table I. In comparison, the bulk sil-
icon calculation yields a value of less than +10~* eV A*.
In fact, the superlattice results are comparable in magni-
tude with the value of d*E/dk* in bulk GaAs of
3.8x10* eV A* obtained by Brown et al.* Three main
points can be noticed from these results. First, all of the
superlattice systems considered here have significantly
nonparabolic conduction bands. Second, the results ob-
tained with the unstrained model are within a factor of 2
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TABLE 1. The values of d*E /dk* for the ground-state con-
duction band in the directio&perpendicular to the interfaces.
The results, in units of eV A’, are given at the ground-state
conduction-band minimum and at I" for both strained and un-
strained lattices. The corresponding value for bulk GaAs is
3.8x10° eV A",

Strained Unstrained

11.0-A period minimum —1.9%x10° —1.8% 10}
22.0-A period minimum —6.0%x10° —5.2x10°
r —6.6X10° —1.0x10°

27.5-A period minimum —2.4x10* —2.3%10*
r —3.7x10° —6.2%10°

of those from the strained model. Third, the values of
d*E /dk* vary by 2 orders of magnitude. These points
are discussed below.

The results in Table I indicate that the superlattice
conduction band is distinctly nonparabolic. By compar-
ison, the conduction band in bulk silicon is very nearly
parabolic for a large range of values of k around the bulk
minimum. In fact, the value of d*E /dk* in the superlat-
tice is enhanced by a factor of at least 107 relative to the
bulk. The sign of the fourth derivative is also altered
since in the superlattice calculations the result is nega-
tive, while in the bulk case it is positive. To understand
the reasons for these differences it is necessary to consider
which virtual excitations are responsible for the nonpara-
bolicity in the two cases.

Consider the bulk system first. The nearest states in
energy to the ground-state conduction band and, there-
fore, from the discussion in Sec. II, the states which are
most likely to affect the nonparabolicity, are the adjacent
conduction states. In bulk silicon the transitions between
these states are disallowed, so the related matrix elements
are virtually zero. Finite matrix elements are obtained in
transitions between the conduction ground state and the
valence band, but these transitions are weak and the ener-
gy separation is relatively large (greater than 1 eV); there-
fore, the band remains very nearly parabolic. The princi-
pal transitions are from states which are lower in energy,
and the value of d*E /dk* is positive, showing that the
band has been pushed in energy as predicted by Eq. (7).

In the strained superlattice, recent results'® have
shown that the matrix elements across the band gap are
enhanced by up to 3 orders of magnitude in comparison
with the “unstrained” model. Therefore, an increase in
the value of d*E /dk* is expected for the strained system
which should not be seen in the calculations with the
“unstrained” model. However, the contribution to the
fourth derivative from these interband transitions is
negligible in comparison to that from intraband excita-
tions between the lower conduction states. In particular,
the virtual transition between the two lowermost conduc-
tion states is the most significant in terms of the effect of
the ground-state nonparabolicity. The existence of a
finite transition probability between these two states is
quite remarkable since they are quasidegenerate, both
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originating from the bulk minimum. The contribution of
these virtual excitations is enhanced by the quasidegen-
eracy, i.e., the splitting between the states is small. Since
the transitions which make the conduction band nonpar-
abolic are from states which are higher in energy, the
effect is to push the ground-state energy below the bulk
(parabolic) band and, therefore, the value of d*E /dk* is
negative.

The similarity between the results with the strained
and unstrained models is at first sight unexpected because
the optical matrix elements across the superlattice band
gap are known to be enhanced by several orders of mag-
nitude. The results are seen to differ by factors of up to 2,
but this is a comparatively small effect in comparison
with the variation from the bulk-silicon nonparabolicity.
It is important, however, to realize that the similarity be-
tween the two results does not mean that the strain has
little effect on the nonparabolicity. It has already been
shown that in the absence of strain the electrons are
confined in the alloy rather than in the silicon layers.
This effect of the strain on the microscopic potential has
been accounted for by rigidly shifting the conduction
bands, as described in Sec. II. Thus the similarity of the
strained and unstrained results actually shows that for
the purpose of calculating conduction-band nonparaboli-
cities the effect of strain can be estimated by simply ad-
justing the potential barriers to reflect the strained super-
lattice confinement. This makes it possible to model simi-
lar structures in a much simpler way, i.e., without
recourse to the full-scale strained-layer calculation.

It has been stated above that the enhancement in the
matrix element across the gap in the strained model has
little effect on the conduction-band nonparabolicity.
However, it is necessary to explain why the matrix ele-
ment between conduction states should be virtually the
same in both the strained and unstrained models, while
the matrix element across the band gap varies by several
orders of magnitude. The reason for this difference can
be explained as follows. The optical matrix element de-
scribes the transition probability between the valence-
band maximum at I" and the conduction-band minimum
near X. The enhancement of this matrix element due to
strain demonstrates a mixing across the entire Brillouin
zone and, therefore, over a short range in real space. By
contrast, the lowermost conduction states, which deter-
mine the fourth derivative, are all localized in the same
small region of k space. Therefore the mixing which
enhances these matrix elements is of short range in k
space and of long range in real space. The small devia-
tions in the atomic positions due to strain give a short-
range effect in real space, which enhances the mixing
over a large region of k space, while the superlattice po-
tential acts over a relatively long range in real space and,
therefore, over only a localized region of k space.

The range of values of d*E /dk* in Table I covers 2 or-
ders of magnitude, although the period only varies by a
factor of 2.5. There is some correlation between the mag-
nitude of the fourth derivative and the energy separation
of the lowest two conduction states. As the energies of
the two states come closer together, the fourth derivative
increases. There are, of course, other factors involved
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since, as the energies change, so the transition probabili-
ties between the states change, and the contributions
from higher states cannot be neglected. A twofold reduc-
tion in the energy separation of the first two states does
not necessarily increase the fourth derivative by a factor
of 2%; however, the results do suggest that the magnitude
of the fourth derivative could be significantly enhanced
by suitably tuning the properties of the lowermost con-
duction states. Such tuning can readily be achieved by
changing the layer widths, or by altering the alloy con-
centration of either the constituent layers or the sub-
strate, which, in turn, affects the degree of strain.

B. Conduction-band nonparabolicity parallel
to the interface planes

Calculations of d*E /dk* along the direction parallel to
the interface planes have been performed with a variety
of Si-Sij sGe, s superlattices in which the thicknesses of
the silicon and alloy layers are not necessarily equal. The
buffer layer in each case is assumed to have the same ger-
manium and silicon concentrations as in the superlattice;
thus a superlattice constructed of 18 monolayers of sil-
icon atoms alternating with 2 monolayers of alloy atoms
has a buffer layer of Sij ¢sGeg os. Calculations have also
been performed with a Si-Ge superlattice system grown
on a buffer of Siy sGe s.

The values in Table II represent the nonparabolicity
near the position of the folded minimum on the superlat-
tice axis. Since the calculations are performed along a
direction parallel to the interface planes, this represents
the direction of the transverse mass. As described in Sec.
I1, this minimum is lower in energy than the fourfold-
degenerate minima, which have their major axis aligned
parallel to the interfaces, and so is of more interest with
regard to the transport properties. Since the lattice con-
stant parallel to the interfaces is the same in each of the
constituent layers (and is equal to the lattice constant of
the buffer layer), the strained and unstrained models pro-

TABLE II. The values of d*E /dk* for the ground-state con-
duction band of the strained system in the direction parallel to
the interfaces. The results, in units of eVA , are calculated at
or near the position of the folded minimum on the superlattice
axis, with the wave vector k being measured from the minimum.

d*E /dk*

Si(5.5 A)-Sig sGeys(5.5 A) k=0 2.0x 10°
Si(8 A)-Siy sGeo 5(3 A) k=0 1.9 10°
k=0 2.1x10°

Si(3 A)-Si, sGe, 5(8 A) k,=0.01 2.1x10°
k,=0.03 2.0x10°

Si(11 A)-Siy sGegs(11 A) k=0 1.6 10°
Si(14 A)-Sig sGeg 5(14 A) k=0 1.0x 10°
k=0 1.5x 10°

Si(24.5 A)=Si sGeos(3 A) k,=0.01 1.5%x10°
k,=0.03 1.5x 10

Si(3 A)-Sij sGey 5(24.5 A) k=0 1.8x10°
Si(5.5 A)-Ge(5.5 A) k=0 3.3x10°
Si(14 A)-Ge(14 A) k=0 1.8%10°
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duce virtually identical results. The results quoted are
those obtained with the strained model.

From the results in Table II it can be seen that the
values of d*E /dk* for the Si-Sij sGe, s superlattices vary
only by a factor of 2 between the smallest and largest re-
sults. In the Si-Ge systems the values of d*E /dk* are
again covered by a factor of 2, although the results are
slightly larger than with Si-Si, sGe, s superlattices of
similar structure. This is probably due to the increase in
the confinement potential of the germanium barrier layer.
There also appears to be a slight dependence on the
period. The shorter lattices tend to have larger nonpara-
bolicities, but with the small range of values available it
cannot be stated whether this is a general rule. The re-
sults also show that the nonparabolicity does not change
noticeably at wave vectors slightly away from the
minimum.

The nonparabolicity along the parallel directions there-
fore appears to be fairly insensitive to changes in the su-
perlattice parameters. This is in sharp contrast to the re-
sults along the superlattice axis, where variations in the
period and movement away from the minimum cause
order-of-magnitude changes in the nonparabolicity.

In the plane parallel to the interfaces, as in the bulk,
virtual transitions between the lower conduction states
are disallowed. Large matrix elements are, however, ob-
served between the p-like conduction ground state and s-
like states that are deep in the valence band. These states
have energies at least 3 eV below the conduction-band
edge, but the large transition probabilities cause them to
dominate the nonparabolicity. Since the energy separa-
tion is large, the fourth derivative is fairly insensitive to
small changes in the energy of these states, and this ex-
plains why the nonparabolicities are not greatly affected
by changes in the superlattice parameters. The possibili-
ties of enhancing the parallel nonparabolicity by en-
gineering the energy bands seems to be rather limited.

C. Valence-band nonparabolicity

The results obtained in this subsection are for Si-
Sij sGe, s superlattices with approximately equal barrier
and well widths. In the “‘unstrained” model no adjust-
ment was made to the pseudopotentials since confinement
occurs in the alloy layers for both the strained and un-
strained systems. A calculation in which the superlattice
is filled with Si, sGe, s atoms is used as the bulk compar-
ison.

The dispersion along the superlattice axis of the upper-
most valence bands in the region of T is illustrated in Fig.
6.

The values of d*E /dk* at the Brillouin-zone center I’
for the uppermost valence band are presented in Table III
for directions along the superlattice axis and parallel to
the interface planes. The range of values obtained with
the strained superlattice cover an order of magnitude, but
there is no obvious relation between the values of the
fourth derivative and the variable parameters of the su-
perlattices. The band curvature is principally due to vir-
tual excitations between the valence band and the con-
duction states which lie about 2 eV above the conduc-
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FIG. 6. Energy-vs—wave-vector dispersion relations for the
four uppermost valence bands of a 22.0-;\-period Si-Sij sGeg 5
strained-layer superlattice. The dispersion is shown along the
superlattice axis for the region near the Brillouin-zone center I'.
The wave vector k is measured in units of 27/ 4, where A is the
lattice constant of the buffer layer Sij ;5Geg 5.

tion-band edge. There is also a small contribution from
transitions within the valence band which is about an or-
der of magnitude smaller than that from the conduction
band and of opposite sign.

The unstrained superlattice calculations produce val-
ues of d*E /dk* of the same magnitude as those from the
strained superlattlce, and the bulk value, of approximate-
ly —3x10° eV A% is also in this range. Similar virtual
transitions are responsible for the nonparabolicity in
these cases. It can be concluded that the effects of strain
and zone folding do not necessarily enhance the valence-
band nonparabolicity; in fact, in some cases the nonpara-
bolicity appears to be reduced. However, the fact that
the results vary by an order of magnitude suggests that it
may be possible to obtain an optimum nonparabolicity in
a given direction by suitably selecting the superlattice pa-
rameters.

D. Effective masses

The effective mass m *
bation theory as

is given by second-order pertur-

1
m

-1
* me

(8)

TABLE III. The values of d*E /dk* at the Brillouin-zone
center I for the valence-band edge along the directions parallel
and perpendxcular to the interface planes. The results are in
units of eV A",

Parallel
to interfaces

Perpendicular
to interfaces

11.0-A period strained —1.8x10° —9.6x10°
22.0-A period strained —3.5x10° —1.0x10°
27.5-A period  strained —4.1%10° ~2.1x10°

unstrained —7.3x10° —5.3x10°

where m, is the free-electron mass. The values of the ma-
trix elements M,,. and the energy separations E, —E,,
have already been discussed in the preceding subsections.

In the conduction band the masses of the fourfold-
degenerate minima, in the [100] and [010] directions, are
assumed to be bulklike.! In the twofold-degenerate mini-
ma it has been seen that strong virtual excitations exist in
the superlattice that are not present in the bulk material
and that significantly affect the band curvature. The lon-
gitudinal mass, along the superlattice axis, is found to be
0.54m, and 0.35m, in the 22.0- and 27.5- A- -period Si-
Sij sGey, 5 strained superlattlces, respectively. In compar-
ison, when the superlattice is filled with silicon atoms to
obtain the bulk result, a value of 1.0m, is obtained, which
is the expected value for a parabolic band. The superlat-
tice effective mass is determined by virtual transitions in-
volving the lower conduction states.

In the direction of the transverse mass the superlattice
effective mass of 0.19m, is virtually unchanged from the
bulk value of 0.20m, and appears to be unaffected by the
superlattice period.

In the valence band the superlattice effective masses at
the Brillouin-zone center, I' of the band edge are calcu-
lated to be 0.21m, and 0.17m, in the directions parallel
and perpendlcular to the superlattlce axis, respectively,
for the 22.0- A-perlod superlattice. The effective mass
along the superlattice axis is found to vary slightly with
the superlattice period, while the masses in the perpen-
dicular directions are unchanged. When the superlattice
is filled with Si, ;Ge, 5 atoms, a bulk value of 0.16m, is
obtained in each direction.

IV. DISCUSSION AND CONCLUSIONS

We have presented results concerning the band curva-
tures in Si-Si;_,Ge, strained-layer superlattices with
periods of 10- 30 A. The band curvature has been de-
scribed qualitatively in terms of dispersion curves and the
relevant virtual excitations, and quantitatively as effective
masses and nonparabolicities (i.e., the second- and
fourth-order derivatives of energy versus wave vector, re-
spectively).

In the valence band the nonparabolicity and effective
mass are approximately the same magnitude in the super-
lattice as in bulk Sij sGeg s.

In the conduction band the differences between the su-
perlattice and the bulk are far more noticeable. Along
the superlattice axis three main differences are observed.

(i) The position of the minimum within the superlattice
Brillouin zone varies as a function of the superlattice
period.

(i) The bulk minima are virtually parabolic, while in
the superlattice the nonparabolicity is marked and is ap-
proximately equivalent to that in bulk GaAs.

(iii) The longitudinal effective mass in the superlattice
is noticeably smaller than in the bulk.

The variation of the position of the minimum occurs
because the bulk minima lie away from the high-
symmetry points of the Brillouin zone. Therefore the po-
sition of the minimum along the superlattice axis is
affected by the zone folding.
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The differences in cases (ii) and (iii) above indicate that
the curvature of the superlattice bands differ significantly
from that predicted for the bulk material. This is due to
the virtual transitions between the lower conduction
states, which are allowed in the superlattice but not in the
bulk. The importance of these terms in affecting the
band curvature is enhanced by the small energy separa-
tions involved. The effective mass and the nonparabolici-
ty are proportional to the inverse of the energy separation
and to the inverse of the energy separation cubed, respec-
tively. In the systems considered here the lowest two
conduction states are separated by energies of between 10
and 200 meV, whereas transitions across the fundamental
gap involve an energy change of at least 1 eV. Thus the
virtual excitations between the conduction-band states
dominate the band curvature. In fact, the nonparabolici-
ty is so strongly dependent on the separation of the lower
conduction states that the value can vary by 2 orders of
magnitude for comparatively small changes in the super-
lattice parameters. This sensitivity suggests that “tun-
ing” of the superlattice would be possible to obtain a
desired value of nonparabolicity.

The effect of strain on the nonparabolicity of these
structures is of great interest. We have shown that it is
possible to estimate the band nonparabolicity with
reasonable accuracy using a simple model in which the
atoms occupy cubic lattice positions, as in the bulk ma-
terial. In order to do this, the conduction-band edges of
the constituent layers must be shifted relative to one
another to reflect the potential barriers seen in the
strained-layer superlattice. The full-scale strained-layer
calculation is still needed in order to determine the re-
quired energy shift. The applicability of the simple mod-
el has only been demonstrated for the range of superlat-
tices considered in this study, where the conduction-band
nonparabolicity is dominated by the transition between
the lower conduction states. To extend the use of the
simple model to structures where this transition is not
dominant would most probably lead to erroneous results
since it has been demonstrated that certain transition
probabilities, for example, those across the superlattice
band gap, are severely underestimated in the simple mod-
el.

The conduction band parallel to the interface planes is
also of interest due to the splitting by strain of the degen-
erate minima. The minima having their major axis along
the superlattice axis are lowest in energy. Therefore, the
electron transport parallel to the planes is determined by
the minima along the superlattice axis, and so the
relevant nonparabolicity is that measured in the direction
of the transverse mass. The corresponding nonparaboli-
city is at least an order of magnitude less than in bulk
GaAs, but is several orders of magnitude larger than the
bulk Si value measured along the direction of the longitu-
dinal mass.

It is interesting to compare these results with the
conduction-band nonparabolicities obtained for GaAs-
Ga,_,Al As (Ref. 4) and GaAs-GaAs,_, P, (Ref. 5).
The principal differences can be summarized as follows.
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(i) In the Si-Si;_,Ge, system the minima are away
from the major symmetry points, and therefore the posi-
tion of the minimum within the superlattice Brillouin
zone varies with the period, whereas the minimum in the
GaAs systems is at I" and so remains in this position.

(ii) The bulk GaAs conduction band is significantly
nonparabolic, and the enhancement in the superlattice is
less than an order of magnitude. The bulk-silicon con-
duction band is virtually parabolic near the extrema, but
the effects of strain and zone folding enhance the nonpar-
abolicity by many orders of magnitude, making it rough-
ly equivalent to that of bulk GaAs.

(ii1) The mechanism responsible for the conduction-
band curvatures are considerably different in the three su-
perlattice systems. In the silicon systems the nonparabol-
icity is entirely due to virtual transitions within the con-
duction band. These transitions are between states which
originate from the same region of the bulk Brillouin zone,
namely the minimum; therefore the overlap between
these states is almost complete. The nonparabolicity of
the GaAs-Ga,_, Al, As superlattices is also due solely to
virtual transitions within the conduction band; however,
the principal transitions are between the I' minimum and
the zone-folded states originating from the bulk X
minimum. The overlap between these states and, there-
fore, the matrix element between them, is made finite by
the momentum mixing of the superlattice potential. The
GaAs-GaAs, _ P, superlattices are strained, as in the Si-
Si,_,Ge, systems, to accommodate the lattice mismatch.
The band curvature is affected by virtual transitions be-
tween the conduction states and across the superlattice
band gap. For small concentrations of P the principal
transition is again that between the I' minimum and the
folded X minimum. As the strain is increased, i.e., for
larger concentrations of P, the momentum mixing is fur-
ther enhanced, leading to an increase in the nonparaboli-
city. For x greater than about 0.53 the X minimum
moves from the GaAs layer into the barrier, and the tran-
sition across the superlattice gap becomes dominant.

(iv) In directions parallel to the interface planes the
band curvature in the GaAs superlattices is unchanged
from that of the bulk material. In the silicon superlat-
tices considered here, the strain splits the degenerate
minima such that the minima along the superlattice axis
are about 150 meV below those in other directions.'
Consequently, the dispersion and, therefore, the band
curvature, parallel to the interface planes is significantly
different from that of the bulk material.
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