
PHYSICAL REVIEW B VOLUME 38, NUMBER 12 15 OCTOBER 1988-II

Theory of hole resonant tunneling in quantum-well structures
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A method of studying the hole resonant tunneling in quantum wells is proposed. Because of the
band-mixing effect at k~~&0, the heavy and light holes can transform into each other in the process
of tunneling. The transmission coefficients including h-h (heavy to heavy hole), h-I (heavy to light
hole), l-l (light to light hole), and I-h are calculated as functions of hole energies, parallel wave vec-

tors k~~, and electric-Aeld bias. The resonant energies are consistent with the energies of bound
states in the same quantum well. After the difference in the effective-mass parameters in the two
materials is taken into account, the theoretical results are in agreement with those of the experi-
ments. The theoretical method developed in the paper is applicable to the study of various kinds of
tunneling transmission and subband structure problems in superlattices.

I. INTRODUCTION

Resonant tunneling is a special effect in quantum wells,
which was noted by Tsu and Esaki' early in 1973, when
the concept of superlattices had just been proposed. Res-
onant tunneling may lead to a negative-resistance region
in the current-voltage curve and hence has good pros-
pects for wide applications. It has been investigated ex-
tensively experimentally and theoretically, but up to
the present, almost all the research efforts have focused
on resonant tunneling of electrons. Recently hole reso-
nant tunneling has been observed in GaAs-A1As hetero-
junctions experimentally, yet no adequate theoretical
treatment for a hole resonant tunneling appears to be
available. In Ref. 6 hole tunneling resonant energies are
calculated by the theory of electronic resonant tunneling
on the assumption that the heavy and light holes have the
effective masses 0.6mo and 0. 1mo, respectively, and there
is no coupling between them. The results are not in
agreement with the experiments. As noted in Ref. 6,
nonparabolicity and band mixing effects are probably the
main reasons for the discrepancies. An additional possi-
ble cause is the external electric field, which may modify
significantly the hole states especially at high voltages.

In this paper we propose a theoretical method for
studying hole resonant tunneling. The method takes ac-
count of the band nonparabolicity, the band mixing, the
electric-field bias effects, and the difference of the
effective-mass parameters in the two materials, etc. Cer-
tain phenomena, which do not exist in the electronic res-
onant tunneling, are discovered; for instance, the heavy
hole and light hole may transform into each other during
tunneling and the spin degeneracies of the resonant ener-

The effective-mass Hamiltonian of superlattices can be
written as

H =HL+ V(z),

where V(z ) is the effective potential of the superlattice,
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where p~I,p, are the momentum operators, and y&, yz, y3
are the Luttinger parameters.

In order to simplify the calculation of transfer matrices
we first transform the Hamiltonian (2) by an unitary
transformation, to two independent (2&&2)-dimensional
matrices, which represent two spin-degenerate states of
holes, respectively. Thus the problem of calculating a
(8 X 8)-dimensional transfer matrix is simplified to a
problem of calculating two (4&(4)-dimensional transfer
matrices separately:

gies are removed by the application of an electric field
bias.

II. THEORETICAL METHOD

P)
t

I Q Ip, ——
U+HU= —'

2 0

1'
I Q I p. —

I

R
I

P2

0 P2

t
I Q Ip. + IR

—1'
I Q I p, +

I

R
I

P)

(4)

38 8365 1988 The American Physical Society



8366 JIAN-BAI XIA 38

In following we shall con6ne ourselves to the subspace
corresponding to the upper left 2X2 matrix of (4), name-

ly,

Pi
H =—'' —i IQ lu, —I~ I

i IQle, —l~ I

P2

The potential barrier region is illustrated in Fig. 1. At
the left side of the potential barrier region V(z } is as-
sumed to be zero, then the wave functions of holes are of
the form

heavy states Pz k, Pi, k with perpendicular wave vec-
h ' h

tors ki„—k& and the light-hole states P& k ir'j& i, with
I

perpendicular k&, —k&
..

+ 4,k„+W h, —k„+Y Pl, k +~4l, —k

Similarly at the right-hand side we have

(10)

The coefficients (a,p, y, 5 } and (a', p', y', 5') are connect-
ed by a transfer matrix M,

+ ik, z0
b

(6) a'

Substituting (6) in the effective mass equation we obtain
the eigen energies of holes,

&
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where the signs k correspond to the light and heavy
holes, respectively. As the holes enter into the potential
barrier region, where V(z) is not a constant (see Fig. 1),
the hole wave functions become

Ui(z)
&= U, (z) ' (8)

When the energy E and parallel wave vector kII are
6xed, there are generally four independent hole states at
the left-hand side of the potential barrier region: The

where ki is still a good quantum number. After the holes
pass through the potential barrier region and arrive at
the right side, where V(z) = —V2 is a constant again, the
hole wave functions assume the form given by (6), but in
which k, is replaced by k,'. The k,

' satisfy the following
eigenenergy equation:

E = —V2+ —,'y)k'

+[y'k'+ 3(y' —y'2)(k'k'+ k'k,'+ k'k')]'"
(9)

The usual method of calculating the transfer ma-
trices will be very complicated when it is applied to
this hole problem. We have developed an effective
method for investigating hole resonant tunneling, the
method is equally applicable to electronic resonant tun-
neling. Our method consists essentially of numerically
integrating the set of differential equations, thus we just
apply the Adams predictor once and corrector twice
method to calculate transfer matrices. We proceed as fol-
lows.

(1) Suppose that the holes move from left to right
through the potential barrier region (see Fig. 1). To start
with, we calculate the hole wave functions at the right
end, where V(z)= —V2(constant) from the Hamiltonian

(5). We obtain the heavy-hole wave function P„„, and
n

the light-hole wave function f, „,. For given energy E
and parallel wave vector kll, the perpendicular wave vec-

tor k, is to be obtained from the eigenenergy Eq. (9). In

the isotropic approximation y3
——y2, we get simply

k =
z

2(E+ V, )

r +2r2
—k

II

(13)

where the + signs correspond to light and heavy holes,
respectively.

(2) Substituting the hole wave functions in the potential
barrier region (8) into the Hamiltonian (5) we obtain the
equation of motion of holes,

FIG. 1. Potential barrier region for hole tunneling.
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The boundary conditions at the right boundary can be
determined from tP„„,or f, „,. Then we integrate the set

n

of differential equations (14) from right to left by the
Adams method, and obtain the values of wave functions
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0
M 0 (16)

From (16) we obtain

and their derivatives U, , U], U2, U2 at the left boundary
of the barrier region.

(3) The hole wave function on the left of the barrier can
be generally expressed as a linear combination of

k, gi k, and 41 k, [see Eq. (10)], their linear

coefficients a, p, y, and 5 are determined by

hk ++ h —k p+alkl+ I —k5 Ul

bhk„rt+bh —k p+blk r+ br k5 —U2

(15)
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ikhbhk a ikhb—h k P+ikiblk, l' ikib—l k 5= U2,

~he~e (ahk bhk ) and (an bI ) are the coeffi~ie~ts in the
h h I I

wave functions (6) of the heavy and light holes, respec-
tively.

(4) If it is a heavy hole at the right end (k, )0), the
transfer matrix equation (12) will be

1

III. CALCULATION RESULTS

In order to check the efficiency of the Adams method
in dealing with this kind of problem, we calculate the res-
onant energies of heavy and light holes with effective
masses 0.6mo and O. lmo, respectively, in the case of
kii ——0 so that there is no coupling between the heavy and
light holes. The results are in agreement with those of
Ref. 6 completely.

The parameters in the calculation are the same as in
Ref. 6: ~=50 A, V, =550 meV. In Ref. 6 the width of
the potential barrier is taken as b=50 A so that the
width of resonant peaks are very narrow (see Fig. 1 of
Ref. 6). The width of the resonant peaks is related to the
width of the subbands in the k, direction, which de-
creases as the width of the potential barrier increases.
Calculations show that if the width of potential barrier b
is reduced, the resonant peaks will broaden, but their po-
sitions remain basically unchanged. In the following we
shall take b =20 A.

To simplify the calculation we take the isotropic ap-
proximation y3 ——y2. The effective mass parameters y,
and y2 are determined from the experimental values of
the effective masses of heavy and light holes mh*, mi* (Ref.
9) by

1 1 1

M„=a, M» ——P, M» ——y, M4, ——5. (17) (21)

If it is a light hole at the right end (k, )0), in the similar
way we obtain

M3 ——a, M23 p M33 1' M43 5 (18)
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where Thh represents the transmission amplitude T from
heavy hole to heavy hole, Thl represents T from heavy
hole to light hole, that is, the amplitude of light hole
coming out at the right end from an incident heavy hole
on the left, etc.

(6) From the second Hamiltonian of (4) we can use the
same method to obtain the transmission amplitudes T
and reAection amplitudes R for the holes spin degenerate
to the above.

(5) Knowing the transfer matrix M, the transmission

amplitudes T and reAection amplitudes R ' can be calcu-
lated from Eq. (12),

M33 —M3]
Thh Thl 7

M]]M33 M]3M3] M]]M33 M]3M3]

(19)

m*
h

The effective mass parameters used in this paper are list-
ed in Table I. In Table I the first group of parameters are
the same as that of Ref. 6 taking the average effective
masses of GaAs and A1As, the second group takes ac-
count of the difference of effective masses in the two ma-
terials.

A. Resonant tunneling energies
as function of kii

(22)

TABLE I. Effective-mass parameters of GaAs-A1As quan-

tum we11.

GaAs
A1As

GaAs
AlAs

5.833
5.833

6.800
3.991

2.083
2.083

2.347
1.338

0.600
0.600

0.475
0.760

mi

0.100
0.100

0.087
0.150

Taking the first group of effective mass parameters in
Table I and the electric field F=0 we calculate the reso-
nant tunneling energies as functions of kii. The results
are shown in Fig. 2. The dashed lines in Fig. 2 represent



8368 JIAN-BAI XIA 38

B. Variation of resonant energies

with electric fields

0.2

L3
Ck.'
UJz 0 Q ~ .H
QJ

Figure 3 gives the resonant energies and subband struc-
tures calculated with the first group of effective mass pa-
rameters in the applied electric field F=4 mV/A. From
Fig. 3 we see that in the electric field as k~~&0 the two de-

generate states split, it indicates that their transfer prop-
erties are different. In Fig. 3 the zero of energy is placed
at the centre of the potential well (0 point in Fig. 1); thus
only holes with the energies

~

E
~

& —,
'

V2 ———,'F(w+2b)
can tunnel through. The resonant energies (absolute
values) in Fig. 3 are all larger than E= —,

' V2, represented

by the dashed line. The solid lines in Fig. 3 are the ener-

gies of bound states calculated in the quasistationary
state approximation. " Comparing Figs. 3 and 2 we find

that the subband structures with and without applied
electric field are clearly different at

~

E
I & —,

' V2, but are

basically the same at
~

E
~

& —,
' V2. It is due to this fact

that we can determine the subband structures in the
quantum well from the experimental resonant peak posi-
tions in the current-voltage curve.

0.5 I.O

k, (2vr /I OO i()
0

FIG. 2. Resonant energies and subband energies as functions
of kII, calculated with the first group of effective mass parame-
ters and at electric field F=G. The solid lines are subband ener-

gies, ~ and + are resonant energies.

C. Effect of the difference of effective-mass
parameters in two materials

Taking the second group of effective-mass parameters
in Table I, we calculate the resonant energies and find
that they are appreciably different from those calculated
with the first group of parameters. The resonant energies

respectively. In the region above the upper dashed line
E=—,'(y& —2y2)k~~ the kinetic energies of the heavy and
light holes in the kII direction exceed the total energies E;
hence, in the k, direction they can only exist as a form of
evanescent wave and cannot go through the barriers. In
the range between the two dashed lines the kinetic energy
of the heavy hole in the kII direction is smaller than the
total energy so that it is a traveling wave in the k, direc-
tion, but the light hole is still an evanescent wave. The
resonant energies in this range (represented by + in Fig.
2) are obtained from Tzz and T„, (T«and T,„have no
meaning). The TI,I are calculated by replacing the travel-
ing wave state of the light hole by the appropriate evanes-
cent wave function. The symbols H and L in Fig. 2
represent the heavy and light hole properties of resonant
peaks at kII

——0. At kII
——0 there is no coupling between

the heavy and light holes; therefore, the T„I and T&z are
all zero. At kII&0 the T&& and T&I, no longer vanish; this
indicates that in the tunneling process there is mixing of
the heavy and light holes, the heavy hole can transform
into light hole, and vice versa. The solid lines in Fig. 2
are the energies of bound states in the corresponding su-
perlattice calculated by the plane wave expansion
method. ' From Fig. 2 we see that the two sets of ener-
gies are in agreement.

O. I

Q.2
L3
Ck
UJ
~~ 0.3-

Q.4

0.5 I.O

k„( 2 tr /100 A

FIG. 3. Same as Fig. 2 but at F=4 mV/A.
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TABLE II. Comparison of resonant energies at k~~
——0 (in units of meV).

First parameters
Second parameters
Expt. {Ref. 6)

HH1

20
26

HH2 LHl

83
104

HH3

172
220
215

LH2

318
372

335

HH4

302
376

HH5

458
574
558

calculated with the two groups of parameters and the ex-

perimental values are given in Table II. From Table II
we see that after the difference of effective-mass parame-
ters in the two materials is taken into account the calcu-
lation results are in agreement with the experiment. The
resonant energies of HH2, LH1 and LH2, HH4 are very

close, which may lead to some strong resonant peaks ob-
served in the experiment.

D. Variation of transmission coef5cients
with energies

Figure 4 shows the transmission coeScients of the
heavy and light hole ( T' T)1,1„(T"T)~~ as functions of en-

ergy E at I'=0 and k~~
——0. The resonant peaks corre-

sponding the heavy and light hole are seen clearly in the
figure, since for k~~

——0 there is no mixing between the
heavy and light holes. The width of the second resonant
peak of the light hole is large, which corresponds to a
wide k, subband of the superlattice (about 80 meV).

Figures 5 and 6 show the (T'T)zi„(T'T)„I and

I

(T'T)I~, (T'T)~~, respectively, as functions of E at I' =0
kl =0.3(2n'l70 A). From Fig. 5 we see that

(T'T)i, g and (T T)~I contain almost all the resonant
peaks of the heavy and light holes; this means a strong
mixing between them. One peak is an exception, namely,
the fourth peak appears in the hh curve, but not in the hl
curve. Similarly, in Fig. 6 the fourth peak only appears
in the lh curve, but not in the ll curve. It indicates that
this peak derives from a heavy-hole resonance. Besides,
the fifth peak is only seen in the Ih curve, and not in the Il
curve; thus it is also a heavy-hole resonance.

E. Tunneling current

Since at k~~~0, there are various transmission probabil-
ities of T&I„T&I, TII, and TI&, the tunneling current
should include all the contributions from these transmis-
sion coe%cients. As an extension to the formula for the
electronic tunneling current, ' the formula for hole tun-
neling current should have the following form:

f k~~dk~~ g f d~tf«) f.(~')~T,"T—i)«kiii» &»=h
2m A'

(23)

For typical hole densities, at the low temperature limit,
the effective hole kinetic energy is only about 5 meV, so
that k

~~

for the tunneling holes can be considered as virtu-

ally zero. Therefore in Table II the comparison of the ex-
perimental resonant energies and the calculated energies
at kI~

——0 is reasonable at low temperature, but at high
temperature the effect of k&0 should be considered.

IV. SUMMARY

(1) In this paper we have developed a theoretical
method for studying hole resonant tunneling. It is a nu-
merical integration method, using Adams predictor once
and corrector twice method to integrate the set of equa-
tions of hole motion in the potential barrier region, and

0
5
6

Qhh

—(2

-)6
0 0.I 0.2 0.~ 0.4

ENERGY (eV)
0.5 0.2 0,3 0.4

ENERGY l e V )

FIG. 4. Transmission coefficient (T T)zz and (T T)~I as
functions of energy, calculated with the second group of param-
eters and at F=0 and k~~

——0.

FIG. 5. Transmission coefficients (T*T)zh and (T T)z~ as
functions of energy, calculated with the second group of param-
eters and at F=0 and k~~

——0.3(2m. /L).
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-8
0 O. I 0.2 0.3 0.4

ENERGY (eV)
0.5

FIG. 6. Transmission coefficients (T*T)II and (T T)&z as
functions of energy, calculated with the second group of param-
eters and at F=0 and k~~

——0.3(2m/L ).

obtaining thereby the transfer matrices and the transmis-
sion coeScients.

(2) With this method we have investigated hole reso-
nant tunneling, taking account of the nonparabolicity of
subbands, the mixing of the heavy and light holes, and
effects of applied electric field bias, etc. The transmission

coefficients ( T'T)zz, ( T'T)&I, ( T' T)II, (T"T)II, and reso-
nant energies of the heavy and light holes are obtained as
functions of the parallel wave vectors k~~ and electric field
F. It is found that when k~~&0 the transmission
coefficients (T'T)~1 and (T'T)&I, are not equal to zero
This means that heavy hole can be transformed into light
hole in the process of tunneling, and vice versa. When
k1&0 and F&0, the two spin-degenerate states of holes
split. These phenomena do not exist in the electronic res-
onant tunneling. Taking account of the difference of the
effective-mass parameters in the two materials, we have
calculated the resonant energies of holes, which are in
agreement with experiments.

(3) The method proposed by us is also applicable to the
study of the subband structures of superlattices, especial-
ly to those cases involving different effective-mass param-
eters in the two materials, or superlattices of types II and
III.
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