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The ambipolar-transport equations including space-charge effects are solved for the case of a
sinusoidal generation of photocarriers in amorphous semiconductors. In the “lifetime regime”
where the dielectric relaxation time is much shorter than the lifetime no space-charge effects exist,
i.e., electrons and holes move together even if their mobilities are different and an electric field is ap-
plied. In the “relaxation regime,” where the opposite relation between lifetime and relaxation time
prevails, separation of electrons and holes occurs for different mobilities of the carriers. In any case,
an electric field will separate the carriers in this regime. We apply the theory to examine experi-
mental results for the diffusion length of photocarriers in a sample of hydrogenated amorphous sil-
icon obtained by the steady-state photocarrier grating technique. We find that space-charge effects
are not serious at low electric fields so that the true ambipolar diffusion length is obtained, but that

separation of charges occurs at high electric fields.

I. INTRODUCTION

Recently, the authors have introduced a steady-state
photocarrier grating technique (SSPG) for diffusion-
length measurement in semiconductors' ~* and have ap-
plied it to hydrogenated amorphous silicon (a-Si:H) and
semi-insulating gallium arsenide. In the original papers
on the subject, as well as in other papers dealing with
diffusion-length measurements by other methods,> only
the “lifetime regime”®~'2 for the excess carriers was con-
sidered. This regime refers to the case where the lifetime
of excess carriers is much longer than the dielectric relax-
ation time of the material so that charge neutrality pre-
vails everywhere and electrons and holes diffuse together.
In this paper we also consider the “relaxation-time re-
gime”%~'? in which the opposite relation between the life-
time and dielectric relaxation time prevails. In this case
local charge neutrality is not preserved and electrons and
holes can be spatially separated. For a finite ratio of life-
time to dielectric relaxation time separation of charges
will always set in at high enough electric fields.

In Sec. II we first present a phenomenological ap-
proach which enables us to treat ambipolar transport in a
very general manner. Then, in Sec. III, we consider the
case of ambipolar transport when charge neutrality is
maintained. This regime is of interest since, as demon-
strated in this paper, space-charge effects can usually be
neglected at low external electric fields, in the case of a-
Si:H. In Sec. IV space-charge effects are incorporated
into the theory of the SSPG experiment, and we distin-
guish between two cases: space-charge effects due to un-
equal diffusion constants of electrons and holes, and
space-charge effects caused by an external electric field.
It is found that the transition to the relaxation regime
mainly depends on the ratio between the dielectric relaxa-
tion time and the carrier lifetime, and the ratio between
the electron and hole drift mobilities. Space-charge
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effects caused by an external electric field are found to be
more pronounced than space-charge effects due to the
different values of the diffusion constants of electrons and
holes. In Sec. V experimental results for the small-signal
lifetime of photocarriers in a-Si:H are presented. It is
demonstrated that in the SSPG diffusion-length measure-
ment at low electric fields electrons and holes diffuse to-
gether, i.e., charge neutrality is maintained, but that
when an electric field is applied electrons and holes are
separated and charge neutrality is not maintained. Previ-
ous results of the electric field dependence of the photo-
carrier grating amplitude* are shown to be due to space-
charge effects.

II. APHENOMENOLOGICAL APPROACH
TO AMBIPOLAR TRANSPORT
IN AMORPHOUS SEMICONDUCTORS

A. Definition of the transport parameters

Since the microscopic transport and recombination
mechanisms in amorphous semiconductors are yet not
well understood, we describe the ambipolar transport of
photocarriers in a phenomenological manner which does
not depend on the details of the transport and recombina-
tion mechanisms. In this approach the concept of drift
mobility is used which is an average mobility of all car-
riers involved in the transport and is thus model indepen-
dent. A further advantage of such an approach is that
space-charge effects, which are due to both mobile and
trapped carriers, are taken into account in a natural
manner.

The drift mobility of electrons, u,, and that of holes,
Hp» is defined by the relations!?

Jgriﬂ: —E,u,,N , (1a)
Jgrift_-—_Ep,pP , (1b)
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where N and P are the total, mobile and trapped, electron
and hole concentrations, J, and J » the electron and hole
fluxes, and E the electric field. In a self-consistent
manner, the diffusion currents are described with use of
effective diffusion constants of electrons and holes:

J4f— _p,VN, (2a)
and
J3f=_D,VP . (2b)

We now evaluate the generalized Einstein relationship be-
tween the electron drift mobility and effective diffusion
constant:!*

—p,,N=qD,,Z—1Z=qD,,f°" g(e)%ds. 3)

Here g (¢) is the density of states of electrons, f(¢) is the
occupancy function, N the total concentration of elec-
trons, and g the electron charge.

The electron occupancy function for photo-excited car-
riers was shown by Rose'’ to be determined by thermal
equilibration for states which are located above the
quasi-Fermi-level (trap states), and by a dynamic equilib-
rium for states located well below the quasi-Fermi-level
(recombination centers). We thus conclude that f () is
the Fermi-Dirac distribution function for energies above
the Fermi level, € fn» but may differ from the Fermi-Dirac
distribution function below €. The derivative of f(e)
well below €, should be zero just as for the Fermi-Dirac
function since f(€) should be constant within a band of
recombination centers. The derivative will also go to
zero several kT’s above €;, where f(g) becomes a
Boltzmann distribution. The main contributions to the
integral in Eq. (3) come from energies near €, as long as
g (e) does not increase more rapidly than f(e) decreases
above €,. To evaluate the integral we therefore approxi-
mate g(€) next to €, by the first term in the Taylor-
series expansion of the logarithmic density of states:

g(e)=g(es, )explale—e,)/kT], (4)

where k is Boltzmann’s constant and T the temperature.
The bandtail parameter a is to be thought of as charac-
terizing g (€) near €;, and may well be different at other
energies. The only restriction on it is that it should be in
the range from zero to unity but not close to either value
so that g (¢)f (¢) vanishes at €, +Ae, where Ae is several
kT’s. With this restriction Eq. (3) can be integrated by
parts!® to yield

emtAe do (g)

—u,N =gD, feFAE = = f(e)de=—gD,aN /kT

with the result

kT
D, =
"= agtn (62)
and similarly for holes
kT
Or=pg e o
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where B/kT is the exponent which describes the hole
density of states next to the quasi-Fermi-level of the
holes.

B. The small-signal approach

Both the drift mobility and the effective diffusion con-
stant are average parameters of all carriers, and may thus
depend on the carrier concentration. To avoid a probable
nonlinear nature of the transport equations due to the
dependence of the transport parameters on the carrier
concentrations, we adopt here the small-signal approach
as used in Refs. 1-5. In this approach a small nonuni-
form carrier concentration is superimposed on top of a
large uniform carrier concentration that sets the values of
the transport parameters. As a result, linear transport
equations are obtained.

We define the small-signal electron drift mobility u, by
the equation

AJ, = —Eu AN , %)

where AJ, is a small change in the electron flux caused
by a small perturbation AN of the total electron concen-
tration. From Eq. (1) u,, is given by

d
=, + ;1:; N, (8a)
and similarly the hole small-signal drift mobility is
: dp
By =M+ d—}f . (8b)

In order to obtain the relationship between p and p’ we
assume that only a fraction of the total carrier concentra-
tion N js mobile and the rest of the carriers are trapped.
We denote the mobile carrier concentration by N,,, and
assign to these carriers a microscopic mobility u°. These
assumptions clearly hold within the free-carrier transport
model,'” and have also been shown to be a good approxi-
mation for bandtail hopping transport.'®!> Within this
model one writes the drift mobility as'>

N,

Bn="j H 9)
and it is readily verified that
N 4 [~ dN
po o Dm g d [ Ym i m o
Fn=t N VN [N an # 10

Equation (10) can now be written in the form
, 04N, /de o —(1/kT)N,,
Bp=p =H =Hn
dN /de —(a/kT)N
The above result was obtained by using Egs. (3) and (5)

for dN /d e and by assuming that the mobile carriers obey
Boltzmann statistics. Equivalently, for holes one has

/a . (lla)

Kp=H,/B . (11b)

Combining Egs. (6) and (11) we thus obtain the conven-
tional Einstein relationship between the small-signal drift
mobility and the effective diffusion constant:
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p,=*L, (12a)
q
and
kT ,
Dp=—q-,up . (12b)

Note that the above relationship holds in the general case
regardless of the value of the integral in Eq. (5), as is evi-
dent from Egs. (3) and (11).

In our small-signal approach, the recombination rate is
also formulated in a phenomenological manner to avoid
being restricted to a specific recombination mechanism.
Most generally, the recombination rate is given by some
function of the electron and hole concentrations,
R (N, P), and the change in the recombination rate, AR,
is thus given by

dR v B8R, , AN AP
AR = 8NAN+ 3P AP = 27, 27',, . (13)

The electron and hole recombination times, 7, and Tp»
as defined by Eq. (13) are the average lifetimes of free and
trapped carriers and should not be confused with the
free-carrier lifetimes. When charge neutrality is main-
tained AN =AP, and a common recombination time may
be defined:

AR =AN(1/27,+1/27,)=AN /7 . (14)

The common recombination time 7 can be shown to be
equivalent to the photocurrent response time if release
times from traps are shorter than 7, as discussed in the
Appendix.

III. AMBIPOLAR TRANSPORT
IN THE LIFETIME REGIME

A. The ambipolar-transport equation

As shown below, local charge neutrality is frequently
maintained at low electric fields and we therefore first dis-
cuss ambipolar transport in the lifetime regime. We shall
derive an expression for the ambipolar diffusion constant
which is more general than that derived by Moore,> and
also derive an expression for the ambipolar mobility
which has not been previously given.

The continuity equations for the electron and hole
currents are given by’

—V-(—Eu,N—-D,VN)+G —R =0 (15a)
and
—V-(Eu,P -D,VP)+G —R =0, (15b)

where both the drift mobility and diffusion constants are
functions of the carrier concentrations. For a small per-
turbation AG in the otherwise uniform generation rate
one has

1, NV-E4u.E-V(AN)+D,V¥AN)+AG —AR =0,
(16a)

and
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—u,PV-E—p,E-V(AP)+D,V*(AP)+AG —AR =0,
(16b)

where second-order terms in AN and AP have been omit-
ted. In the lifetime regime AN = AP locally, and the two
equations can be combined in the usual manner® into the
single ambipolar-transport equation:

UE-V(AN)+DV*AN)—AN /7+AG =0 . a7
The ambipolar diffusion constant D is found to be
Dll +D n
D _ by T UpHn =(kT/q)#p£ﬂ_/ﬂL@ , (18)
Kn iy b+1

where b =p,/p, and use has been made of Eq. (6).
Equation (18) differs from that obtained by Moore® be-
cause of the terms involving a and B. Since, as discussed
above, we expect these parameters to be between zero
and unity but not close to either value, the ambipolar
diffusion constant will be determined by the carrier with
the lower drift mobility.
The ambipolar drift mobility u is found to be

b(1/a—1/B)
b+1 )

Habp —Epthn
= =”P
tn 1y

Note that the ambipolar mobility is not zero as would be
the case for an intrinsic crystalline semiconductor unless,
fortuitously, a=pB. The “Einstein relationship” between
the ambipolar mobility and ambipolar diffusion constant
thus becomes

D kT a/B+1

g q a/B—1"
It must be borne in mind, however, that the concept of
ambipolar mobility is only valid in the lifetime regime,
when charge neutrality is maintained. This is not the

case when strong electric field is applied, as discussed
below.

(19)

(20)

B. The relationship between the ambipolar
diffusion length and the photoconductivity

In this section we establish the relationship between
the ambipolar diffusion length L =V' D7 and the photo-
conductivity in the same sample. Within the small-signal
approach we first find the expression for a change in the
conductivity due to a small change, AG, in the generation
rate. From Eq. (7) one obtains

Ao =g (u,AN +u,AP) @1

and since in the steady state AR =AG, one has from Eq.
(14)

Ao =q AG (u, +1,)=q AG 1, /a+p,/B) . (22)
From Egs. (18) and (22) one obtains

L? kT b a/B+1

—_— = . 23
Ao /(g AG) qg b+1 a/B+b @3)

Equation (23) may thus be employed in order to obtain an
approximate value of b from a measurement of the
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small-signal photoconductivity and the diffusion length in
the same sample if it is assumed that a /B is of order uni-
ty and no space-charge effects exist at low electric fields.
We show in Sec. VI that for a representative sample of a-
Si:H both of these assumptions are justified.

IV. AMBIPOLAR TRANSPORT
IN THE RELAXATION REGIME

A. Solution of the SSPG transport equations

In the dark, typical amorphous semiconductors such as
a-Si:H are clearly “relaxation semiconductors® since
their dielectric relaxation time 7, =««,/0 is very long be-
cause of their low conductivity o. When illuminated,
however, the conductivity may rise by several orders of
magnitude'® and 7, will correspondingly decrease. It is
therefore not clear, a priori, whether the lifetime regime
or the relaxation-time regime applies to the ambipolar
transport of excess carriers under illumination. In this
section the solutions of the transport equations relevant
to the SSPG experiment are presented, and the transition
from the lifetime regime to the relaxation regime is inves-
tigated.

In the SSPG experiment,!~* the generation rate G is
composed of a small sinusoidal part superimposed on a
uniform generation rate:

G =Gy+G,cos(kx) , (24)

where G| << G, k =2m/A, and A is the grating period.
The electron concentration N and the hole concentration
P are also sinusoidal in space and are given by

N =Ny+Re[N,explikx)],
P =Py, +Re[Pexplikx)],

(25a)
(25b)

where N,=P, are the electron and hole concentrations
generated by G, and N, and P, are complex numbers
that give the amplitudes and phases of the sinusoidal part
of the concentrations. The solution of the SSPG trans-
port equations is greatly simplified by the sinusoidal form
of the carrier concentrations, given in Eq. (25). Instead
of solving three coupled differential equations one obtains
a simple set of three linear equations. The electric field is
written as

E =E,+Re[E,explikx)] , (26)
and the Poisson equation thus becomes

where « is the permittivity of the material. The small-
signal recombination rate is also sinusoidal:
AR =Re[R explikx)] , (28)

and the linear continuity equations that are solved to-
gether with the Poisson equation (27) thus become
iu,NokE, +iu,EockN, —D,k?N,+G,—R,;=0  (29a)
and

—ip, PokE | —ip, EgkP, —D,k*P, +G,—R =0 . (29b)
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From Egs. (13), (25), and (28) we write the recombination
term as

R\=N,/21,+P/21,, (30
where 7, and 7, are coupled according to Eq. (14):

121, +1/21,=1/71, (31D

and 7 is the recombination time discussed above.
We finally introduce the dielectric relaxation time 7,:

74 =rkko/[q (1yNo+11,Po)] - (32)

Note that the photoconductivity determines 7;. Using
Egs. (24)-(32) two coupled linear equations for the un-
known concentration N, and P, are obtained:

G,7=P\[n—cb/(1+b)]
+N,[cb/(1+b)—ikbrL,, +k*brLj, +8] ,

G 7=P[c/(b+1)+ikL,+k>L, +7]
+N,[8—c/(1+b)],

where L,,=p,E7 is the hole drift length, L,, =(Dp'r)'/2
is the hole diffusion length, and Ny=P,. The dimension-
less constants in these equations are

(33)

b=u,/p,, c=1/74, r=B/a
and
n=t/21,, 8=1/2r1,, where n+38=1.

Equation (33) is very general, and is not restricted to any
specific transport model.

We now examine solutions of Eq. (33) for several cases.
In order to obtain physical insight into the behavior of
the excess carrier we shall, for the moment, assume that
a=p and that 7, =7,. The latter assumption has only a
minor effect on the solutions since 7, and 7, are coupled
via Eq. (31). The assumption that a=p has a more seri-
ous effect for the case of a nonzero electric field, as is evi-
dent from the expression for the ambipolar mobility
given in Eq. (19). The case when a =g is of interest, how-
ever, since the ambipolar mobility then equals zero, and
the effect of the electric field is solely due to the finite
value of 7/7,, namely the transition to the dielectric re-
laxation regime.

B. Zero electric field

When no external electric fields are applied, space
charges can only be created due to faster diffusion of one
type of carriers. The solution of Eq. (33) for E=0 and
A=10L is shown in graphical form in Fig. 1 where the
normalized amplitudes of the electron and hole gratings
are plotted versus the ratio 7/7;. Note that when 7/7; is
large electrons and holes diffuse together to maintain
charge neutrality even if b==1. In this case, N, =P, and
one obtains

N,=P,=G,7/[1+(27L/A)*], (34)

where L is the ambipolar diffusion length. This relation
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FIG. 1. Theoretical plot of the electron and hole grating am-
plitudes N, and P; at E=O0, vs 7/74;. The amplitudes are nor-
malized by G 7 which is their value in the absence of diffusion.
The parameter b is the ratio p,/u,, and the grating period A
was chosen to equal 10L.

has been used by the authors previously in order to de-
scribe SSPG experiments at low electric fields' ~* and is
thus justified in the lifetime regime.

When 7/7,; is small, local charge neutrality is no
longer maintained and electrons and holes diffuse in-
dependently if b~1. In this regime the electron grating
amplitude decreases due to faster diffusion of the elec-
trons. The resulting decrease of the recombination rate
leads to an increase in the hole grating amplitude. The
transition between the lifetime regime, where charge neu-
trality is maintained, and the relaxation regime, where
electrons and holes can be separated by diffusion, is seen
to depend on the ratio b =, /u, and to occur roughly
when 7/7,=Db.

The practical implications for SSPG measurements
even at negligible electric fields are immediately obvious.
In the SSPG method' —* a sinusoidal conductivity pattern
of the form

o=0y+Re[o explikx)] (35)

is generated in the sample. In Eq. 35) oq=q (u, +1,)Nq
is the conductivity generated by the uniform background
illumination, and the complex amplitude of the conduc-
tivity grating is given by

o1=q(u,N,+u,P) . (36)

Comparing Eq. (36) to Eq. (22), a normalized conductivi-
ty grating amplitude ¥ can be defined by the expression
loy|

y=—. 37)
q(lu’n +:u'p )GlT

The normalized conductivity grating amplitude equals
unity in the case of negligible diffusion and drift, and is
reduced if blurring of the grating by diffusion or drift sets
in. As described in Ref. 2, in order to obtain the ambipo-
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lar diffusion length L, ¥ is measured at low electric fields
for several grating periods, and Eq. (34) is then used to
calculate L. Since Eq. (34) is valid only if the charge neu-
trality is maintained, the result will clearly be different
for the case of a single sinusoidal variation for both elec-
trons and holes and the case of two different sinusoidal
curves for the two types of carriers. To find out under
what conditions the use of Eq. (34) is justified, namely
when the transition to the relaxation regime occurs, we
have calculated y as a function of ¢ =7/7, for various
values of b=p,/pn,. The ratio between the apparent
diffusion length, Lpp which is obtained using Eq. (34),
and the “true” ambipolar diffusion length is found for
various values of b and c¢. The results are given in Fig. 2
where we plot the ratio Lgpp /D for different values of b
and c. Clearly, this ratio equals unity if b=1 since elec-
trons and holes then have the same diffusion constants
and charge neutrality is always maintained, or if 7/7; is
sufficiently large to prevent space charge even if b~1.

Since one does not know the values of b and c to start
with it may at first glance be impossible to draw con-
clusions about L from a SSPG measurement even at low
electric fields. As shown below, however, we have found
that in a representative sample of a-Si:H lifetime regime
conditions prevail at E=0.

C. The case of an external electric field

We now turn to a solution, Eq. (33), for the case of
E > 0 and display the results in graphic form in Fig. 3. In
solving these equations we have assumed that a=p so
that the ambipolar drift mobility, as given by Eq. (19), is
zero. When an external electric field is applied the transi-
tion from the lifetime regime to the relaxation regime
occurs at lower values of the ratio 7/7, than in the case
of E=0. This can be seen in Fig. 3 where the electron

[ 10 102 103
r/rd

FIG. 2. Theoretical plot of the ratio Lﬁpp /D vs the ratio be-
tween the lifetime 7 and the dielectric relaxation time 7,. L,;,
is the apparent ambipolar diffusion length obtained from the
SSPG diffusion-length measurement if space-charge effects are
not taken into account. D is the ambipolar diffusion constant

and 7 the carrier lifetime.
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and hole grating amplitudes are plotted versus 7/7, with
an electric field of magnitude A/2mu,T applied in the x
direction. In the lifetime regime the application of an
electric field does not reduce the amplitude of the carrier
grating as is expected since we have assumed zero ambi-
polar drift mobility. In the relaxation regime, however,

0.5
8 J (a)
t: NI,PI
-
a ]
2 fo e
< D
o
/2
&
<4 Ny
I [oF
a
F'I
-m/2 v T T T
107 1 10 10* 10° 10*
r/rd
0.5 o)
g (b)
D
=
)
a
s N,
< b=10
/2
N, b=10
ul
a
T o
a
Py
'1!/2 T T T
107 I 10 10% 10° o*
r/rd
0.5 B
w (c)
p)
=
p |
s
< Ny =100
/2
b=100
w
g -
a 01
P,
-w/2 T T T T
107 1 10 10? 10* 10*
/T4

FIG. 3. Theoretical plot of the electron and hole grating am-
plitudes and phases vs 7/7, for E =A/mu,7. The amplitudes
are normalized by G, 7 which is their value in the absence of the
drift and diffusion. The grating period A equals 2L, where L is
the ambipolar diffusion length. The parameter b is the ratio be-
tween the electron and hole drift mobilities, which is taken as
(a) 1, (b) 10, and (c) 100.

the electric field separates electrons and holes, as can be
seen from the opposite phase shifts of the two gratings.
In this case the grating amplitudes are determined by in-
dependent drift of electrons and holes, and subsequent
changes in the recombination rate. The transition to the
relaxation regime can be seen to occur roughly when
T/Td =10b.

In order to compare these theoretical results to the ex-
perimental data in the next section we calculated the nor-
malized conductivity grating amplitude y versus the ap-
plied external field. We again let a=/3 so that the ambi-
polar mobility vanishes. The conductivity grating ampli-
tude is then calculated from Eq. (36) by solving Eq. (33)
for N, and P, as a function of the external electric field.
The results are presented in Fig. 4. For the sake of illus-
tration we have assumed equal electron and hole drift
mobilities. As expected, when 7/7, is large there is prac-
tically no effect of the applied electric field on the con-
ductivity grating amplitude. For smaller values of 7/7,,
on the other hand, the field blurs the grating. The blur-
ring of the conductivity grating is due to the reduction of
the electron and hole grating amplitudes described above,
and also to the phase shift between them, since the con-
ductivity is an averaged sum of both concentrations.

V. COMPARISON WITH EXPERIMENTAL RESULTS

A. Determination of the carrier lifetime in a-Si:H

The ratio between the carrier lifetime 7 and the dielec-
tric relaxation time 7, must be known in order to apply
the theory to experimental data. We have measured the
carrier lifetime in a representative sample of a-Si:H and
then used the result in order to obtain exact solutions to
the continuity equations. A 3-um-thick sample of a-Si:H
deposited by glow discharge decomposition of silane on a
quartz substrate was used in these experiments. The con-
tacts were coplanar chromium electrodes with a gap of

0.5
'r/'rd=I00
0.4
0.3
t/t,4=10
y d
0.2
0.1 -r/fd=|
0 T T T T
(o] 2 4 6 8 10
ke Et
Hp

FIG. 4. Theoretical graph of the normalized conductivity
grating amplitude as defined in Eq. (37), vs ky,E7, for p,=p,,
and a=pf. Here k =2n/A, and the grating period A is chosen
to equal 27L.
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0.3 mm deposited on top of the sample.

We measured the carrier lifetime 7 from the small-
signal photocurrent decay time. As is further discussed
in the Appendix, when the photocurrent decays exponen-
tially, the decay time constant is the carrier lifetime
defined in Sec. II. The sample was illuminated by a He-
Ne laser with an average intensity of 70 mW/cm?. This
background illumination is the same as in the photocon-
ductivity and diffusion-length measurements which were
also carried out on the same sample. About 5% of the in-
tensity of the beam was modulated by a square waveform
at about 100 Hz using an electrooptic modulator, and the
photocurrent decay was monitored by a transient digitiz-
er. Care was taken to insure that the RC response time
of the circuit is smaller than the photocurrent response
time. The results are given in Fig. 5. The small-signal
photocurrent transient does indeed decay exponentially,
and the time constant of the decay, which is also the car-
rier lifetime, equals 1.8 usec.

Since the decay rate strongly depends on light intensi-
ty, and since definitions of the lifetime vary in various
publications, we do not attempt to compare the value of 7
found by us to values of the lifetime in the literature.?!~2*
It is shown in the Appendix, though, that the measured 7
is the lifetime defined in the theoretical selections of this
paper, provided tha the bias light intensity is the same in
all experiments.

B. The effect of an external field
on the conductivity grating amplitude

In this section we reinterpret the results of the SSPG
experiment carried out as a function of an external elec-
tric field.* Details of the experiment were given in Ref. 4
but in contrast to the interpretation of the results in Ref.
4 we now do not assume local charge neutrality but take
space-charge effects into account.

The experimental results are given in Fig. 6. The nor-
malized conductivity grating amplitude y was measured
at a bias light intensity of 70 mW/cm? using the method
described in detail in Ref. 2. The amplitude of the grat-

»
=
z
S
& o
S r Ipigs=TOmW/Em®
5 E v =1.8usec
b
F
' -2 1 1 1 1
0 | 2 3 4 5
TIME (psec)

FIG. 5. Small-signal photocurrent decay from the steady
state.
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0.8

0.6 T T T
(o] 2 4 6 8

~
=

ELECTRIC FIELD (kV/cm)

FIG. 6. The normalized conductivity grating amplitude [Eq.
(37)] vs the applied electric field. Experimental results and a fit
to the theory with the parameters b=p,/u,=1.9 and
c=1/14=16.

ing at low electric fields is determined by diffusion only,
whereas, as shown above, at higher electric fields the
grating amplitude decrease due to an additional drift of
carriers.

We now use the measured value of the carrier lifetime
to obtain a theoretical fit to the data. The photoconduc-
tivity at the same light intensity was 8.7x107¢
(Qcm)~!, and the dielectric relaxation time is found
from Eq. (32) taking k=11.8 to equal 0.115 usec. We
thus obtain ¢ =7/7,~16. Using this value of ¢ a fit can
be found only for values of b ranging from unity to 1.9,
and a/B ranging from unity to 1.6. We have verified
again that the exact relationship between 7, and 7, does
not significantly affect the results. The solid line in Fig. 6
is obtained by solving Eq. (33) for N, and P, with b=1.9
and a/f=1, and the subsequent substitution of N, and
P, in Eq. (36). It is seen that an excellent fit is obtained.

We thus conclude that the ambipolar mobility in our
sample is small, and that the electric field does separate
the electrons from the holes. This result differs from our
original interpretation of the experiment in Ref. 4 where
local charge neutrality was assumed, and as a result too
large a value of the ambipolar mobility was estimated.
To check the consistency of our results the value of
b=p,/n, can also be independently obtained from Eq.
(23) which assumes a priori that charge neutrality pre-
vails. Since the diffusion length at the same light intensi-
ty was found to equal (0.15 um)+5%, and the small-
signal photoconductivity was 1.1xX10~7 (Qcm)~! for
AG =4 10% pairs/cm®, we again obtain that b is close
to unity. The use of Eq. (23) is justified since it is evident
from Fig. 2 that for c=16 and for small values of b the
measured diffusion length is very close to the value of the
ambipolar diffusion length.
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A ratio of the electron and hole drift mobilities of or-
der unity is surprising since time-of-flight experiments
usually yield a larger drift mobility of electrons by about
a factor of 10.2>26 A possible source of difference be-
tween the two types of measurements may be that time-
of-flight measurement are carried out under transient
conditions while the experiments reported here were per-
formed under steady-state conditions. Quite possibly,
M, /1, may be quite different in these two cases. Clearly,
more experiments on other samples are needed to estab-
lish whether there are consistent differences between the
drift mobility values obtained from time-of-flight mea-
surements and the methods discussed here and to what
extent such differences are sample dependent.

VI. DISCUSSION

The primary aim of this paper has been to examine the
transport and recombination behavior of photocarriers in
a semiconductor when they are generated sinusoidally
along a given sample direction, as in a SSPG. While the
simple case in which local neutrality was assumed has
been discussed before,!~* the more general case where
space-charge effects are taken into account is presented
here for the first time. It is found that such space-charge
effects are always present when the experiments are car-
ried out at high electric fields unless the dielectric relaxa-
tion time is much shorter than the lifetime so that space
charges are screened out. At low electric fields, space-
charge effects are important only if the drift mobilities of
electrons and holes are different. In this case too, they
are screened out if the dielectric relaxation time is
sufficiently short.

An understanding of these effects is necessary in order
to ensure that SSPG measurements, which are normally
carried out at low fields, yield the true ambipolar
diffusion length L. We show that, strictly speaking, the
measurements must be carried out as a function of elec-
tric field and the lifetime of the excess carriers must be
known in order to calculate L from experimental data.

The theory described in this paper is quite general, i.e.,
it applies equally well to crystalline or amorphous semi-
conductors. Our emphasis, however, has been on amor-
phous materials since most of the experimental results us-
ing the SSPG technique have related to hydrogenated
amorphous silicon.! ™ In the amorphous case the trans-
port equations are more complicated than for the crystal-
line case since most of the photocarriers are probably
trapped in localized states. We have taken this point into
account in formulating the transport equations and have
also restricted the theory to the small-signal regime in
which only the behavior of an incremental concentration
of photocarriers is considered. Hence, a strong bias il-
lumination is assumed so that the various parameters
which enter the transport equation, namely the drift
mobilities, the diffusion constants, and the lifetime, are
defined with respect to the background carrier concentra-
tion produced by the bias light. Since all these parame-
ters are likely to depend on the light intensity it would be
very instructive to carry out such measurements for
different light biases.
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For a representative sample of hydrogenated amor-
phous silicon produced by glow discharge decomposition
of silane we found that at a bias illumination of approxi-
mately 1 sun the lifetime of the total excess carriers, as
distinct from that of only the free carriers, is about 2 usec
and that the drift mobilities of electrons and holes both
approximately equal 1072 cm?/V sec. Since the mobility
ratio is of the order of magnitude unity and the ratio of
lifetime to dielectric relaxation time is 16 for this sample,
the low-field SSPG determination of an ambipolar
diffusion length of 0.15 pm can be trusted. It would
clearly be desirable to carry out such measurements on a
number of samples in order to ascertain to what extent
the values found in this work are representative.

ACKNOWLEDGMENTS

We thank R. Weil for supplying us with the sample
used in this work, C. Penchina and E. Kurin for a critical
reading of the manuscript, and S. Cohen for technical
help. This work is supported, in part, by the Israel Na-
tional Academy of Science.

APPENDIX: THE SMALL-SIGNAL PHOTOCURRENT
DECAY EXPERIMENT

In the small-signal photocurrent decay experiment the
generation rate is abruptly decreased from a value
G +AG to G where AG << G, and the subsequent small
change in the photocurrent is measured as a function of
time. This experiment is similar to that analyzed by Pan-
dya and Schiff,?’ with the distinction that in the initial
stage of the decay in our case the carriers are in thermal
equilibrium. As outlined in Ref. 27 two possible regimes
have to be considered. In the first regime, which is called
““A trapping,” the carrier detrapping (trapping) times are
shorter than the recombination time. In the second re-
gime, which is called “B trapping,” the opposite relation
between trapping and recombination time exists. In the
A-trapping regime the carriers are thermalized during
the decay so that the photocarrier drift mobility is non-
dispersive and constant. As a result the decay can be de-
scribed by a single exponential with a time constant
which is the photocurrent response time as given by
Rose. !> Using the formalism of this paper we obtain

d I ’ i

i Ao=(p,+u,lq a AN, (A1)
and

d AN (A2)

i AN =AR = P
thus the time constant of the decay is seen to be the car-
rier lifetime as defined in Eqgs. (13) and (14).

In the B-trapping regime, on the other hand, since the
detrapping time of the carriers is longer than the recom-
bination time, the photocarrier drift mobility is no longer
constant during the decay. In this case Eq. (Al) is not
valid due to the time dependence of the drift mobilities,
and the decay is nonexponential. As pointed out in Ref.
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27 A trapping is expected at high bias illumination, and
B trapping at low bias illumination. This was indeed ob-
served in our experiments. The decays at bias light inten-
sities above about 50 mW/cm? were exponential whereas
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the decays at lower bias light intensities were nonex-
ponential. A computer simulation of the decays has been
carrier out by us and will be published elsewhere.
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