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The conduction and noise mechanisms and the relevant models are quite different and more com-

plex for bipolar than for unipolar media and devices. A new general approach to p-n junction noise,
which ascribes its origin to the charge fluctuations of the defect centers, is proposed. For the single

defect the relaxation time, the Langevin noise sources, and the modulation of the generation-
recombination (GR) current across the neighboring defects, are computed according to a previous
model by means of the Shockley-Read-Hall theory, the Schottky theorem, and the Poisson equation.
The interactions of the charge and current fluctuations of the single defect with the output short-
circuit currents are then expressed by means of proper charge and current coupling coefficients. In
their turn, these are computed in closed general form for a long junction, for both neutral and

space-charge regions, by means of continuity and Poisson equations and using a new method which

reduces the noise coupling problems from three to one dimension. In this way, a general expression
of the noise spectrum of the junction, which holds good for any doping and bias voltage and for any

frequency up to the reciprocal of the lifetime of the carrier, is obtained. It contains two contribu-
tions. One of them, for reverse bias and high frequency, leads to two-thirds shot noise whereas, in

most other cases, it gives a full shot noise. The other excess term, deriving from the GR current
modulation, for equal relaxation time ~ of the defects, produces a GR noise, whereas, for dispersed
r s, it yields a 1/f r noise with y = 1 down to the lowest measurable frequency f. For zero-bias volt-

age, according to Nyquist s theorem, the two terms give the thermal noise. According to a recent
model, even for the p njunc-tions the 1/f" noise originates from the fact that the excess term is the

superimposition of Lorentzian spectra proportional to v'+" with v& 0 so that a very small fraction
of defects with dispersed ~ may be sufficient to generate itself. Finally, the new charge coupling
coefficients and the continuity equations allow us to compute the fluctuation of the output current
in the time domain due to the random burst charge fluctuations of each single-energy-level defect
and, thus, to account for the burst noise, too. By accounting for all types of noise in the junction de-

vices, the new unified approach appears to be a general and exhaustive model.

I. INTRODUCTION

Since the semiconductor junction devices have been
practically realized, their noise, owing to its technical and
scientific importance, has been deeply analyzed, both
theoretically and experimentally, by many research-
ers' ' and most of its main properties have been well es-
tablished.

However, some fundamental aspects of the Bicker and
burst noises and, as also shown by a recent work of van
der Ziel et al. ,

' even some basic elements of the shot
noise itself, i.e., the main noise sources of the bipolar
electron devices (BED's) are still subject for discussion
and for theoretical and experimental research. That
especially happens for the present almost ideal junc-
tions and submicrometer devices to which, being
characterized by few defect centers generating noise, pre-
vious collective and also corpuscular models cannot be
directly applied.

Such main models are the following.
By means of a corpuscular model, i.e., the Shockley-

Read-Hall (SRH) theory ' of carrier generation-
recombination (GR) in the defect centers, and using the
random-telegraph-signal statistical approach, ' Lauritzen

computed the noise associated with GR phenomena in
the space-charge region (SCR) of p njuncti-ons. In par-
ticular he showed that such a noise may vary from two-
thirds and three-fourths to full shot noise, depending
upon frequency and bias conditions.

van Vliet, ' ' by means of a collective approach
based on kinetic and transport equations for the carriers,
supplemented by Langevin noise sources as given by the
SRH and GR noise theories, computed the noise both in
the SCR (by obtaining the same results of Lauritzen' '~)
and in the quasineutral regions (QNR) of the junction on
the basis of the two opposite adiabatic approximations
that the free (trapped) carrier densities in SCR (QNR) ad-
just fast compared the trapped (free) one.

van der Ziel alone ' and, recently, with other au-
thors, ' proposed a theory of the shot noise in p-n junc-
tions and Schottky diodes which, being based upon a
transmission-line analogy that takes into account the
diffusion and GR noises by means of properly distributed
sources, holds good solely in the QNR (outside SCR)
where only the diffusion transport mechanism of the car-
riers, necessary for the line. analogy, prevails.

Therefore a complete and unified theory of the shot
noise of the junction devices appears to be still lacking.
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On the other hand, Kleinpenning has studied the flick-
er noise of p-n diodes' and interpreted his experimental
results upon the basis of mobility fluctuation alone,
which, according to Pellegrini, cannot exist without
carrier density fluctuation.

On the basis of a preceding general corpuscular-
collective approach of the BED noise, here we propose a
new model of p-n junction noises which removes such
difficulties and limits.

Such a model allows us to account, in a unified way, for
the thermal, shot, flicker, GR, and burst noises, i.e., all
the junction noises, in both SCR and QNR, for any bias
conditions and any frequency below the reciprocal of the
lifetime of the minority carriers.

The approach is corpuscular in that it ascribes the ori-
gin of noise to the single independent defects and, at the
same time, it is collective in that it solves the coupling
problem between the fluctuations of each defect and
those of the output current by means of Poisson and con-
tinuity equations.

Its general bases, analysis methods, and results are the
following. The SRH theory ' and Schottky theorem,
applied in a corpuscular way to each defect center, allow
us to compute the relaxation time v., the Langevin noise
sources, the charge fluctuation spectrum, and the modu-
lation of the GR current across the other neighboring de-
fects.

Then the coupling coefficients I' between the stochastic
currents, which are injected from the conduction and
valence bands into the defect and which produce its
charge fluctuations, and the fluctuations induced in the
short-circuit currents at the devices terminals, are com-
puted, through a collective approach, by means of the
continuity and Poisson equations alone, without any adi-
abatic approximations. Such equations, indeed, allow us
to express I through other coupling coefficients a be-
tween the defect charge fluctuations, on the one hand,
and those induced in the carrier densities and in the GR
current, on the other. "

Indeed, such coupling current coefficients I, as is
shown here, are sufBcient in themselves to compute com-
pletely the entire noise spectrum of the short-circuit
current in long p-n junction diodes. On the other hand,
the charge coupling coefficients a, necessary to obtain
such a result, are computed by means of Poisson's equa-
tion which, especially in SCR, is solved according a new
method that reduces the noise coupling problem from
three dimensions to one.

The total noise spectrum so obtained contains two con-
tributions which for zero-bias voltage, according to
Nyquist's theorem, correctly give the thermal noise.

Apart from the allocation, in SCR and QNR, and from
the dispersion of the defect parameters, the first
contribution —which in SCR coincides with the result
obtained by Lauritzen and van Vliet, ' ' through other
approaches —leads to a two-thirds shot noise for
reverse-bias voltage and high frequency, whereas in most
other cases, up to frequencies equal to the reciprocal of
the lifetime of the minority carriers, it yields full shot
noise. The trapping efFects at SCR edges, indeed, as
shown here for the first time, for small forward bias and

high frequencies may lead to a noise greater than the full
shot noise.

The second, excess contribution, originating from the
GR current modulation produced by the defect charge
fluctuations, yields a GR noise for defects with equal re-
laxation times ~, whereas for dispersed ~'s, according also
to the McWhorter model applied by Fonger and Hsu
to junction devices, it gives a 1/f ~ noise with y = 1 down
to the lowest measurable frequency f.

According to a recent model, ' the 1/f ~ noise origin
is also a consequence of the fact that for the junction de-
vices, too, the excess contribution is a superimposition of
Lorentzian spectra proportional to ~'+", with v&0, so
that even ratios [(number of defects with dispersed
r's)/(number of defects with equal ~'s)] so low as
10 —10 ' may be sufficient for it to be generated.

In QNR the excess contribution, for both GR and
1/f r noise, is proportional to the square diffusion
current and is inversely proportional to the square densi-
ty of the majority carriers, whereas in SCR the depen-
dence on the current and impurity concentrations, except
for reverse bias conditions, is much more complex.

The new current and charge coupling coefficients also
allow us to compute, in a straightforward way, the fluc-
tuations, in the time domain, of the output current in-
duced by the random-telegraph-signal variation of the
charge of a single defect and, thus, to account for the
eventual burst noise, too.

Finally, as a necessary basis for noise analysis, the con-
duction mechanisms and currents in QNR and SCR of
the junction are evaluated in a general form by means of
the SRH model corpuscularly applied to each defect
center, by taking into account in this way even the
dispersion of the energy, capture probabilities, and relax-
ation time of the defects, unlike what happens in the case
of classical theory of the p-n junction current put for-
ward by Shockley, Sah, and Noyce.

Experimental data of the literature, which fit well with
the results of the new model, are reported.

II. CURRENT

Since the objective is to compute current and, especial-
ly, noise of p-n junction devices by means of the general
model proposed in Ref. 24, we must first of all recall cer-
tain of its results which will be used here.

According to such a model, the GR current and the
noise, apart from that produced by scattering phenome-
na, are due to the SRH defect centers characterized by
single or many energy levels. Here we refer to the more
frequent and meaningful case of single-energy-level de-
fects.

In recalling the results of Ref. 24 and henceforth, for
sake of simplicity, we shall indicate the average value of a
quantity y(t), which in general depends on time t, with
the same symbol y, while we shall use hy(t} and 5y(jco}
to indicate its total fluctuation and the phasor of the
component of by itself at the frequency f=to/2m, re-
spectively.

Let us begin by recalling the expression of the defect
relaxation time ~ given by
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r„'=c„(n+n,), r '=c (p+p, ),
(2.1)

(2.2)

V

where c„(c) is the electron (hole) capture probability,
n(p) is the electron (hole) density, and n, (p& ) is the same
density when the quasi-Fermi-level coincides with the en-
ergy E of the defect.

Such concentrations and the intrinsic one n;, for non-
degenerate semiconductors, are given by

Xi x 0x2 Xi

F„—Ec
p =Nv exp

Ev —F
kT

(2.3)
FIG. 1. Sketch of an abrupt p-n junction.
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(2.4)

n; =n,p, =nopo =NcNv exp( EG Ik—T),2 (2.5)

E—FT =r(c„n+c~p, ),

(2.6)

in which T is the absolute temperature, k is the
Boltzmann constant, Nz (Nv) and Ec (Ev) are the
effective state density and the edge energy, respectively,
of the conduction (valence) band, no (po) is the electron
(hole) density at the thermal equilibrium, EG =Ec E~ is-
the forbidden energy gap, and F„,F, and FT are the
quasi-Fermi-levels for the free electrons and holes and for
the electrons trapped by the defect being considered, re-
spectively.

In its turn, the occupation factor P (Pz ) of the island
energy level E by an electron (hole) is given by

where N„(ND) and L~ (Lp) are the acceptor (donor)
concentration and the electron (hole) diffusion length, re-
spectively, in the p (n) side.

In conditions (2.11) very few electrons (holes) reach the
terminal 1 (2) so that for the electron (hole} current densi-

ty J„(J~)we have

J„(Xi}=Jp(Xq)=0,

bJ„(X„r)=b,J(X2,r)=0.

Therefore, from the continuity equations

(2.12)

(2.13)

BJ„
Bx

8J~

Bx
=qU, (2.14)

and from (2.12), the current i= AJ (X&)=AJ„(Xz)of
the junction, of cross section A, becomes

whereas the electron-hole recombination rate per volume
unit U becomes where

in +ip+ir (2.15)

np —n; np —n; np —n,.
2 2 2

p&w ni 'pgn7p
(2.7)

where the electron (hole) lifetime r~ (rp) and r; are
defined by

l~ =qA

/p =qA

i, =qA

f Udx,

f Udx,

f Udx,

(2.16)

pvN n+p n]7;
s «,c.as @ (2 8)

in which Ns is the density of the defects at r and
Dz(r, E,c„,c ) is their distribution in the space (E,c„,c )

of which d 4=dE dc dc„is the volume element.
Now let us compute the current i = —i, =i2, necessary

to get the noise, versus the bias voltage U of a one-
dimensional abrupt p-n junction, as shown in Fig. 1

where x, and x2 represent the edges of the SCR and
x, —X, and X2 —x2 are the widths of the p and n QNR,
respectively. We consider the case of low injection,

are the contributions of electron diffusion in p QNR, of
hole diffusion in n QNR, and of the GR processes in
SCR, respectively; q is the electron charge.

Equations (2.15) and (2.16), for long diodes, are totally
general, that is, they are also true for high injection, i.e.,
when (2.9) and (2.10) do not hold good.

Vice versa, if (2.9} and (2.10) hold good, from (2.5),
(2.7), and (2.8}we get

n —no
, x~x,

(2.17)
n Qp =po=Ng7 x Cx1

p &n =no=ND x )x2
and of a long diode'

x 1 X1 )4L~7 X2 x2 & 4Lp

(2.9)

(2.10)

(2.11)

p —poU=, x &x2
7 p

where, according to (2.1), (2.2), and (2.8)—(2. 10), ~z and
r& become independent of x if, together with (2.9) and
(2.10), we have
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c„n«cp, x&x,

cpP «c~n ~ x )x2

In this case from the current equations

dn BpJ„=qD„,x &x„' J = qD—~, x &x2
CIX Bx

(2.18)

(2.20)

+M qv

2 exp cosh
V—Vo

kT

~xr ——(1/n; )(c„c)'~

may also be written in the form

E
+ cosh

(2.28)

(2.29)
where D„(D) is the electron (hole) diffusion constant in
the p (n) region, and from (2.14) and (2.17) we obtain

qv
n —no ——no exp kT

—1 exp
X —X)

X (X)

(2.21)

qv
p —po=po exp kT

—1 exp
X2 —X

Lp
X &X2

(2.22)

where the diffusion lengths are given by LN =(D„r~)'
and LI =(D rI, )'~ . Equations (2.21) and (2.22) also orig-
inate from the fact that, according to (2.9) and (2.10), the
quasi-Fermi-levels Ip and F„areconstant for x &x

&
and

x & x2, respectively, and that, on the assumption made by
Shockley of a small GR current across SCR, ' they also
maintain such constant values in SCR itself across which
we therefore also have

where Eo is the value of E for which c„n&——
cpp& and

Vo= V(xo) is the value of the electron potential energy
V(x) at the abscissa xo, if it exists, where
c„n(xo)=czp(xo).

Indeed, we encounter two major diSculties in comput-
ing the integral (2.27}, as well as, on the other hand, (2.8)
and the following similar ones involving Dz. One, of a
physical nature, springs from the fact that the distribu-
tion Ds ( r, E,c,c„),depending on several microscopic
physical quantities and technological parameters, is gen-
erally not known, even from an experimental standpoint.
The other is the intrinsic mathematical diSculty encoun-
tered in computing the integrals in closed form.

However, in spite of that, general meaningful results,
as shown by (2.24} and (2.25) for i„and i, and as also
shown in the following parts, may be inferred for current
and noise.

In particular for reverse bias conditions, when in SCR
we may assume n =p =0, from (2.1) and (2.2), we have

F„(x)—F (x)=qv, x, &x &x2 . (2.23) r=(e„+e} (2.30}

Finally, by setting

q AL&n; q ALI n;

NA7N ND~P
(2.24)

where e„=c„n
&

and ep =c p &
are the emission probabili-

ty of electrons and holes, respectively, so that, on the as-
sumption that Nz and Dz are independent of x, from
(2.5), (2.27), and (2.30) we get

from (2.5), (2.9), (2.10), (2.16), (2.17), (2.21), and (2.22) we
get the classical equations of Shockley,

i„=I„expqv

I =qw ANs
Ds

e„-'+e,-' (2.31)

i =I exp
qv

(2.25)

i„=I„(v)[exp(qvIkT) 1], — (2.26)

where, unlike I„andI,
I„(v)=qAf f r(v)c c„n,NsDsd@ dx, (2.27)

xl

depends on v through x „xz,and, especially, ~( v) which,
according to (2. 1)—(2.5) and by setting

which, however, in virtue of (2.1), (2.2), (2.8), and (2.24),
are also extended to the case in which the defect parame-
ters are dispersed, in any way at all, in the space E,c,c„.

In SCR, where both n and p, as a function of x, change
over a very large range, (2.9), (2.10), (2.18), and (2.19) are
no longer true and, accordingly, the computation of i, be-
comes much more diScult than that of the di8'usion
currents i„andi .

From (2.3), (2.5), (2.7), (2.8), (2.16), and (2.23), in SCR
we have

where tv =xz —x, is the SCR width (Fig. 1).
As a conclusion to this section, we wish to point out

that the new technologies make it possible to obtain
"ideal" Shockley p-n junctions in which, indeed, i, is
negligible, especially for forward-bias conditions, as re-
gardi„andi .

III. TOTAL NOISE SPECTRUM

Let us now compute the power spectral density or of
the short-circuit current fluctuations Ai2 ———Ai, =hi at
the device terminals (Fig. 1} produced by a single in-
dependent defect and, then, by all of them together.

For this purpose, too, we must recall certain general
results to be found in Ref. 24.

First of all, it must be remembered that the stochastic
currents g„and g which feed the defect being con-
sidered from the conduction and valence bands, respec-
tively, are characterized, according to the Schottky
theorem and the van Vliet results, ' by the relevant shot
noises, whose respective spectra o.„and o „and

In
o.„=o„+o „aregiven by
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o„=2qrc„[c(np+n, )+2c„nn,],
o „=2qrc [c„(np+n, )+2c~pp, ],

P

o„=4q'r '00»

(3.1)

(3.2)

(3.3}

2 2
H aping +an 0'

n P

O'U =t aUo' +2T aU(1 „ct—1 o' ) .
'9p P

(3.12)

(3.13)

Then from (2.1), (2.2), (3.1), (3.2), and (3.11) we obtain

The problem is now to find the coupling mechanism
and coefficients between q„,q, and the output currents
hi, and bi2.

For this we have defined the current coupling
coefficients I ttd» =5id» I5itt as the ratio between the
current 5id» of type d coming out the terminal h

(d =n,p, e for electron, hole, and displacement current,
respectively) and the (small) current 5tit, inducing 5id» it-
self, which is injected into the defect in question at r from
the conduction (B =C) or the valence (B = V) band.

Since the displacement current is null in the neutral re-
gions, and, according to (2.13), the electron and hole
currents are also null at terminals 1 and 2 (Fig. 1},respec-
tively, from the previous definition and from the con-
tinuity and Poisson equations, without any adiabatic ap-
proximation or any other assumption, we get

r„,=r„,=r,n, =r„,=o,
r,n, = —r„,=r, ,

(3.4)

(3.5)

rc

rv

aU-~ '+jea
'7 +JCO

aU+ n +J n

7 +JCt7

(3.6)

(3.7)

a„=q f 5nd'x, (3.8)

aU —— f 5Ud x,
5n, 5p, and 5U being the variations of n(t), p(t), and
U(t), respectively, induced by charge variation 5Q pro-
duced by 5I~ in the defect being considered; Q is the
sample volume.

Then, according to (3.4) and (3.5), o't becomes

in which the charge coupling coefficients a are defined

by

a, = q f 5pd'x,

crt 2q ——r[c~c„(np+n; ) 2—r c~c„(np—n; ) ],
and from (3.1), (3.2), and (3.12) we get

oH 2q ——r[(a„+a&)c„c~(np+n;)

+ 2' c„nn|+2a„capp& ],

(3.14)

(3.15)

and, finally, from (2.1), (2.2), (2.5), (2.6), (3.1)—(3.3), and
(3.13) we get the relationship

o U 4q r——aU[aUPP»+rcpc„(np —n; )(P—P» )], (3.16)

SF(co,v)=A f f NsDsd@ dx . (3.19)
Xl 1+ tv

Therefore, the general model in Ref. 24 allows us to
determine completely the noise spectrum of a long p-n
junction by reducing the coupling problem to that of
computing the charge coupling coefficients an, a, and
aU. This computation will be performed in the next sec-
tion.

IV. CHARGE COUPLING COEFFICIENTS

A. General properties and neutral regions

in which, if necessary, P and P» and hence o U may be
expressed —as happens for O.

L and oH, according to
(3.14) and (3.15)—through the capture probabilities and
the densities of the carriers by using (2.6).

Finally, the power spectral density S; of the current
fluctuations due to all the defects, on the assumption that
their charge fluctuations are independent, becomes

X~
S;=A f f otNsDsd@ dx=Ss+SF, (3.17)

1

where, according to (3.10), we have put
r

O'L +t tv O'H
Ss(to, v)=A f f NzDzd@ dx,

I 1+ N

(3.18)

ot= il c f o„+[I v[ o„ (3.9)

Since, as will be shown in Sec. V E, ap, an, and aU are
real up to frequencies of the order of ~p and 7~', up to
such frequencies, from (3.1)—(3.3), (3.6), (3.7), and (3.9),
we have

According to the conclusions drawn in the preceding
section, the coupling problem is reduced to computing
the charge coupling coefficients a„,a, and a U by means
of (3.8), or, with regard to any quantity y and in the case
of frequency independence of its fluctuation, by means of
the relationship

( 0't +r co OH}+O'U'
1+r cv

(3.10}
a (xt}—— f byd x, (4.1)

Tp
cr„+

where we have put
2

n

2

(3.11)

where by is the variation produced by the fiuctuation b.g
of the charge of the defect in question at x =xi.

First of all, since, according to (3.4), the variation in
the electric field has been assumed to be negligible on the
device surface, from the Gauss theorem we get
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q f (bp —bn)d x+kg=0,
so that from (3.8) we obtain the relationship

an —ap ——1,

(4.2)

(4.3)

Therefore, the problem is now to compute g and b V'

by means of Poisson's equation which, for SCR, gives the
usual relationships

V= q—N„(«—x, ) /2e+q(U~ —&), x, &«0 (4.12}

which reduces the computation of an and aP to that of a
single coe%cient an or a .

On the assumption, which, as shown in Sec. VE, is
true for f &~~', rt ', that y[V(r)+EV(r, t)]=y(V)
+b, V(By/BV) depends on r and t only through the po-
tential energy V(r}+5V(r, t } (we have set
By/BV=[By/B(V+~, V)]zz 0), (4.1) may also be written
in the form

a= q fbV dx. (4 4)
Sg n BV

From (2.1)—(2.5), (2.7), (2.8) (taking into account that
EEc=hEt, =b, V), (4.3), and (4.4) and from Poisson's
equation, for QNR we obtain in a straightforward way

V=q ND (x —x z ) /2e, 0 &x & x 2

w = [2e(N„+ND )( vb —U ) /qN „ND]'

x, = wN—D l(N„+ND ), x2 wN——
„

l(N„+ND),

(4.13}

(4.14)

(4.15)

where e is the permittivity and Ub is the junction built-in
potential.

Again from Poisson's equation concerning the charge
JM b,g 5(x —xt ) alone we get

hV = —yq bg(x& «)(xt «2)/ew, x, &x &xt

(4.16)

n+p' n+p
np —n;

2

aU=
n vU

2

U

7U

B. Space-charge region

n; N~
c c„r(c p c„n)Ds—d4 .

n+p

(4.5)

(4.6)

(4.7)

6V = —pq Eg(«2 —x )(xt —x) )/Ew, xt &x &«2

(4.17)

(«I «1 }y(«2 } («2 xt )y(xi )

wND wN„
(4.18}

whereas 5V' =0 elsewhere.
Therefore from (4.9},(4.11)—(4.13), (4.16), and (4.17) we

obtain

By means of (4.1) or (4.4), the direct computation of a
in SCR, in three-dimensional space, should be much
more diScult than in the previous case of neutral regions.

However, according to the method proposed in Ref.
24, the problem may be simplified from three to one di-
mension by writing (4.1) and (4.4) in the form

X~ X~

1 fx26V' By
=&ag x, g Bx

where Ay' and 5V' are the variations of y and of the po-
tential energy, respectively, produced by a fictitious
charge p Ag 5(x —xt ) uniformly distributed on the plane
x =xt with an arbitrary surface density p b Q, while

ay =

XI —Xi 0 yf dx, xt&0"i (x —x, )'

' f ' y, dx, x, )0.
o (x, —x)'

(4.19)

On the usual assumption

n =p =0, x) (x &X2, (4.20)

XI —X )
an=an =

W

P

q

Ia=a=—
P P

(x2 —xt) qn

q

used to determine (4.12) and (4.13), from (2.9), (2.10),
(4.10},(4.18), and (4.19) we obtain

where we have set

1 hV'

t ~g

X2

Xi

r ' a
peg Jx, y Bx

bV'

1av
q Bx

is the steady-state electric field.
By integrating (4.8) by parts we obtain

(4.9)

(4.10)

(4.11}

(4.21)

where qn and q, according to Lauritzen and van
Vliet, ' ' should be the charge transferred in the external
circuit due to electron and hole migration, respectively.

On the assumption (4.20), a„and a~ can be obtained
directly from a recent extension ' of the Ramo-Shockley
theorem which removes the limits and diSculties of such
a theorem pointed out by van Vliet' and, concerning the
required independence of the moving carriers, by Price.

Finally, from (2.3}, (2.5), (2.7), (2.8), (2.23), (4.10},
(4.18), and (4.19) we again obtain (4.6) where we now
have

(4.22)
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+U

n; xr —x] x2 —xI
w r, (x, )ND r, (x, )N„

(4.23)

n(x, x—, )
dx, XI (0

~I~, X —X, '
n(x, x,—) f, dx, xi)0.

Nn o r (x, —x)'

(4.24)

When one uses (4.6) and (4.21)—(4.24) in (3.15)-(3.19),
xI has to be replaced by x.

Further analytical developments of the computation of
r'U by means of (2.8), (2.29), (4.12), (4.13), and (4.24) are
very complex. On the other hand, approximate or nu-
merical evaluations of v.'U are beyond the scope of this
work.

count for the GR and flicker noises, as well as for the
burst one, of the junction electron devices.

Furthermore, unlike in the collective model of van
Vliet and in the line analogy of van der Ziel, the proposed
approach, owing to its corpuscular-collective nature, may
easily take into account the dispersion of the parameters
of the defects, both in QNR and in SCR, and any of their
number, even only one.

More generally speaking, as will be shown in the fol-
lowing sections, the new model, unlike the previous ones,
allows us to compute, for any bias voltage and any fre-

quency, both in SCR and QNR, all types of noise of the
p-n junctions, i.e., thermal, shot, fiicker, GR, and burst
noises.

B. Zero bias: Nyquist's theorem, thermal noise

At zero bias voltage U =0, i.e., at thermal equilibrium,
we have F„=F=const throughout the sample, so that,
from (2.3), (2.5), (2.7), (3.16},(3.19), and (4.6), we obtain

V. SHOT AND THERMAL NOISE

A. Comparison with other models

np =n;2

SF(co,0)=0,
(5.1)

(5.2)

Before further computations, some comparisons have
to be made between the proposed model and the previous
ones.

From (4.21) we see that, in SCR and for equal defects,
the expressions (3.14}and (3.15}are in perfect agreement
with the results obtained by Lauritzen, by means of a
corpuscular theory and of a random-telegraph-signal sta-
tistical approach, as well as by van Vliet' ' according to
a collective model based upon kinetic and transport equa-
tions, supplemented by Langevin noise sources as given
by the GR noise theory. In both cases an a priori adia-
batic approximation for the free carriers is performed.

Apart from the fact that this agreement provides a
check on the soundness of the model and of the calcula-
tions made with it, it is also remarkable in that the three
approaches are radically different.

However, vice versa, it is to be observed that such an
agreement has been obtained on the assumption (4.20),
i.e., ultimately, also in this case on an adiabatic assump-
tion for the free carriers in SCR which, nevertheless, here
becomes an a posteriori approximation. Indeed, the new
nonapproximated model through (4.18) and (4.19), by
avoiding the unnecessary assumption (4.20), should yield
exact and more complete coefficients a„=qz /q +a„'and
a = —q„/q+ aw~hich, therefore, should lead to ad-
junctive parts a„'and a* and results which cannot be ob-
tained by the models of Lauritzen and van Vliet owing to
their a priori adiabatic assumptions.

As matter of fact, it is such an approximation lack that
allows the new model to give a general unified approach
which, in addition to SCR, holds good, unlike the previ-
ous ones, for QNR too.

The other important difference between the new model
and any other previous ones ' is that it only takes into
account the modulation produced by each defect upon
the GR current of the others and thus, as will be shown
in the next section, through the corresponding spectrum
contribution SF [see (3.17) and (3.19}]it allows us to ac-

that is, the "excess noise" SF for U =0 is null at any fre-

quency.
For co=0, i.e., at low frequency, from (2.5), (3.14),

(3.17), (3.18), (5.1), and (5.2) we have also

S;(0,0) =4qIO,

in which Io ——I(0) is the value, at u =0, of the current

X~
I(u)=q& f f r(u)c„c,n,'NsDsde dx

x)

(5.3}

=I„+I~+I„(v), (5.4)

where, according to (2.1)—(2.3) and (2.29), r(v) is a func-
tion of v and the second equality, according to (2.1), (2.2),
(2.9), (2.10), (2.24), (2.27), and (4.20), follows from the fact
that in SCR r(0) is much greater than elsewhere.

Moreover, the junction conductance Go = (di /dv)
~ „

at u =0, from (2.1)—(2.5), (2.7)—(2.10}, (2.15), (2.16),
(2.21)—(2.23), (2.27), and (5.1) becomes Go qIO/kT so-—
that (5.3) and (5.4) yield

S;(0,0)=4k TGG, (5.5}

The objective is now to show that the contribution Ss,
given by (3.18), of the noise spectrum, except for reverse
bias and high frequencies, in most cases produces a full
shot noise.

For this purpose we set

i.e., in agreement with Nyquist's theorem, the model
correctly gives the thermal noise in conditions of equilib-
Aum.

On the other hand, since, as will be shown in the fol-

lowing section, we have o L
-o H, from (3.18) and (5.2) we

find that (5.5},which is also a further check of soundness
of the model, holds good for any frequency at which the
model itself is valid.

C. Forwardbias: Fullshotnoise
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ol =2q rc~c„(np+n; ), (5.6}

and we observe that, according to (2.1), (2.2), and (5.6),
we have

ol /q r«1/2, (5.7)

CTL =O'L (5.8)

so that from (2.7), (2.8), (2.15), (2.16), (3.18), (5.4), (5.6),
and (5.8) for co =0 we have

except on the surface L, of the space (E,c~,c„,r } on
which c p=c„nor, for np ((n, , on the surface L2 on
which c p1

——c„n1. However, on L1 and L2, too, we
have, at least, oL, /q v&1/2r

Therefore, except in the very special case in which the
defect-center states are situated on the locus L, or L2, or
near them, from (3.14), (5.6), and (5.7), especially in the
integral (3.18), we can consider for any u

that in QSR's and in large zones of the space (E,c~,c„,r)
we have, for any v,

tXH =COL, X (X1, X )X2 (5.17)

Z2
a a dx= ——'.

n p
1

(5.18}

According to (2.23), (3.18), (5.6), and (5.11), such a sub-
stitution is equivalent to considering ~ as a constant in x,
and x2. Indeed, in virtue of (2.30), this occurs for the
reverse-bias condition.

Then, for co= 00, that is, for

whereas in SCR, according to (4.21} the terms of o.H
given by (5.10)—(5.12) may become comparable among
themselves.

Now, in order to simplify the computation of Ss by
means of (3.18), in (5.11), for SCR, we shall replace a„a
with its mean value which, according to (4.21), becomes

Ss(0,u) =2q(i +2I), (5.9) s » tm
—1 (5.19)

i.e., at low frequency the contribution of Ss consists in a
full shot noise for any bias condition.

However, in special cases the term proportional to r
of (3.14), which according to (5.7) has been neglected,
may lead to a reduction 2qI„/4 of Ss(0,v) given by (5.9).
By following Lauritzen and van Vliet, ' ' indeed, one
may obtain such a result if, as it may happen in SCR for
intermediate forward bias, a region of the locus L1 exists
where np »n;, p »p1, and n »n1. ' ' Such a reduc-
tion may occur when the GR current in SCR prevails on
diffusion ones in QNR's (see Sec. VIII).

At high frequency, according to (3.18), we have to also
consider the term o H which, from (3.15), (4.3), and (5.6),
may be also written in the form

being the minimum value of r in SCR, from (2.7},
(2.8), (2.15), (2.16), (2.27}, (3.18), (5.4}, (5.6), (5.8), (5.9),
(5.11), (5.17), and (5.18) for any v we get

Ss( Do, u ) =Ss(0,v ) —2q(i„+2I„)/3+ST,
where

Z2

SE & f f (aHn +aHp )NsDsdc

(5.20)

(5.21)

as shown in the Appendix, is the contribution due to the
trapping e6'ects at the SCR edges, given by the relation-
ship

4(2ekT) i
E

3QN
S

OH=~L+OH+OH +&H

where

(5.10) r

c N~
Ds e ln

N~ e„+e
3/2

/ I0 H ——2Q„apaL,
+Hp 47/ Q„cppl & 0 Hn 4'Tg o' c„n512 2 2 2 2 2

(5.11)

(5.12)

1
+e~ ln

D e~ +ep

3/2 '

d4 . (5.22)

O'H=0, X (X1, X &X2 (5.13)

In the QNR x &x„from (2.3}, (2.4}, (2.9), (4.5}, (5.6},
and (5.12) for any v and

E &Ec—(F E„)+kTln(c Nv/—2c„Nc), (5.14)

In QNR from (2.9), (2.10), and (4.5) we have
2

~

a„a
~

&&1 for any u, so that, according to (5.10) and
(5.11), for any bias condition we can consider

Since, according to (2.15), (2.25) —(2.27), (4.14), (5.9),
and (5.22), SE is a slowly varying function of v in compar-
ison with Ss(0, v) and 2q(i„+2I„)/3,its contribution, for
small forward voltage, may become detectable and
greater than the reduction 2q(i„+2I„)/3.

However, when the defect density Ns is small, as hap-
pens in modern junctions, the last two terms of (5.20)
may become negligible, at least for bias voltages above
proper values, so that for these (5.9) and (5.20) give the
full shot noise

E & Ez+2(F Fz) —(Ec F„)+—kT 1n(2cpNc—/c„N&), Ss(co, u ) =2q(i+2I ), (5.23)

we have, respectively,

+Hn ((+L& +Hp ((+L

(5.15)

(5.16)

at any frequency for which the model is valid and contri-
bution SF does not intervene.

D. Reverse bias: Two-thirds shot noise

Therefore, by repeating the same considerations for
x ~x2, from (5.10), (5.13), and (5.16) we can conclude

For reverse-bias conditions, according to (2.30), r is in-
dependent of x also in SCR so that the substitution of
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a„az with its mean value given by {5.18} is perfectly
correct and thus (5.20) becomes exact, as well as the value
of SE given by (5.22) becomes accurate (see Appendix).

Therefore, from (2.15), (2.25}, (2.26}, (5.4), (5.9), and
(5.20), for v & 4k—T/q, we get

Ss(0, u ) =2q(I„+I~+I„},
Ss( 00, v ) =2q(I„+I+2I„/3)+SE,

(5.24)

(5.25)

Ss(~,u)= —23Ss(O, u)+S@———', 2qI„+Ss . (5.26)

Moreover, for instance, for equal defects with e„»e
and for ND »N„,from (2.31) and (5.22) we get

SE ——( —,'X )2qI„,

where, with quantities referred to x (x &,

X=[(Ec E)—(F—Ev)—
+kT ln(c N„/c„NC)]/q(ub —v) .

(5.27)

(5.28)

Therefore, according to (5.26)—(5.28), for high reverse
bias we have Ss(~,u)= —,'Ss(O, u)= —', 2qI„, i.e., we find

that at high frequency Sz becomes two-thirds of the full
shot noise at low frequency.

This result agrees with that obtained by Lauritzen and
van Vliet, ' ' who, in any case, neglect the trapping
effects at the SCR edges. [They, rather, compute
Ss(0, u) =2qI„/2, i.e., they obtain a half-full shot noise, in
the extremely unlikely case that all the defects have
e„=e~,i.e., they lie on the locus L2. In that case from
(2.27}, (3.14), and (3.18) we obtain, of course, the same re-
sult. ]

E. Upper frequency limit

Now let us determine the upper frequency limit up at
which the previous results hold good.

For this purpose we wish to recall that the SRH GR
theory and Schottky's theorem, used to determine relaxa-
tion time, the stochastic equation, GR current modula-
tion, and Langevin noise sources of each defect, and espe-
cially the method employed to determine the charge cou-
pling coeScients through the continuity and Poisson
equations alone, without utilizing transport equations, re-
quire the carrier densities to respond instantaneously to
the variations in the potential at any point.

Such an assumption, in its turn, needs the mean transit
time T, across SCR to be negligible in relation to co

i.e., we must have

N ((Tt, x1 (x (x2—1 (5.29}

whereas, according to the diffusion theory, in QNR we
must have

where I„,Iz, and I„given by (2.24) and (2.31), respective-
ly.

On the other hand, according to (2.1), (2.2), (2.9),
(2.10},and (4.20), r is much greater in SCR than in QNR
so that from (2.8), (2.24), and (2.27) we have I„»I„,I~
and, accordingly, (5.24) and (5.25}give

ri) «(a~+ T, } ', x &x)

co « (rp + Tt ), x & xp
(5.30)

Indeed, relationships {5.29} and (5.30) establish the
upper frequency limit up to which the model and its re-
sults hold good. For higher frequencies we must take
into account that in (3.6) and (3.7) aU, a„,and a~ are
complex and they must be computed using the transport
equations too.

The reduction 2q(I„+2I„)/3given by (5.20) of the
shot noise of SCR, in the frequency interval established
by (5.19) and (5.29), is due to the fact that, according to
the extension of the Ramo-Shockley theorem ' and (4.21),
the charges induced at the device terminals by a free car-
rier during its flight across SCR, when it approaches and
when, after its storage, it leaves the defect, are fractions
of the electron charge, and the relevant current pulses,
for co »~ ', appear to be statistically independent. '

At low frequency, rather, the two current pulses ap-
pear as a single event to which one unit charge q crossing
the entire junction corresponds. That accounts for the
full shot noise for co —+0.

For the forward-bias condition each of the minority
electrons (holes), except those which are stored by the de-
fects during the longest mean times ~ and which contrib-
ute to the flicker noise through SF [see (3.18) and (3.19}
and following section], during the mean time T, +7.z
( T, + rz ), by crossing the depletion region and by recom-
bining itself in the p (n) QNR, crosses the entire junction
and, at device terminals, induces a current pulse ' carry-
ing one unit charge q. That explains in physical terms
the origin of full shot noise for U &0 and any frequency
satisfying (5.30}.

VI. 1/f" NOISE

SF=SF~ +Spp +S (6.1)

where SF„,Sz~, and Sz„arethe SF contributions relevant
to the p QNR, n QNR, and SCR, respectively.

From (2.28), (3.16), and (4.6) we obtain

CTU =4q 'TCXUR
2 2

where we have set

~ =44a+{«U/~M }{4—6) .

Moreover, let us also set

(6.2)

(6.3)

fc~c„r(c p c„n)Dsd@-
13=

J c,c„rDsd4
(6.4)

so that from (2.&) and (4.7) we have

A. Noise spectrum versus current

It remains for us to compute the contribution SF of the
noise spectrum due to the GR current modulation pro-
duced by the defect charge fluctuation.

First of all let us determine its current dependence.
For this, let us write (3.19}in the form
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p7N nrp p
n; ~U n; ~U ~+p2 2 (6.5)

In QNR's and in the low injection case defined by (2.9),
(2.10), (2.18), and (2.19), the quantities l., rU, and p, ac-
cording to (2.1), (2.2), (4.7), and (6.4} do not depend on x.
On the other hand, again in the low injection case, in
large zones of the space (E,c,c„,r), we have also

c„n«c p&, x &x,

cpp ((c~ ll ] ~ x )x2

(6.6)

(6.7)

so that in them, according to (2.6) and (6.3), P, Ph, and R
are also independent of x.

Therefore, from (2.8)—(2.10), (2.18), (2.19), (2.21),
(2.22), (2.24}, (2.25), (3.19), (4.6), (4.7), (6.2), and
(6.5)-(6.7) we get

2i„P„Ns
Dsd@, x &xlALNN„1+ co

2ipPpNs
Sp = Dsd@, x &x2

ALP ND 1+ co

SF„——

(6.9)

(6.10}

where p„and pP are the values of p in the p and n QNR,
respectively.

Since in large zones of the space (E,c,c„,r ) we also
have c„n]((cpp for x &x& and c~p& &&c„nfor x )x2,
from (2.1)—(2.4), (2.6), (2.18), (2.19), and (6.4) we get

P„=fc„(1—P ) Dsd@ fc„(1—P )Dsd@, x (x,

B. Reverse bias

The integral of x of (6.12) can be computed for reverse
bias when (2.30) and (4.20) hold good so that, according
(2.6), (2.8), (4.22) —(4.24), and (6.3), r, r;, P =pep, Pl, re„,——
and R become independent of x. Indeed, from (2.8),
(2.30), (2.31), and (4.22}-(4.24}, taking into account that
l; '(x) » l, '(x, ),r, '(x2), for ~U we obtain

I,x
wQ

' (6.13)

where

Q = qAN„x—l qANDx——z (6.14)

is the charge in the two parts of SCR (Fig. 1).
Therefore, from (2.26}, (2.28), (2.30), (6.3), and

{6.12)—(6.14) we obtain

e

Na ND 1+

2 Ir ND 1Vg

SF becomes proportional to the square total current i
while, unlike these, SF is inversely proportional to the
square density of the majority carriers. This last result,
in particular, explains why the flicker noise of bipolar de-
vices, in general, is smaller than that of the unipolar ones
for the same carrier concentration.

pp = —fcpp„Dsd& f c $„Dsd@, x & x2 (6.11) +q(ep —e„)(ND Nz ) Dsde—.

where P (P„)is given by (2.6) where F (F„)replaces FT
Therefore, according (6.10) and (6.11), we have

~
P ~

(1,
where the equality sign holds good when the defects are
located above (below) the Fermi level F (F„)of the holes
(electrons) for the p (n) region.

In SCR, where the quantities greatly depend on x, at
least as far as forward bias is concerned, we cannot per-
form the integration in a closed form with regard to x so
that, from (2.26), (3.19), (4.6), and (6.2), we obtain

'2

(1+ co ) tl

(6.12)

where 7., l.U, and R, according to (2.29), (4.12), (4.13),
(4.22) —(4.24), and (6.3), are very complex functions of x
and of the other parameters. In particular, apart from
across i„(v),SP, depends on v, in a complex way, through
I, &, and ~U, too.

Therefore, in general, according to (6.1}, {6.8), (6.9),
and (6.12) we do not have a simple dependence of SP on
the current.

However, when the GR current in the space-charge re-
gion is negligible, i.e., i, =0, from (2.15), (2.25), (6.1),
(6.8), (6.9), and (6.12) we find that, as happens for the
flicker and GR noise in unipolar devices, the excess noise

SF—S~, (6.16}

where SP, contains one term that is proportional to the
current I„=—i and another that is proportional to its
square I, =i .

C. Frequency exponent

Owing to the analytical complexity of the integrals and
expressions which, according to (3.19), (6.1)—(6.3), (6.8),
(6.9), (6.12), and (6.15), give SP(co) and owing to the fact
itself that the distribution D& is usually unknown, the
analytical computation, in a closed form, of the depen-
dence of Sz on the frequency is generally not possible.

However, certain general properties of this frequency
dependence of SF, and more generally speaking of S, ,
may be inferred by means of a recent method ' for
computing the frequency exponent of any noise spec-
trum.

To this end the total noise spectrum, according to
(3.17)—(3.19},may also be written in the form

(6.15)

Therefore for reverse bias, from (2.15), (2.24) —(2.27),
(6.1}, (6.8}, (6.9}, and (6.15},by recalling that I„»I„,IP,
we find that the excess noise Sz is reduced to SF„i.e.,
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S;=SF+SH,
in which we have set

(6.17) Now let us compute r again, starting, this time, from
the second member of (6.21) which, according to (6.23),
leads to

SH = f f~HNsDsd a dr, (6.18) 1+5r=
p1+SH /SF

(6.24)

1+ co

f f rA(v, Ep) d
1+r co

(6.19)

where SH is independent of co and A(r, E,p} is a function
of r, E, and p=—(c~,c„,r).

When, as happens, in the case of forward bias, we can
disregard the contribution of (OH+OH~+oH„) relevant
to SCR, from (5.8), (5.10), and (5.17) we get O'H ——or so
that from (3.18}, (3.19), (6.18), and (6.19) we also get
S~=Ss and SF—SF

By solving the quadratic equation of g= exp(ElkT)
which we obtain from (2.1), (2.2), and (2.4), we can ex-
press E(r,g) through r and p in (6.19) which, therefore,
become

V

1+ co 1+ co

(6.20)

where W(w, p) =A[r, E(r,p),p](BE/dr), B N(r/
v, )~'D, (r)= f Wdp, B is a constant which has a
current dimension, r, = 1/2mf, is an arbitrary reference
relaxation time, N = f Nsdr is the total defect number,

and D, is the distribution of v over the whole sample.
By making the further variable changes 8= ln(r/r„)

and 8 = ln( flf„),(6.20) also becomes

Ws(8, p)
SF exp( —8 )f——f dpd8

cosh 8+8 (6.21)

(6.22)

where Ws ——2 'r, exp(8) W[r(8),p], So BNw„, and——
F(8)=2 'r, expI 8+8v[r(8)] ID,[r(8)]=So ' f Wt|dp

Now the spectrum S; (f) may be expressed, in a proper
band around any given frequency f0, in the power
form

where now

5= f f tanh(8+8 )g(8,p)dpd8,

in which the distributionlike function 4 is given by

(6.25)

Ws(8, p) We(8, p)
dpd8

cosh(8+8 ) cosh(8+8„)
(6.26)

From (6.25) and (6.26) we get
~

5
~

&1 so that (6.24)
gives 0 & y & 2, as must happen in the case of superimpo-
sition of Lorentzian spectra.

When the defects have the same relaxation time
1 s ='r exp(8& ), that is for Ws ~ 5(8—8& ), from (6.25)
and (6.26} we get

5= tanh(8&+8„)=(r&co 1)/(H&c—o +1), (6.27)

D. Notes

i.e., we obtain the value of 5 for a single Lorentzian
which, according to (6.17) and (6.19), we have in this
case.

If the values of ~ are dispersed but in such a way that
is different from zero only in the region

~
8+8„~& 1.55 of the space H, p, from (6.25) and (6.26)

we find that (6.27), with 8b ——8, again holds good, i.e., we
have

~
5

~

=1 with a negligible error.
In all the other cases of dispersed relaxation times 'T,

owing to the hyperbolic cosine of (6.26}, P tends to be-
come essentially different from zero and an even function
around —8„,around which tanh(8+8 } is an odd func-
tion, so that from (6.25) we get

~

5
~

~0.
This result and (6.24), for Sz»SH, explain how we

can have r=l for many decades down to the lowest
measurable frequency, that is how the flicker noise of bi-
polar devices may originate from defects with dispersed
values of r which with their charge fiuctuations modulate
the GR current of neighboring defects, that, nevertheless,
may not have dispersed values of c,c„,and ~, too.

The same conclusion, since v & 0, may be reached start-
ing from the third member of (6.20) and (6.21) according
to the previous models.

where the frequency exponent y(f ) is given by

(6.23}

In recent works, ' starting from the third member of
(6.21) we computed y in a general form and we showed
that the fact that v~0 leads to an easier explanation of
the paramount characteristics of flicker noise and that, in
particular, a very small fraction of the N defects with
dispersed v., e.g., 10 —10 ', is suScient for it to be gen-
erated.

The 1/f ~ noise model proposed above is based on the
dispersion of defect relaxation times w, the shift towards
the greatest values of their distribution due to v ~ 0, the
modulation of GR current produced by the fluctuations
of the defect charges, the use of new methods to solve the
coupling problems, and to compute the frequency ex-
ponent of the power spectrum.

Such bases and tools should overcome the limits of the
1/f noise model of p njunctions -of Kleinpenning'
which is based on the mobility fluctuations of the car-
riers.

One such limit is the use of an empirical nonfundamen-
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tal formula, the Hooge one, as a basis of a theory.
Other difficulties derive from the fact that mobility

fluctuations cannot exist without those of the carrier den-
sity and that the empirical formula, owing to the small
density of free carriers in SCR, leads to mobility fluctua-
tions so great that they cannot be physically explained.

Finally, for QNR, as it is physically diScult to account
for the fluctuations of a mean statistical quantity, the mo-
bility, so it is even more difficult to justify those of the
diffusion constant on the basis of Einstein s equation, i.e.,
a relationship holding true between average steady quan-
tities.

On the other hand, the model of the hemimicroscopic-
mobility fluctuations, which takes into account the trap-
ping effects on the free-carrier velocity due to the defects,
and which is quite equivalent to the approach of the
carrier-number fluctuations, cannot directly be
transferred from the unipolar devices to the bipolar ones
because it only takes into account the interaction between
each defect and the carriers of an alone band.

VII. GENERATION-RECOMBINATION
AND BURST NOISE

A. Generation-recombination noise

If all the N defects, or their group Nb, are character-
ized by an equal relaxation time v=vb, according to
(3.19) or (6.27) they contribute to the noise Sz by means
of a Lorentzian spectrum Szb that, like the shot noise to
which it is added, is independent of the frequency up to
about fb

= 1/2m ~b.
Such a contribution SFb, which, according to (6.1),

(6.8), and (6.9}, may be proportional to the square
current, may be considered as a GR noise of the junction.
It has never been dealt with in any previous model.

The remaining defects (N Nb) with d—ispersed values
of r may generate a spectrum SFf ~1/fr, with y=1
down to lowest possible frequency, which emerges over
SFb even if, according to a previous approach, their
fraction (N Nb)/N is e—xtremely low, such as, for in-
stance, 10 . However, for Szf to become measurable, it
has to become greater than (SFb+Ss) in which we may
have Ss ))Szb.

B. Burst noise

The present general approach also allows us to account
for the burst noise.

In fact, according to the definition of the current cou-
pling coefficients I sdb and to (2.1), (3.4)—(3.7), and (4.3),
we find that the current fluctuation 5i, in the frequency
domain, produced by the fluctuations of a single defect, is
given by

'6i = I 5g„+I 5g

a a
aU — — 5Q+a 5'„+a„5',(7.1)

p n

where we also have taken into account that from the
charge conservation equation of the defect we obtain

&Q=(~7)„+&re)/(~ '+j co) . (7 2)

For the frequencies which satisfy (5.29) and (5.30), the
coefficients aU, an, and a are independent of the fre-
quency so that (7.1) holds good also in the time domain,
i.e., we have the equation

anai= aU-
Tp

a
b,Q+ ap rt„+a„re,

n

(7.3)

which may also be obtained directly from the charge con-
tinuity equations for the electrons (or holes) and for the
defect and from (2.13), (4.1), and (4.3).

In (7.3), rt„(t)and rt~(t) consist of pulses, while, be-
tween consecutive pulses, b, Q is a random telegraph sig-
nal whose amplitude, for a single-energy defect, is the
electron charge q.

Therefore, if the coeScient of b, Q in (7.3) for the defect
being considered and its relaxation time are much greater
than in the case the other defects, the corresponding
burst current fluctuations emerge over the whole fluctua-
tion due to all the other defects themselves.

The amplitude of such bursts, as has been found experi-
mentally, ' according to (2.2}, (2.16), (2.17), (2.21), (2.22),
(2.26), (2.27), (4.5)—(4.7), (4.21)—(4.24), and (7.3), depends
on current and temperature.

VIII. SOME EXPERIMENTAL DATA

Our direct experimental verifications of the proposed
model, which, however, are in progress, as well as a de-
tailed analysis of data of other authors, are beyond the
scope of the present work. This in order also to contain
the length of the work.

However, some comparisons between experimental
data existing in literature and the model may be quickly
performed.

The noise measurements of p-n junctions in most cases
have been made on bipolar transistors in the common-
base configuration.

After Chenette and van der Ziel had detected no shot
noise reduction at low frequency and at room tempera-
ture, Wade and van der Ziel, " together with van Vliet
and Chennette, ' at low temperature when the recom-
bination in emitter SCR prevails, obtained a reduction
factor of the shot noise falling between 0.8 and 0.85.

The same value, somewhat larger than the 0.75 of the
theoretical models, has been obtained by Blasquez, ' at
room temperature, for the shot noise directly associated
with the recombination current in the emitter SCR.

According to the present model such values greater
than 0.75 are due to the dispersion of the defect parame-
ters.

Moreover, Wade, van der Ziel, Chennette, and Roig, '

at low temperature, found an excess noise which, accord-
ing to the proposed mode1, can be ascribed to GR pro-
cesses.

For reverse bias the factor of two-thirds shot noise was
verified by Scott and Strutt on large-area diodes at fre-
quencies between 20 and 50 kHz, when (5.19) is satisfied.

Kleirnpenning' has measured the flicker noise of
several diodes. Among them the most apt devices to be
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compared with the proposed model are the long p-n junc-
tions with the largest area (2.5X10 m ), this in order
to avoid edge effects, in the current range where the
ideality factor is equal to 1 so that both the GR processes
in SCR and the ohmic effects are negligible. For them,
according to the proposed model, the flicker noise is
about proportional to the square current.

Also the measurements, versus temperature and bias
current, of the burst noise in bipolar transistors' agree
with the model.

Therefore, even if further proper experiments could be
performed to verify directly the main results of the pro-
posed model, we can conclude that the existing experi-
mental data largely validate it.

IX. CONCLUSIONS

A corpuscular-collective model of noise of junction de-
vices has been proposed which, through a single unified
approach, accounts for all noise sources of p-n junctions
in any region and bias condition.

Indeed, it takes into account thermal, shot, flicker
generation-recombination, and burst noise in both neutral
and space-charge regions, for forward, zero, and reverse
bias voltage.

The model is developed through a detailed and com-
plete analysis. It utilizes the SRH model and Schottky
theorem which, corpuscularly applied to each single-
energy-level defect, make it possible to compute its relax-
ation time and I.angevin noise sources and the modula-
tion of GR current across the other neighboring defects.

The coupling coefficients between the stochastic
currents —which, from conduction and valence bands,
supply the defect and produce its charge fiuctuations-
and the variations of the output short-circuit currents are
computed, through a collective approach, in a new and
simple way by means of continuity equations alone; in
this way they may be expressed by means of other cou-
pling coeScients between the defect charge fluctuations
and those of the carrier concentrations and of GR
current. Such charge coupling coeScients, in their turn,
are evaluated by means of Poisson and transport equa-
tions and of a new method which reduces the noise cou-
pling problem, especially for the space-charge region,
from three dimensions to one. Moreover, at the frequen-
cies below which the transit time across SCR and the
diffusion time in QNR are negligible, they may be com-
puted directly from the Poisson equation alone.

The total noise spectrum thus obtained, which for
zero-bias voltage, according to Nyquist's theorem, gives
the thermal noise, is made up of two contributions. One
of them originates from the variations, induced by defect
charge fluctuations, in carrier densities and in currents
directly supplying each defect. Such a contribution in
the space-charge region tallies with the result obtained by
Lauritzen and van Vliet using other methods.

When these types of contributions relevant to all the
sample defects are summed together, both in space-
charge and neutral regions, they give two-thirds shot
noise in the case of high frequency and reverse bias,
whereas in most other cases, up to frequencies of the or-

der of the reciprocal of the minority-carrier lifetime, they
produce a full shot noise. This result is independent of
the properties of the defects, i.e., of their energy, carrier
capture probabilities, allocation, and relaxation times,
and it does not even depend on their distributions.

Indeed, according to a recent extension of the Ramo-
Shockley theorem, the full shot noise is a direct conse-
quence of the fact that each carrier, during its complete
flight from one electrode to the other, induces an output
current pulse carrying one electron charge and of the fact
that the flight time is of the order of the carrier lifetime.

However, for small bias voltage and high frequency,
the trapping effects at the SCR edges may lead to a noise
greater than the full shot noise.

The second "excess" contribution, which has not been
taken into account by any previous model, originates
from the modulation, produced by each single defect, of
the GR current of all the other neighboring defects.

This second term gives contributions which, for the
neutral regions, are proportional to the square diffusion
currents, whereas, for the space-charge region, the depen-
dence on its GR current is more complex.

When the defects have equal relaxation times, the ex-
cess contribution leads to a Lorentzian spectrum which,
as in unipolar devices, we can describe as a GR noise
source.

When, however, the defects, or even a fraction of them,
have different energy, capture probabilities, and position,
their relaxation time r can assume very dispersed values.

Since the Lorentzian spectrum of each defect is pro-
portional to r'+" with vp 1, according to a new method
for computing the frequency exponent y, in this case of
dispersed r the excess contribution tends to give a 1/f r
noise with y = 1 down to lowest measurable frequency.

Such a noise can be generated by a fraction of defects
with dispersed parameters as low as 10 —10

Finally, the new coupling coeScients between the de-
fect charge fluctuations and the fluctuations of the carrier
and GR current densities, together with the continuity
equations, have allowed us to compute, in a new general
form, the fluctuations in the time domain of the output
current due to the burst charge fluctuation of each single
defect. In this way, therefore, burst noise is also included
and accounted for by the new model.

Even if further experiments, especially on the present
almost ideal junctions, would be opportune in order to
better verify the model, however, the existing experimen-
tal data of literature largely validate it.

The new theory developed for long abrupt p-n junc-
tions, which in particular contains previous models, ' '
can be applied or easily extended to other junction types
and devices such as Schottky diodes, heterojunctions, bi-
polar junction transistors, junction field-effect transistors,
junction photodevices, and so on.

So the solution of transport equations by means of the
new method of reduction of the noise coupling problems
from three to one dimension should make it possible to
easily determine the frequency dependence of the charge
coupling coeScients and, hence, to extend the frequency
upper limit of the model beyond the reciprocal of the
minority carrier lifetime too.
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In conclusion, the proposed noise model appears to be
a general and effective method for analyzing the conduc-
tion and fluctuation phenomena of the bipolar media and
devices.
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where

c N~
V'=q(ub —u ) —V, Vr' k——T ln

Cpp 1 +Cn 7l 1

being V' = V'(x *, ).
For x =xt & 0, from (4.12) and (4.21) we also have

I 1/2
2e V'

2 2e V'

(A2)

(A3)

APPENDIX

4q A~ cpPP i

cpP +cpP] +c~ n

4q a„cp,
V' —Vp

kT1+ exp

Let us compute SE according to (5.21). For this let us

de6ne the abscissae xo, x &, and x 2 of SCR by means of
the relationships c p(xo)=c„n(xo) and czp(x & )=c~p&

+c„n&

——c„n(x 2 ), and let u
* be the value of bias voltage

x ]max xo x 2min'

For u & u
' and x, & x & x z, from (2.1)-(2.4) and (5.12),

we have

Since, unlike for x &x', for which, according to (Al)
and (A2), o H~ is a constant, o H~ itself for x t &x &xz de-
creases exponentially in the case both of (5.12) and (Al),
in (5.21) we can assume that (Al) and (A3) hold good in
all the SCR x& ~x ~x2. In particular such an assump-
tion gives accurate results for reverse bias.

Therefore, for V' &~kT, the integral in x of oa, and
the analogous one of oH„, according (5.21), (Al), and
(A3), leads to (5.22).

It is worth noting that, according to (Al) and (5.21),
SE is a contribution due to the trapping effects at the
SCR edges.
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