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A corpuscular-collective model of noise generated by the Shockley-Read-Hall (SRH) defect
centers is proposed for the semiconductors. The interactions of the single-defect centers with the
charge carriers both of the conduction and valence energy bands, with their currents and with
generation-recombination (GR) current are taken into account. With regard to the unipolar con-
duction media and devices, such interactions make the analysis and its results much more complex.
By starting from the SRH theory, we first determine the average occupation factor and GR current
of the single multiple-energy-level defect and the relevant shot noise associated to the GR transi-
tions. Then, again according to such a corpuscular approach, by taking into account the fluctua-
tions of the quasi-Fermi-levels and of the electric potential, we compute the relaxation time and the
Langevin equation of the single defect and the modulation which its charge fluctuations induce in
the electron, hole, and GR currents. Finally the coupling problem between the defect and the
currents of the device terminals is solved, by means of collective approach, by defining proper cou-
pling coefficients between such output currents and the currents and charge injected into the defect
itself from the conduction and valence bands. Then the relationships between such coefficients, for
any shape and terminal number of the device, are computed in a general form by means of the trans-
port, continuity, and Poisson equations and of a new method which allows us to evaluate the three-
and two-dimensional effects of a single defect through a one-dimensional approach. The new model
should be able to account for the thermal, shot, flicker, burst, and GR noises of the semiconductor
devices, for any bias condition and for any defect number and allocation in the neutral and space-
charge regions.

I. INTRODUCTION

As is well known, both experimental and theoretical
analyses of the noise and conduction mechanisms, which
are closely correlated, are much more difficult for semi-
conductor bipolar electron devices (BED's) than for uni-
polar ones (UED) owing to the greater complexity and
multiplicity of the phenomena, conditions, and quantities
involved.

Indeed BED's have two charge carriers, electrons and
holes, which, as carriers, may be created and annihilated,
or captured, stored, and released by defect centers that,
from their energy levels in the forbidden energy gap, can
exchange charges with both the conduction and valence
bands. The carrier densities, in their turn, may vary by
many orders of magnitude from one region to another of
the same sample.

On the other hand, several conduction and generation
mechanisms —electric drift, diffusion, generation-
recombination (GR) processes, tunnel and thermoionic
emissions, and so on —interest the carriers both in the
neutral and space-charge regions of the BED, where low
and high electric fields, respectively, act and make the
analysis different.

Furthermore, the various phenomena quantities are
very sensitive to the work and boundary conditions, such
as sample temperature, bias voltages, and electromagnet-
ic irradiations.

All these elements greatly affect the thermal shot, Aick-
er, burst, and GR noises, i.e., the chief BED noises, in as
far as they produce complexity and dispersion of the ex-
perimental data and difficulties in their theoretical
analysis and explanation which, indeed, are much greater
than in the case of the UED.

In the past three decades the BED noise, owing to its
technical and scientific importance, has been extensively
studied, both experimentally and theoretically, by many
researchers' ' so that most of its features have been
found, while some others are still to be clarified or made
utilizable for the new submicrometer devices.

The main theoretical results for BED are due to van
der Ziel, "' Lauritzen, and, especially, van
V11et 4'8 10'14

The collective noise models of van der Ziel, concerning
the quasineutral regions (QNR), is based upon a
transmission-line analogy.

Lauritzen, rather, by means of a corpuscular model,
i.e., the Shockley-Read-Hall (SRH) theory' of carrier
generation-recombination in the defect centers, and of a
probabilistic approach, computes the noise associated
with GR phenomena in the space-charge regions (SCR).

Finally van Vliet computes the BED noise, both in
QNR and SCR, by means of some general collective ap-
proaches, i.e., a statistical method valid for GR processes
not involving spatial coordinates, Green's-function for-
mulation of transport theory of noise holding true for
symmetric SRH recombination, and the model of the
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transport equations supplemented by Langevin noise
sources as given by the SRH and GR noise theories. ' '

The last more effective approach, which for SCR gives
the same results as Lauritzen's method, is developed (i)

on the two apposite "adiabatic" approximations that the
trapped- (free-) carrier densities in QNR (SCR) adjust fast
compared to the free- (trapped-) carrier concentrations,
an) (ii) on the assumption of using the steady-state con-
centrations of the free carriers in computing the (dom-
inant) relaxation time of the defect and the noise
sources. ' ' '

Moreover, the previous models do not take into ac-
count the parameter dispersion of SRH defect centers, as-
sumed as equal, and their interaction.

On the other hand, Kleinpenning' studies the 1/f
noise of the p-n junctions on the basis of the carrier mo-
bility fluctuations and Hooge's empirical formula ' whose
theoretical bases deserve further research.

The above-mentioned problems, the renewed interest
for some foundations of the BED noise, as shown also by
a recent work of van der Ziel et al., ' the unsolved ques-
tions relevant to the 1/f noise, the new submicrometer
devices characterized by very few defects which cannot
be dealt with by means of collective approaches, induce
us to study the BED noise by means of a previous model,
developed for the UED, which corpuscularly puts the
noise sources in the single defects, fed by the shot noise
associated to the electron transitions into and from the
defect itself, and which collectively deals with the cou-
pling problem between defect and outputs by means of
the impedance field method.

The corpuscular-collective model which we are propos-
ing, by retaining the only assumption (ii) of van Vliet,
overcomes the other previous approximations' limits and
problems and it allows us to take into account the above-
mentioned manifold physical aspects in studying the
noise of the semiconductor devices in their bipolar opera-
tions.

According to such an approach, and other previ-
ous models, ' ' ' ' ' the sources of the various types of
noise, except thermal noise, are again identified in the de-
fects of the conducting medium, of any nature and alloca-
tion whatsoever, and in particular in the SRH defect
centers, which in the case of the semiconductors, interact
in various ways with the carriers both of the conduction
and the valence bands and among themselves too.

Such multifold interactions of the defects, the existence
of two types of carriers and bands, and all the other
above-mentioned physical processes greatly change the
previous model developed for the UED, making it more
complex.

Here the model is carried out according the following
lines.

By starting from the SRH model' ' applied to the sin-
gle defects, i.e., by following a corpuscular approach, we
first determine the average value of the occupation factor
and of the GR current of each defect and, through them,
the shot noise associated with the GR transitions. ' '

Then, by taking into account the fluctuation of the
quasi-Fermi-levels and of the electric potential, as well as
the interaction between the defects, we compute their

(dominant) relaxation time and Langevin's equation.
[Such a time and equation, as well as the previous shot
noise, indeed, are determined according to the steady-
state assumption (ii) of van Vliet. ]

The defect interaction allows us to show that the defect
charge fluctuation, through the potential fluctuation
which it generates around itself, besides the electron and
hole flows in the respective energy bands, also modulates
the GR current crossing the other neighboring defects.

Any other effect of such an interaction, on the other
hand, is neglected because it leads to a system of as many
coupled Langevin equations as the sample defects, which
is not possible to solve. However, such an approximation
gives correct results for the neutral regions where, as in
the UED, the defects are screened from each other by the
free carrier, whereas it may lead to approximate or
insufficient results for the depleted zones where such a
screening does not exist.

Finally, the problem of the coupling between each de-
fect and the device terminals, which, of course, must be
dealt with in order to determine the output noise spectra,
is solved by means of a collective approach, i.e., by
defining proper coupling coefficients between the output
currents and the current and charge injected into the de-
fects itself from the valence and conduction bands. Such
coupling coefficients and their general relationships are
then computed for any terminal number and shape of the
device by means of current, continuity, and Poisson equa-
tions, making no adiabatic assumptions, taking into ac-
count the GR modulation, and using a new method
which allows us to evaluate any three- and two-
dimensional effects of each single defect through a much
simpler one-dimensional approach.

Owing to its corpuscular-collective nature, accuracy,
and generality the new model should be able to account
for the shot, flicker, burst, and GR noises of the semicon-
ductor devices, whatever the bias conditions, the shape,
size, and the terminal number of the sample, and the
number and allocation of the defects, both in neutral and
space-charge regions, may be.

However, in order to limit the length of the work, any
application of the proposed theoretical tool to specific de-
vices will be described elsewhere.

II. GENERATION-RECOMBINATION CURRENT
AND SHOT NOISE OF A SINGLE DEFECT

A. Currents

According to preceding models i, 3,4, 6—io, i4, 22, 23, 2s the
low-frequency noises are generated by defects in the con-
ducting medium, of whatever nature, size, and allocation,
which are able to capture, to store, and to release charge
carriers.

Accordingly, in the semiconductor devices, such
sources of noise are the SRH defect centers which, unlike
what happens in the case of UED, are able to exchange
carriers both with conduction and with valence bands.

Therefore, the extension of the preceding model from
UED to BED, which we will make, requires referring
some bases of the SRH theory' ' in order to compute,
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firstly, the steady-state current through a single center
and the relevant shot noise associated to its carrier transi-
tion and, then, its fluctuations, relaxation time, and
Langevin equation.

Let us consider defects with one or more energy levels
E. for which the separation and the number of the levels
are not affected by the electrons occupying them. In this
case, according to the SRH theory corpuscularly applied
to each defect center, currents iN and ip entering it
from the conduction and valence bands, respectively, at
time t become

First, let us compute the time average value of Fz, iN,
and ip. For this purpose it is sufficient to observe that,
from the defect charge conservation, it follows that
i& ———ip and

l = —ln p (2.9)

lnv

which, by means of (2.1)—(2.8), allows us to determine
Fr. (It may be obtained by means of a trial and error
procedure by making (1—f )=exp[(E~ Fr—)/kT] and

f, =exp[(Fr —E, )/kT] for EJ &Fr and E~ & Fr, respec-
tively, according to (2.8).)

Then, by indicating the density of the states at the
point r with Ns(r) and their distribution with respect to
Fr, EJ, c„i, and cz~ by Ds(r, Fr, E~,c„,c ), from (2.1),
(2.3), and (2.9) we obtain the electron-hole recombination
rate per unit volume U(r) in the form

i~+ =q pc, N pf, , i =q gc N, p, (1 .f,. ), — .

I J
(2.4) U= — =Ns Dsc„n 1 — —n

where q is the electron charge, N and f are the state
number and the occupation factor, respectively, of the jth
level, c„(c } is the electron (hole) capture probability, n

(p) is the electron (hole) concentration, and n~ (pj ) is the
same concentration when the quasi-Fermi-level coincides
with E .

Such concentrations and the intrinsic one n;, for a non-
degenerate semiconductor, are given by

x dF&dE& dc„~dc&&, (2.10)

where in is the average current across the vth defect con-
tained in the volume element EQ around r being con-
sidered and the sum is extended to all its defects. Of
course, —qU represents the time-average value of the
generation-recombination current per unit volume.

Nc expJ

E.—EcJ
kT

F —Ec
n =Nc exp kT p =Nv exp

p =Nv exp

E —F
kT

kT

(2.5)

(2.6)

B. Single-energy-level case

When the N energy levels of the defect being con-
sidered occupy an interval smaller than kT or in the case
of N =1, i.e., of a single-level defect, by omitting the in-
dex j and by setting n, =—n and p, =—p, , from (2.1)-(2.9)
we obtain

n; =n p =NcNv exp( EG /kT ), — (2.7) f=~I(c„n+c p, ), (2.11)
in which Nc (Nv} and Ec (E„) are the effective state
density and the edge energy, respectively, of the conduc-
tion (valence) band, k is the Boltzmann constant, T is the
absolute temperature, EG =Ec—Ev is the forbidden en-
ergy gap, Fn, Fp, and Fz. are the quasi-Fermi-energy-
levels for the free electrons and holes and for the electron
trapped by the defect being considered, respectively, i.e.,f is given by

E —F~
f~ = 1+.exp (2.8)

In (2.1}and (2.2), vi„(ri ) is the stochastic component
of the current, with null time average, due to the random
passages of the electrons (holes) between the island and
the conduction (valence) band. Moreover, the kinetic
equations (2.3}and (2.4) hold true on the assumption that
the relationships between the capture and emission
coefficients deduced at the thermal equilibrium are
verified outside it too.

Let us now indicate with y (Yo) and by (bY) the
time-average value and the fluctuation of the quantity y
(vector Y), respectively, and with 5y(jco) the phasor of
its component at the frequency f =co/2n.

where '

(2.12)

In particular, according to (2.8), (2.11), and (2.12), Fr
assumes a value pr(E, c„,c ) depending on E, c„,and c~
alone and, hence, we also have
Ds Ds(r, E,c„,c~ )—5—(Fr Pr ). Therefor—e, from (2.3),
(2.5)—(2.7), and (2.9)—(2.12) we obtain

i„= i = q—¹„c~l—(n p n; )—
U=(n p n, )Ns f f fe„c—rl.DsdEdc„dc

(2.13)

(2.14)

C. Defect shot noise

The stochastic components g„and g of the currents
feeding the defect, which are constituted by the indepen-
dent random passages of carriers between the defect and

where, of course, for N =1, Ns also represents the defect
density.

Since Eqs. (2.10) and (2.14) take the parameter disper-
sion of the defect centers into account, they are an exten-
sion of the results of the SRH model.
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the bands, produce shot noises associated with each cap-
ture and emission process. Therefore, according to the
Schottky theorem and to (2.1)—(2.4) and (2.11},the power
spectral densities o „=2q (i„++i„} and

o„=2q(i~++i~ } of the random sources g„and ri, re-
P

spectively, and their sum o.„=a„+0.„,in the case of
~n rt

energy levels contained in an interval smaller than kT,
according to van Vliet's result ' become

crz 2q ——Narc„[cz(n p+n, }+2c„nn&], (2.15)

a„=2q Nrrcz[c„(n p+n; )+2c pP, ],
P

o„=4q Nf(1 f)lr—r .

(2.16)

(2.17)

Such relationships will be used later on to compute the
noise spectra of the defect and those at the device termi-
nals.

III. FLUCTUATION, RELAXATION TIME,
AND INTERACTION OF THE DEFECTS

A. Fluctuation

The stochastic currents g„and g entering the defect
being considered and the action of the other defects on it
produce fluctuations in its charge

Q= —q QN, f, , (3.1)

and in its other quantities. The purpose of this section is
to compute such fluctuations and the relationship be-
tween them in order to determine the Langevin equation
of b, g, its relaxation time, and the GR current modula-
tion.

Let Avr(R) and b v(R, r) be the variation of the poten-
tial inside and outside the defect being considered, re-
spectively, generated by the fluctuation b,g of its charge,
R being the barycenter of the defect. At the same time
let Ave(R) be the potential fluctuation produced inside
the defect and in its neighborhood by all the others.
Then it is

Moreover, let hFz, bF„, and hF~, be the fluctuation of
the quasi-Fermi-levels, with

AFz. q(Aur +6 vs )——, — (3.3)

where —q b ul represents the Fz change due to the varia-
tion of the electron number of the defect.

In order to determine the eight variables
hvr, b,v, b, ur, bF„, bF, hi„, biz, and b,g, and, in par-
ticular, the Langevin equation which connects b,g to g„,
g~, and b, oz alone, as many equations are to be found.

From (2.8) and (3.1)—(3.3) we obtain the first equation

~g =Cr(hur hvr)—
where the internal capacitance CI is given by

(3.4)

hE = q(b, vr+ hvE ), K—Ec bE~ = q(hv + b, vE
——) . —

(3.2)

Cr ——q ( k T) ' g Nr f ( 1 f—r ) .
I

On the assumption that

AF„=O, hF =0,

(3.5)

(3.6)

and n(r) and p(r) are about constant, at least in a region
around the island which has sizes of the order of the De-
bye length A, given by

' 1/2
ckT

q (n+p)
(3.7)

another relationship may be obtained from the Poisson
and Gauss theorem in the form

b, g=CE Avr, (3.8)

where the external capacitance CE, for a spherical defect
with radius rz and surface A& ——4mrr, is given by

Cs=eAr(rr '+A, '), (3.9)

c, being the permittivity.
In order to simplify the determination of the Langevin

equation of the defect, and for this purpose alone, to (3.6)
we add the other assumption

EU=O. (3.10)

According to the previous defect model, the physical
meaning of (3.6) and (3.10) is that one disregards the
resistance of the medium surrounding the defect in rela-
tion to that of the defect itself which, normally, is much
greater.

It should also be observed that the assumptions (3.6)
and (3.10), i.e., n =n and p =p only in the continuity
equation of the defect [and in its shot noises, see
(2.15}-(2.17)], are equivalent to neglect, with regard to its
dominant relaxation time, the second much smaller
one 4, 8, 10

By taking into account that the capture coefficients c„.
and c, after (3.10}, depend on hvr alone, from
(2.1)—(2.8), (3.2), (3.3), (3.6), and (3.10) we obtain

hi„= —G„(bur —b vr ) —(G+ +G, )hvr —G„Eve,

(3.11)

Ai = —G (Aur hvr ) —(G +—G, )bvr —G b, vE,

where

Gd (q2lkT) +cd——N (d, +d)f (1 fr ), — .

J

(3.12}

(3.13)

(3.14}

G, =q gN, [d(1 f, ) d,f, ], — —
J UI

(3.15)

d being equal to n or p and s being the sign + or —[in
the square brackets of (3.15) d and d must be inter-
changed for d =p].

Finally, to the seven equations (3.4), (3.6), (3.8), and
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(3.10)—(3.12), the charge-conservation equation

aug =hi„+hi +g„+gat
(3.16}

For this purpose, from (3.17)—(3.23), where we must
put g„=gp =0 because we now are considering the
effects of bvE alone, we obtain

must be added.
In this way the eight equations we are looking for have

been obtained.

B. Relaxation time and the Langevin equation

1+JCOvn
5ln = An $VE1+Jc07

where, here j = —1, and

(3.27)

The problem is now to determine the dominant relaxa-
tion time and the Langevin equation for the defect charge
fluctuations.

From (3.4}, (3.6), (3.8), and (3.10)—(3.12) we obtain

hi„= —b, Q /r„—G„buz,

hip
= b,g—/rp —Gp+ b,uz,

(3.17)

(3.18)

where the partial relaxation times ~„and ~ are given by

1 jr„= 6„ /C I+( 6„++G, )/CE,

I /r = Gp /CI + ( Gp +G, ) ICs .
P

(3.19)

(3.20)

Then, from (3.16)—(3.18), we get the Langevin equation
in the form

aug ag
Bt

—6 hvE+g„+gn p (3.21)

where total relaxation time ~ and conductance 6 are
given by

I /r= I /r„+ I /~p,

6=6„+Gp+ =q(i„+i + )/kT .

(3.22)

(3.23)

The preceding results hold true for any distribution
and number N of the defect energy levels.

For N =1, we have (Bc„/Bur)=(Bc /B )u=l0 as a
consequence of the definition of c„(c ) which is comput-
ed for the state filled by a hole (electron), so that from
(2.12), (3.5), (3.13), (3.15}, (3.19), (3.20), (3.22}, and (3.23)
we get

I/ rl/~ +I(G„++Gp )/CE, (3.24)

r„=[c„(n,+n)] ', r =[c (p, +p)]
7 7 I ~

(3.25)

(3.26)

C. Modulation of the GR current and interaction
between defects

Let us now compute the variations Ai„and hi of the
currents feeding the defect being considered, allocated at
R, due to all the others through the fluctuations b,uE(R)
of the potential that they produce at R.

that is, the transient relaxation time ~ is different from
the value vl used in the previous noise models ' ' ' in
which the term (G„++G )/Cz, i.e., the electric effects of
the defect center, is neglected.

However, indeed, as shown in Appendix A, such effects
may be disregarded in most cases, even if not always, so
that from (3.19), (3.20), and (3.24) we finally have

+n p
I
n Tp

(3.28)

For energy levels grouped in an energy interval smaller
than kT, as shown in Appendix B, we have ~'„=~I——~
and A„=(aT„/au;)= —(Biz /Bu;); E;=—qu; represents
the average intrinsic potential so that we have
Ec=EG /2 qu, , —Ev= EG/2—qu, , a—nd E, =E,' qu, , —
E' being the energy of the jth state evaluated from the in-
trinsic level itself.

Therefore (3.27}, and the corresponding relationship
relevant to Si, yields

Bi„
Al = —Al = AVE

a vc

(3.29)

)( C„C I CPP —C„n

x Ds dE dcp dc. , (3.30)

of the electron-hole recombination rate.
Here, such a GR current modulation, achieved by

means of a corpuscular approach, is proposed for the first
time and, as is shown in the following part, it has to be
taken into account in order to correctly evaluate the out-
put noise of the device.

Let us now consider in more general terms the problem
of the interaction between the defects which may arise in
the semiconductors (and in the insulators), especially in
the space-charge regions where the Debye length may be-
come greater than the distance between the defects so
that they are not screened from each other by the free
carriers.

For this purpose let 5Q„/C„„represent the potential
generated by the pth defect (located at R„) at the point
R where it is another vth defect [in its turn the
coefficient 1/C,„(R„,R„,jco) should be computed by
means of the transport and Poisson equations]. If, more-
over, we set (r„'+jco)—=G„/C„„ the Langevin equation
(3.21) leads to the coupled equation system

NI G
5Q„=5g„„+5gp„,

p=] VP

(3.31}

that is, the GR current crossing the defect in question is
modulated by the charge fluctuations of all the others
which generate AvE.

Vice versa the defect, through the potential fluctuation
b,u(R, r, t) which it creates, according to (2.13), (2.14),
and (3.29), produces the modulation

BU~ q +u( 2)N
gu, kT
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Indeed, in most cases, the term proportional to EUE of
(3.17), (3.18), and (3.21) may be negligible with respect to
the terms depending on b,Q and the others owing to the
screening effect of the free carriers, to the distance of the
other defects generating DUE, and to their uncorrelated
contribution to b UE itself.

Of the interaction phenomenon, on the other hand, we
retain the effects of each defect on the GR current of the
others, because in this case such effects, even though they
are small, are correlated and they may yield a high cumu-
lative contribution, through a large number of defects, to
the variation of the electron-hole recombination rate
given by the space integration (3.30).

To conclude this section, we point out that, from
(2.17), (3.21), and (3.32), it follows that the spectrum of
the b, g fluctuations is the usual Lorentzian one, and that
the variance ((bg) ), =q f(l f )r/rt —agrees with the
value given for it by the quantum-mechanical statistics
when the electric effects of the island are negligible and
(3.26) holds true.

Equations (3.21), (3.22), (3.25), (3.26), (3.30), and (3.32)
will be used in the following section to compute the noise
at the terminals of the device.

IV. PROBLEMS AND COEFFICIENTS
OF COUPLING

A. Coupling coemcients and terminal noise

The question which we now have to deal with is the
coupling problem, i.e., we roust find the mechanism and
the coefficients that couple the fluctuations of the defect
to those of the terminal quantities, currents, or voltages.

For this purpose let us consider a voluroe 0 of the de-
vice whose surface is divided into i areas
Az (h = 1,2, . . . ,i ), where Az may or may not be situat-
ed on the external surface of the device itself. Let J„,J,
and J, =[8(sg)Bt] be the current density of electrons,
holes, and of displacement, respectively, g= —Vv being
the electric field, and let

Idq ——J d AJd (4.1)

be the current of the d type which crosses the surface Az
outwards, with d =n, p, and e.

Now we can define the coupling coefficient between
currents,

I sdq =5Idg l5I— (4.2)

where 5Idz is the phasor, at a given frequency f, of the
variation of Id& induced by a small ac current of phasor
5I~ injected into the defect in question at R from the

where Nz is the total number of the defects of the device,
v = 1,2, . . . ,Xz, and ~ and G„are the values of ~ and 6,
respectively, for the vth defect.

Unfortunately, we cannot solve such an interaction
problem because of its great mathematical complexity
due to the very high number X~ of equations of the sys-
tem (3.31), so that we are obliged to assume

(3.32)

conduction (8 = C) or valence (8 = V) band.
After such a definition, by setting

4sz ——(I s„h+I s &+I tt,z ), the total current at the ter-
minal h induced by 5g„and 5g becomes

5', ——(@cq5rt„+@vh 5'~ ) so that the noise spectrum St
h

of the current I& produced by the defects, since they and
the stochastic sources g„and g& are independent, accord-
ing to (2.15) and (2.16) may be written in the form

+ca 'o~„+ ~'v~ '0„, & '&sas

XdE dc dc„d x, (4.3)

where the integral is extended to the volume of the whole
devices.

Therefore, the problem of computing the noise spec-
trum of the terminal currents is shifted to that of evaluat-
ing the coupling coefficients I zdz. The following sections
are devoted to this task.

B. Coupling equations and their reduction
to one dimension

The coupling equations which bind AIz to EId& and
hence allow us to compute coupling coefficients I zd& ac-
cording to (4.2) are the defect equations (3.16)—(3.18),
(3.21), and (3.32), where for the computation of I sdz it
now has to be

AIc g =~Iv (4.4)

together with the Poisson, continuity, and transport
equations for the variations of the quantities outside the
defect in question at R, into which currents AIc and EIv
are injected, causing such variations.

The Poisson equation is

V.(s bg)=q(bp hn )+—bg5(r —R), (4.5)

while the continuity equations for electrons and holes be-
come, respectively,

q =V b J —q b U+(hi„+bIC)5(r —R),8hn
(4.6)

(4.7)

It has to be observed that through EU, which, accord-
ing to (3.30), comprehends also the defect being con-
sidered, one eliminates from (4.6) and (4.7) the approxi-
mation (3.10) of b, v =0 which acts on Ai„and b,i~ and
which we have used in the defect continuity equation
(3.21).

Apart froro the particular transport mechanism of the
charge carriers, i.e., drift, diffusion, thermal, and tunnel
emission across an energy barrier, the linearization of the
relevant laws allows us to write the transport equations
for the variations induced by EI& in the most general
form

~Jd ad tv +add ~d+bd ~C+bddV(~d )

where, of course, the linearization coefficients ad and bd
depend on the transport mechanism, and d =n and p.

Indeed, by expressing hU by means of An and Ap
through (2.12) and (2.14), the eight linear and indepen-

q = —V b J —q b U (bi +KIv )5( r—R) . —Bb,p
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b, Y':—f W(r)by'd x

M
= g f W(R„,r„)by„(R„,r„)d x„.0

(4.10)

If then currents EI~ =EI& are equal and if, owing to
the symmetries of the system, loci L of points R, exist in
which the integrands Wby„or their integrals of (4.10)
are equal, from (4.9) and (4.10) we have

b, Y= f Wby d x=M ' f Wby'd x . (4.11)
0 0

In the systems which, apart from the effects of the de-
fect, are one dimensional, i.e., their macroscopic proper-
ties depend on x alone, the loci L are all the planes per-
pendicular to the x axis. If, in an artificial way, we uni-
formly distribute, with density p, M=pS equal defects
on a surface S of a plane x =X, X being the abscissa of
the particular defect whose effects we are computing, and
if the system size along the x axis is much smaller than
the linear ones of S, the variation by'(X, x ) due to such a
uniform distribution depends on x alone and it has to be
computed by means of Eqs. (4.5)—(4.8) which, according-
ly, after the substitution of 5(r —R) with p5(x —X) and
of hy with Ay', are now to be considered as one dimen-
sional in x. Finally, (4.11) becomes

b.Y(X)=p —' f W(x)by'(X, x )dx, (4.12)

b Y(X)=p 'W(x, )by'(X, x, ), (4.13)

dent equations (3.16)—(3.18) [for which (3.32) and (4.4)
hold good] and (4.5)—(4.8), together with the boundary
conditions of the system, allow us to compute as many
variations bg= V—(bu), b, Q, b, n, bp, bi„, biz, b J„,and
bJ produced by DID and hence, through (4.1) and (4.2),
to determine the coupling coefficients I ~dz.

The difficulty of such a coupling problem may be no-
ticeably reduced, according to the following general
method, by reducing from three to one the dimensions of
the space in which Eqs. (4.5)—(4.8) are to be dealt with
and solved.

Such a method is based on the linearity of the system
for the small variations and its symmetries, and on the
fact that, in the coupling problem, the variation
by =by„(R„,r) of a quantity y(r) produced by
b,I& ——EI& injected in the vth defect in question at
R=R does not need to be known as a function of r, but
rather, according to (4.1) and the following relationships,
it is sufficient to get its integral

b, Y=b, Y„=f Wby„d x, (4 9)

where W(r) is any function of r and m =2 or 3.
Indeed, owing to the linearity of the system for the

small variations, variation by' of y produced by M de-
fects stimulated by the respective current AI~ is given by
by'=g„ i by„(R, r), so that, after the variable substi-
tution r=R, +r„we have

C. Relationships between coupling coefficients
from continuity and Poisson equations

The proportionalities 5y cc 5' and 5Q cc 5' due to the
linearity of the system for the small variations allow us to
define the coupling coefficient

a~=5Y/5Q= f W5y d x/5Q, (4.14)

between the quantity y and the island charge variation
5Q; such a coefficient, in turn, may be computed by
means of the preceding method.

If, by making W =q and y =n, p, and U, we now define
the coefficients a„,a~, and a U, respectively, and

a,„=f d A.(sg')/5Q,
h

(4.15)

we can express the coupling coefficient I ~dz through
them by means of continuity and Poisson equations (3.16)
and (4.5) —(4.7) without using the transport equation (4.8).

Indeed, first of all, from (3.16) and (4.4) —(4.7) we see, as
must be, that the current is solenoidal, i.e., we get the
usual relationship V (bJ„+bJ +b,J, )=0 from whose
integration over the volume 0 and from the divergence
theorem we obtain the expected Kirchoff law

g (bI„q+bI q+bI h )=0 .
6=1

Then, from (4.2), according to which we have

5I,„=r„„5I,+r„„5I,,

(4.16)

(4.17)

from the arbitrariness and independence of 5I& and AI ~
and from (4.16) we get the first two relationships

g (ra.~+ ra, ~+ra.h ) =0
6=1

(4.18)

between the coupling coefficients.
If we now integrate (4.6) over 0 and we take the previ-

ous definition of a„and aU through (4.14) into account,
from (3.17) and (3.32) we obtain

g 5I„&——(j cuba„+ a U+ r„')5Q —5Ic,
6=1

(4.19)

so that then, from (3.21), (3.32), (4.4), (4.17), and (4.19)
and, again, from the arbitrariness and independence of
6I& and 5I~, we get two other relationships

of p since, owing to the linearity of the system, we have
b,y' cc p. )

In particular, according to (4.1), the current b, Id&
necessary to compute I ~„z by means of (4.2) may be ob-
tained in the simple form (4.13).

The general procedure described above greatly
simplifies the coupling problem and the computation of
the noise produced by defects and it may also be extended
to devices which have different symmetries and structures
from the planar one discussed above.

for m =3 and m =2, respectively, x, being the abscissa
of the plane, perpendicular to the x axis, to which the in-
tegration surface belongs. (b Y, of course, is independent

X rc.~=
6=1

a U
—r ' —jco(1—a„)

+JCO
(4.20)
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h=1

CXU+7 n +JNO.'„r Vnh +JCO
(4.21)

Moreover, from (3.21), (3.32), (4.1), (4.4), (4.15), and
(4.17}we also have

(4.22)

while, from the integration of (4.5) over 0 and from
(4.15), we obtain

a„—a =0,
where

(4.23)

h=1
~eh (4.24)

a,„=— f d A [eV(bv)],1 (4.25)

where, in turn, b, u is given by (4.5) which is now reduced
to the form

V (b,v)= —k b, u —e 'EQ5(r —R), (4.26)

in which the Debye length A, is given by (3.7). Then, in
particular, (4.25) and (4.26) may be reduced to one di-
mension according to the procedure described above in
Sec. IV B.

That is, when the assumption (3.6) holds true, the
charge coupling coefficients a and, through (4.18) and

If to the sum g'„, (I c„i,+ I c,„) [gz, (I i,„z
+I i,i, )] of the coefficients given by (4.20) and (4.22)
[(4.21) and (4.22)] we now added the sum g'j, , I &~i,

(g'i, i I vzi, ) similar to (4.20) [(4.21)] obtained from (4.7}
with the previous procedure, we should again obtain
(4.18) as a result of (4.23) and (4.24). This result, which
makes the equations deduced from (4.7) useless since in
actual fact they are not independent of (4.18) and
(4.20)—(4.24), was to be expected because (4.7), together
with (3.16), (4.5}, and (4.6), has already been utilized to
obtain (4.18) itself.

Equations (4.18) and (4.20) —(4.24) which express the
current coupling coefficients I zdh through the coupling
coefficients a with the defect charge variations are not
subjected to any adiabatic approximation or to other as-
sumption, i.e., they are totally general, they hold good
both in quasineutral and space-charge regions and for all
boundary conditions, quite independently of the fact the
coupling equations (4.5)—(4.8) are or are not reducible to
one dimension.

Moreover, the use of the charge coupling coefficients
a and hence of (4.20}—(4.24) becomes particularly im-
portant in the case of the assumption (3.6) which has not
been used until now for the coupling problem, and which
allows us to compute all the coefficients a„, a, aU, and
a,h by means of AU and the relative Poisson equation
(4.5) alone. In fact on this assumption, from (2.5), (3.2),
(3.30), and (3.32), (4.14) and (4.15) become, respectively,

a= f W hvd x,
n ()v,

(4.20}—(4.24), at least a part of the current ones I sdi, may
be computed without using the current equations (4.8).

In its turn assumption (3.6) means that b, n and bp fol-
low AU instantaneously. That happens up to frequencies
for which the diffusion delay and the transit time of the
carriers in the quasineutral and space-charge regions, re-
spectively, may be disregarded. Otherwise, as a matter
of fact, the current equations (4.8) has to be used also in
order to determine a~ and a,h.

Equations (4.25) and (4.26), of course, hold good both
in quasineutral and space-charge regions. However, in
the former case, if n and p are about constant in a region
around the defect which is of a few A. in size, from the in-
tegration of (4.26), or directly of (4.5), over the volume 0
and from (2.5), (3.26}, (3.30}, (4.15), (4.24), and (4.25} we
directly obtain

f bu d x/bQ=OkT/q (n+p),

a„=On/(n+p), a~ = Hp/(n—+p),
aU=(n p n; )—In; ru

n X
n p pp n g p n

n+p

(4.28)

(4.29)

(4.30)

whereas, in the space-charge regions of planar devices,
coefficients a, according to (4.12}, (4.13), and (4.25), are
given by

where, from (4.26), b, v' is given by the one-dimensional
equation

8 5v = —A. hu' —e phQ5(x —X},
Bx

and by its groper boundary conditions.

(4.32)

D. Remarks

In order to determine the current-noise spectra Sz at
h

the i terminals of the device by ineans of (4.3), 6i current
coupling coefficients I zdh are to be computed, as shown,
from the continuity equations of the defect charge and of
the charge carriers, from their current equations and
from Poisson's equation, or from relationships, such as
(4.18), deduced from them.

If we introduce the (i +2) charge coupling coefficients
a (orap} aU and a.p, as many coefficien ada maybe
determined by means of the (i +2) independent equations
(4.20}—(4.22). In any case, the total number parameters
I zdh, a,h, and a~ to be directly determined remain 6i, or
more exactly (5i —2) if one considers (4.18) and that, ow-
ing to (4.22), I c,„——I v,„.

However, on assumption (3.6) verified below proper
frequencies, the use of the parameters u„and n, h greatly
simplifies the coupling problem because they may be

1 Bp c, BAU'
a~=

&Q
W hv'dx, a,i, ———

I a

(4.31)
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I~~ ——0, 8=1. (4.33}

Moreover, in some cases we may even find that the ter-
minal current Id& is due to a single type of carrier, so that
from (4.1) and (4.2) we also get

I „„=0 or I ~
——0 . (4.34)

In case of (4.33) and (4.34), the number of coefficients
I zd& may be reduced to 2i and hence, in particular, for
two terminal devices the four equations (4.18), (4.20), and
(4.21) become sufficient to compute them completely
through the charge coupling coefficients a„, or a~, and
a U which, in turn, in the case of (3.6},are given by (4.25},
(4.26), and (4.28)—(4.30) or, if the devices are planar, by
(4.28)—(4.32).

The general model proposed, apart from the thermal
noise of dissipative parts, should be able to account for all
the main noises of the semiconductor devices, i.e., GR,
burst, flicker, and shot noises.

However, we cannot demonstrate this here because the
paper would become too long. For the junction devices,
this will be shown elsewhere.

computed directly by means of the Poisson equation
(4.26), or (4.32), alone [without using the transport equa-
tion (4.8)] and then by utilizing relationships (4.25) or
(4.31), or even, for the quasineutral regions, the explicit
expressions (4.28)—(4.30) of a„,a, and a U.

In any case, apart from the ways of computing a and

a,i„relationships (4.18) and (4.20)—(4.24), as well as the
preceding procedures, are quite general, i.e., they may be
used for any semiconductor device, terminal number, bias
and temperature condition, and for any distribution and
density of impurities and carriers.

In particular, they allow us to compute the coefficients
I z,& relevant to displacement current I,& across surface
A&. This is especially useful when A& intersects a space-
charge or an insulator region. If, rather, surface A„of
the volume Q being considered intersects a region with
free carriers which screen the electric field hg, and in any
case if the defects are a few A, away from Ai„hg (and
especially 5I,i, at low frequency) gives negligible contri-
butions in comparison with those of the conduction
current, i.e., we can put b $=0 on Ai, so that from (4.15),
(4.22), and (4.24) we get

laxation time, and the Langevin equation by achieving
general formulations which take into account the param-
eter dispersion of the defects themselves.

The coupling problem between the defect fluctuations
and the terminal currents has been dealt with by taking
into account the collective effects of the defect fluctua-
tions themselves through coupling coefficients between
the output currents, and the currents and charges inject-
ed into each defect from the conduction and valence
bands.

General relationships for such current and charge cou-
pling coefficients, which in their turn make it possible to
evaluate the output noise spectra, have then been ob-
tained, without any adiabatic approximation, from the
continuity, current, and Poisson equations, and by means
of a new method which reduces the fluctuation problems
from three- to one-dimensional space.

The model and its results hold true for any type, shape,
size, and terminal number of the semiconductor device,
for any bias condition, distribution of the energy levels,
and capture coefficients of the defects, for any density of
the impurities, defects, and carriers, and for any conduc-
tion mechanism and shape of electric field, both in
space-charge and neutral regions. In this last case, ex-
pressions in closed form of the charge coupling
coefficients have also been obtained.

According to the parameter dispersion and to the
structure and working conditions of the device, the model
should be able to account for the shot, burst, flicker, and
GR noise of any bipolar electron device.

In order to keep this paper a reasonable length, we will
discuss elsewhere the applications and direct
verifications of the proposed model which appears to be
able to provide basic equations for the analysis of the
noise phenomena in semiconductor devices.
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APPENDIX A

V. CONCLUSIONS

A corpuscular-collective model of noise of the bipolar
semiconductor devices has been proposed and several
new, general results have been obtained.

According to preceding models, apart from thermal
noise, the origin of the other main types of noise has been
identified as being in the single SRH defect centers
which, by interacting between themselves and with the
conduction- and valence-band carriers, modulate their
concentrations and currents and the GR current itself.

The SRH theory, applied in a corpuscular way to the
single defect, has allowed us to compute its average quan-
tities and shot noises, the generalized expressions of the
GR current and of its modulation, the defect dynamic re-

For energy levels contained in an interval smaller than
kT, from (2.3), (2.4), (2.11), (2.12), (3.9), (3.14), (3.23), and
(3.24) it follows that

(G„+.G~ )/CE ar~(2c~c„n; —+—c„n,n+c~p, p ),
a =q N/kTCE qN/4vrcr~kT=4——6N/rz .

(A 1)

(A2)

r, «C~/(G„++6~ ), (A3)

for both n »p, p, , an, and p »n, n &, ap, . In the space-
charge regions, where n =p =0, (A3} is obtained for both

where, according to (3.9), the third term holds true for
rz && A, and the fourth is true for silicon at room tempera-

0
ture and r& expressed in A.

According to (2.12) and (Al), we have
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c„n, ))2ac p, and cpp &
))2ac„n, . Therefore, except in

special cases, (3.25) and (3.26) hold true. I
+n

'n
[(c„n —c p)+arl(c„n n —c p p. )],

ln
(B2)

APPENDIX B

When energy levels E- are contained in an interval
smaller than kT, and 6, and G,„may be disregarded as
far as the other term in (3.19) and (3.20) is concerned,
from (2.3), (2.4), (2.11)—(2.13), (3.14), (3.19), (3.20), (3.28),
and (A2) we have the relationships

Bl
i„~~(c„n—c p ) =

BU(

Blp

BU;
(B3)

which, when the conditions leading to (A3) and
(3.24) —(3.26) exist, i.e., a ~0, because of (2.12) and (2.13),
become

A„=— i„r[(c„n cpp—)+arl(c„n n, c~p p—j )], I
+n

ln"
(c„n cp—)=

ln

I 1
(B4)

(Bl) so that (3.27) is reduced to (3.29).
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