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A one-dimensional model of itinerant electrons interacting with an antiferromagnetic spin-2

chain is introduced and solved. The model is designed to create ferromagnetic spin polarons

around each itinerant electron. The model is mapped onto a sine-Gordon Hamiltonian of three

massless Bose fields. A renormalization-group analysis of the bosonic theory shows that the origi-

nal model possesses quasi-long-range odd-parity superconductivity and spin-density-wave order.

The relevance to high-temperature and heavy-fermion superconductors is discussed.

The recent discovery of high-temperature superconduc-
tivity in La2-, Sr,Cu04 and YBa2Cu307 (Ref. 1) has re-
kindled interest in nonphonon mechanisms of supercon-
ductivity. In addition, there is little doubt that supercon-
ductivity of the heavy-fermion compounds is strongly
influenced by their magnetic properties. ~ In both cases,
neutron scattering3 has revealed the presence of antiferro-
magnetic spin fluctuations. These experiments have
stimulated studies of superconductivity mediated by anti-
ferromagnetic spin fluctuations. Weak coupling anal-
yses have considered exchange of antiferromagnetic fluc-
tuations in a Migdal-type approximation and obtain an-
isotropic singlet superconductivity. 4 The sensitivity of the
anisotropic superconductivity to disorder and inelastic
scattering makes this an unlikely mechanism of high-
temprature superconductivity. 67 Strong coupling meth-
ods ' consider a polaronic picture in which controlled ana-
lytic calculations are difflcult to perform. In the light of
this situation, it is clearly of interest to explore whether
simplified soluble models are available which can clarify
the interaction between itinerant electrons and localized
spin fluctuations.

We introduce a one-dimensional model, soluble in the
continuum limit, described by the Hamiltonian H:

H tg (ci,oci+ I,cr+ ci+ loci~), ,
i,a

+Jg (S;S,"yt +SfSiyyi+ AS;Sf+i )

+ (M/2)+Sf(c& ~ct ~ ct fact, t),

where c;t creates an electron with spin a in a Wannier or-
bital at the unit cell i and S; is a localized spin- z operator
for a different Wannier orbital in unit cell i The electro. ns
move along the chain via the hopping matrix element t

and interact with the localized spins via the spin-diagonal
coupling M. The localized spins interact antiferromagnet-
ically with each other with the exchange constant J and
the anisotropy constant 6 (0» 5» 1). H is a simplified
one-dimensional version of the two-dimensional models of
high-temperature superconductors considered by Emery5
and Hirsch:s S; is the analog of the spin of the holes in
copper 3d, z yz orbitals while c;t represents the dopant
holes in the oxygen 2p orbitals. Unlike these authors,
however, we allow for direct hopping between the oxygen
sites. A similar crude mapping can also be made to heavy
fermion superconductors where S; represents localized f
electrons and c;, the itinerant electrons.

The physics of H can be understood in terms of a com-
petition between the antiferromagnetic order on the spin
chain preferred by the terms proportional to J, and the
ferromagnetic polaron which each itinerant electron likes
to form around itself as a consequence of the coupling M.
Two parallel spin itinerant electrons will prefer to share
the cost of the localized spin exchange energy by occupy-
ing the same polaron. This pairing of parallel spin elec-
trons can therefore be a possible source of odd-parity su-
perconductivity (QS) with the total spin of the Cooper
pairs equal to + l.

Using bosonization, 9 we will solve the continuum limit
of H. The electrons will be shown to possess quasi-long-
range OS order with total Cooper pair spin + 1 coexisting
with spin-density-wave order polarized in the x-y plane.
This order occurs for all 6 between 0 and 1, and all posi-
tive values of t, J, and ) M (. If ( M ) becomes too large,
however, certain electron correlation functions decay on
the scale of the lattice cutoff and it is not possible to use
the techniques of this paper to define a sensible continuum
limit. These are the central conclusions of this paper.
Direct interactions among the itinerant electrons can also
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using continuum methods introduced by Luther and
Peschel. " Introduction of the Jordan-Wigner fermion
representation of the spin operators

i-1
S; a;ta; —

&, S;+ (—1)'a;texp in+ a;ta;
j~]

transforms H p to the half-filled band sector of

Hp™—(J/2)g(a ta;+1+a t+ la;)
i

+Jhg:a;ta;: at+ia;+l.'.
i

We now take the continuum limit of Hp by linearizing the
fermion spectrum about the Fermi level: This introduces
the left and right moving fermion fields el, and eq, which
move with the Fermi velocity v, Jd, where d is the lat-
tice spacing. The fermion interaction terms can be taken
to the continuum limit by using the following representa-
tion of the normal ordered lattice fermion density operator

:a; a;: d:N (, (r;)Wl, (r;)+%'js(r;)W~(r;)

+e (,(r;)e~(r;)e

+ej, (r;)el, (r;)e""'"]:. (2)

Finally, we bosonize the continuum fermion fields using
the representation

~l, ,p, (x)- exp + iona, (x)1

v'2na
+x

i'm -dx'II, (x')

where @, and II, are canonically conjugate boson fields
and all momentum integrals are cut off by the factor
e '~. This transforms H p to its final form:

H.b- —,
' dxv, K,II,'+ (VC, )'4

S

dxy, cos(416~, ) . (4)

be introduced without affecting the solubility of the prob-
lem or the OS order as discussed briefly at the end of the
paper. However, introducing an off-diagonal spin cou-
pling like S; ct~c; ~+S; c;ttc; ~

introduces complications
which are not examined in this paper.

We be~in with a review of the solution of the exactly
solvable' Hamiltonian

H p Jg(S; S;+] +SfSf+ i +hS; S + i )

Our prescription for the continuum limit yields the values
v, Jd(1+46/z), K, (I+4k/x) and y, Jzd/
(2n' a ). The cosine term arises as a consec~uence of the
umklapp scattering condition 4kF1 2x. ~ Standard
methods yield the renormalization-group (RG) equations

(2 —4K,)y„—fK, y, , (5)

where f is a numerical factor of order unity which is
dependent upon the RG prescription and e' is the scale
factor of the RG. The flows described by Eqs. (5) repre-
sent a Kosterlitz-Thouless-type transition. ~3 The cou-
pling y, renormalizes to zero provided the renormalized
coupling K, is greater than & . Spin-correlation functions
can now be calculated using the renormalized Hamiltoni-
an which describes a free massless Bose field. Undoing
the chain of transformations outlined above we obtain

and

&S+(0)S-(x)&-(-I) (x) '""'

Thus, the correlation functions can only be isotropic when

K, 0.5 which must therefore coincide with the point
1. A direct field theoretical analysis has also shown

that H,b has a hidden SU(2) symmetry at the point
K,* 0.5. '~ For h(1, we must have K, &0.5, until K,
reaches 1 at the pure XY limit A 0. In the range 6 & 1,
the coupling y, becomes relevant and the theory is no
longer massless. To summarize, the infrared properties of
Hp for d, between 0 and 1 can be calculated using a free
massless Bose theory with the coupling K, between 1 and

~ ~

We now address the solution of H. In the continuum
limit, the lattice fermion fields c;,t and c; ~ give rise to left-
and right-moving fermion fields for the two spin species:
el~, aq~ and 9'~~, +q~. We bosonize these fermion fields

by introducing the Bose fields @t and @~ and their conju-
gate momenta II~ and II~. The bosonic representation of
the term proportional to M is particularly simple: this a
consequence of the fact that in general 2kF+2kF'W2nn
where kF' is the Fermi momentum of the itinerant elec-
trons and n is any integer. All the large momentum
transfer terms in Eq. (2) make no contribution. We may
then directly bosonize the term:% (,~1,+~j,%'z, . which is
known to be equivalent to the operator (I/Jx)V4, . The
itinerant electron fermion fields have a similar representa-
tion. This procedure yields the bosonized version of H,

Hs —,
' dx v, K,II,

'
(V@,) +v K II + (V@ ) +v+PI + (V@ ) + dx[mV@,Ve —y, cos(J'16~, )],

ECp

(6)

where 4 (@t—@~)/J2 and Cp (at+4~)/E2. The
parameters v„K„and y, have the same values as in Eq.
(4). The Fermi velocities v~v = tdb where h is the con-
centration of the itinerant electrons. The coupling con-
stants K~ and K are both equal to unity but have been in-
troduced here to facilitate the introduction of direct in-
teractions among the itinerant electrons later in this pa-

I

per. The coupling m is given by m Md/( J2x).
The RG analysis of Hb can be performed in a manner

similar to the ordinary sine-Gordon theory. '5 The RG
equation for y, can be derived from the equation

(cosk'16m@, (0)]cos[4'16~,(x)]&-x
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we find

dye
2 4 K cosz(8/2) + sin2(8/2)

(7)

0.5

0
I

rr

rr SPIN EXCITATIONS

where tan8 (2m Jv, v K,K )/(v —v, ) and

ZI 2-(v'+v')/2~ [(u' u—')'/4+m'v V~K,K ]' '
The renormalizations of v, and K, begin at order y,2 and
are dependent upon the RG scheme. The remaining cou-
plings m, v, K, v~, and K~ remain invariant under RG to
all orders in y, . The Eq. (7) has some notable features.
Recall that for m 0 [when Eq. (7) reduces to Eq. (5)],
the coupling y, was irrelevant provided K, &KL, with

KL, 0.5. We can now show that turning on the coupling
m reduces the value of EC~ Fig.ure 1 plots the boundary
between the regions of relevant and irrelevant y„as a
function of (K,*) ' and m. With y, irrelevant, the spin
excitations are gapless and the system can be described by
a quadratic Hamiltonian of three Bose fields. When y, is
relevant, the localized spins become Ising-like and the
continuum methods of this paper can no longer be used re-
liably. We conclude from Fig. 1 that for all 6 between 0
and 1, the coupling y, is irrelevant s this conclusion holds
for all values of the parameters m, v, , v, v~, K, and K~,
for which the quadratic part of Hb is positive definite.

In the regime where y, is irrelevant, correlation func-
tions of the fermion operators can be calculated. Of par-
ticular interest are the singlet even-parity superconduc-
tivity (SS), odd-parity superconductivity (OS), charge-
density-wave (CDW), and spin-density-wave (SDW)
response functions. Without stating it explicitly, we will
henceforth only consider OS and SDW order parameters
with total spin equal to + 1. The spin-zero components
are equal in leading order to the SS and CDW response
functions, respectively. We represent the response func-
tions in the form Xt(q, nI„) where i is any one of the order
parameters SS, OS, CDW, or SDW, q is the momentum,
and nI„ the Matsubara frequency. We find in general that
Xl-[max(q, nI„)) ". A positive value of ai, therefore,
indicates the presence of a diverging susceptibility and

0.0

-0.5

-1.0 -0.5 0.5

quasi-long-range order in the corresponding order param-
eter. The representation of these correlation functions in
terms of the continuum Fermi fields is standard. 9 Using
the analogs of Eq. (3) we obtain

[Jkqcos (8/2)+ JC~sin2(8/2)],1

v&n
1

ttos 2
Kp

asnw 2 —K~
— [Jkpcos (8/2)+ Jk~ sin (8/2)],

v~K~

1 K cos2(8/2) + sinz(8/2)

acnw 2 —
K~

—v K
cos2(8/2)

~l

where the parameters 8, A, I, and Xz were defined below Eq.
(7), although they must now be expressed in terms of the
renormalized parameters v, and K, . In the absence of
direct interactions among the electrons we have K„K l.
As a consequence, the SS,CDW and OS,SDW exponents
are mutually equal. Figure 2 plots the exponents al as a
function of the coupling m. We find that aps and asow
are positive while ass and amw are negative for all values
of the parameters m, K, , v, , u, and v~. The system
therefore has quasi-long-range OS and SDW order. The
result mentioned in the Introduction has therefore been
established.

Finally, we address the effect of direct interactions
among the itinerant electrons by adding the interactions
of the extended Hubbard model:

FIG. 2. Exponents eI as a function of the coupling m for the
case K and K~ 1, K, 0.5, v,* 1, v 0.3. Positive values of
aI correspond to quasi-long-range order in the corresponding or-
der parameter.

-1
0

H' H+Ugn;, in; i+Vs(n;t+n; l)(n,;+I,i+n;yi l),

FIG. 1. Plot of the regions in which y, is relevant or ir-
relevant for the Hamiltonian Hb as a function of m and K,*.
The dashed line indicates the limit on the values of

~
m

~
above

which Hb is not positive definite.

where ni c; ~;,o The concen. tration of the itinerant
electrons b is taken to be much smaller than 1 Under
these circumstances H' can be solved using the methods of
this pap r The bosonized form of H'differs from Hb only
in that K~*,K &1 and by the presence of a y cos(q8~ )
term. The results of such an analysis are shown schemati-
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FIG. 3. Schematic phase diagram of H' as a function of M
and U+2V. The Hamiltonian H corresponds to the vertical line
U+2V 0. If a given phase has two types of divergent fluctua-
tions, the less divergent one is indicated in brackets. The dark
line is a Kosterlitz-Thouless-type transition, while all other
phase boundaries correspond to the order parameter exponents
uI continuously passing through zero. The dashed line is the
limit of stability of Hb.

cally in Fig. 3. The thick line represents a Kosterlitz-
Thouless transition where y becomes irrelevant and there
is a discontinuity in the value of K; all other transitions
correspond to the exponents at going continuously
through zero. For M 0, H' exhibits SS and CDW order
for attractive interactions and SDW and CDW order for
repulsive interactions. Turning on the coupling M intro-
duces OS order in a finite band around U+2V 0. In
particular, the QS order is stable to the introduction of a
finite amount of repulsive interactions.

To conclude, we have introduced in this paper a one-
dimensional Hamiltonian H which is solvable by bosoni-
zation techniques. The Hamiltonian describes itinerant
electrons interacting with an antiferromagnetic spin
chain. The electrons exhibit odd-parity superconductivity,
mediated by the tendency of parallel spin electrons to oc-
cupy the same spin polaron. The solution was obtained
from a complete RG analysis of the bosonized equivalent
of H: three coupled massless Bose fields with cosine self-
interactions.

We would like to thank L. R. Krauss for help with the
figures.
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