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Oscillating magnetization of quantum-well electrons in a parallel magnetic field

Bodo Huckestein and Reiner Kummel
Physikalisches Institut, Universitat Wiirzburg, D 870-0 Wurzburg, Federal Republic of Germany

(Received 20 April 1988)

The magnetization of quasi-two-dimensional electron systems in rectangular quantum wells with

magnetic fields parallel to the potential walls is computed from the recently calculated infinite-

power-series expansion of the energy eigenvalues. It may be used to determine the band offset. The
magnetization oscillates as a function of the chemical potential. This is a consequence of electric
and magnetic hybridization of the eigenstates when the cyclotron radius is comparable to the well

width. Minima occur whenever the chemical potential crosses the lower edge of a subband. Calcu-
lations for a parabolic potential well show the universality of the oscillations in laterally confined

systems.

I. INTRODUCTION

Quantum wells in superlattices' and n i p is-t-ru-ctures
with magnetic fields B parallel to the potential walls have
eigenstates characterized by hybrid electrical and mag-
netic quantization. Their energy eigen values and
wave functions have been computed recently by a new,
graph-supported method.

After numerical solutions of the problem have been ob-
tained previously by a number of workers ' ' the full en-

ergy spectrum is now available in analytical form. This
facilitates the computation of physical effects associated
with the density of states and the change of energy with
magnetic field. An obvious candidate for closer scrutiny
is the magnetization of quantum-well electrons, especially
for cases where the cyclotron radius is comparable to or
larger than the well width. This complements earlier cal-
culations of Landau' and Heuser and Hajdu" for elec-
tron gases with cyclotron radii much smaller than the di-
mensions of the confining volume, and of Zawadzki' for
a two-dimensional electron gas with a magnetic field per-
pendicular to the potential walls. It is the purpose of this
paper to show that the magnetization in a parallel field
B=e 8 should oscillate as the number of electrons in the
well and the chemical potential increase. This new effect
is basically due to the fact that with increasing B the en-

ergy of states with small momentum Ak„parallel to the
potential walls increases whereas the energy of states
with large k, decreases. As a result, in a square-well po-
tential, the change of magnetization is positive when
states with large k are populated and it is negative when
the chemical potential p moves through states with small
k„. These competing changes cause the magnetization
arches of Fig. 1.
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where 0 is being determined by the energies E of single
particle states characterized by the set of quantum num-
bers a,
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where f is the Fermi distribution function.
Let us first consider an electron gas confined to a rec-

tangular quantum well of width L, . The confining poten-
tial V(z) is given by
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A homogeneous magnetic field B=e B is applied in
the y direction. The vector potential is chosen to be
A=e„Bz. In x and y directions the system is translation-
ally invariant with periodic boundary conditions. In this
case the quantum numbers are a=(n, k„,k ), the integer
n labeling the different energy levels with the same wave
numbers k„,k . The energy eigenvalues E of this sys-
tem for Vp ~ are 7
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From Eq. (1) it follows that the magnetization M is equal
to the average magnetic moment (M )

II. MAGNETIZATION AND ENERGY EIGKNVAI. UES
OF SQUARE WELLS IN PARALLEL FIELDS

The magnetization M of an electron gas at temperature
T can be calculated from its thermodynamic potential 0:

with zp ———Ak„/eB, b =BeL, /A, and m* the effective
electron mass; interactions between spins and field are
neglected. The G„,, are numerical factors independent
of the system parameters.
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If the barrier height VQ is finite but still large enough
so that in the barrier the inhuence of the B field on the
wave functions of the lowest lying states can be neglected,
one still obtains Eq. (5) for the energy eigenvalues, with
the only change that the expansion coefficients 6„.„, be-

come functions G„.„,(v) of the normalized barrier height
U =2m*L, VQ/fi .'

Combining Eqs. (3)—(5) yields the magnetization per
unit volume for a rectangular quantum well in a parallel
magnetic field:

M 1 mo eB " "+'
g f d(k, &, ) g g (r+1}G„.„+,+, , (v)b'"(k„l.,)"f"d(k, g, )yo(k„,k, ),
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where Ps ——eirt/2mo and mo is the free-electron mass.

III. MAGNETIZATION OSCILLATIONS
AND PHYSICAL PICTURE
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The de Haas —van Alphen oscillations of the magneti-
zation, which are well known in three-dimensional elec-
tron gases and two-dimensional systems with B perpen-
dicular to the potential walls, ' ' ' would be visible only
for extremely strong parallel fields. For fields below 10 T
and well widths I., & 500 A, electrical quantization of the
hybrid energy levels suppresses the Landau fan, i.e., the
energetic distance between levels n and n +1 exceeds by
far the Landau-level separation. Thus the M(8) curves
obtained from Eq. (6} are essentially monotonous func-
tions of small and intermediate, parallel B. However, if
one computes the magnetization as a function of the
chemical potential p, i.e., the number of electrons in the
quantum well, one obtains Figs. 1(a)—1(c) which exhibit
very pronounced oscillations of M.

The magnetization becomes small whenever the Fermi
energy crosses the bottom of an energy band
E„{zo(k„),k~} at k„=0=k . This behavior can be un-
derstood by looking into the dependence of the energy ei-
genvalues on 8 and k„ in Eq. (3). For fixed k an in-
crease in B results in two competing effects on the energy
E . The narrowing of the harmonic oscillator potential
(m'/2)cv, (z —zo), co, =eB/m', tends to increase the
energy, while the decrease in

~
zo

~

=
~

A'k„/eB
~

tends to
lower the energy, see Fig. 2. For small k, i.e.,

~
zo

~
&L, /2, the energy gain with 8 dominates: The

leading terms in Eq. (5) are the ones independent of zo
(for small 8 the energy is proportional to const+8 ).
For large k„ the minimum position zo of the harmonic
oscillator potential superimposed on the quantum well by
the parallel B field, will be quite outside the well, and the
energy increases strongly with zo —1/B. This result of
the numerical evaluation of Eq. (5) is illustrated by Fig. 2.
Contributions to the sum in Eq. (3) from the lower (k„
small) and upper (k large) parts of an energy band there-
fore enter with different signs and lead to the arching
structures of Fig. 1.

IV. BAND OFFSET, WELL SHAPE,
AND SPIN PARAMAGNETISM

Figures 1(a)—1(c) show the influence of the well param-
eters on the magnetization. The feature of the curves
that is most sensitive to changes in the we11 parameters is
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FIG. 1. Negative magnetization —M/V per unit volume as a
function of the chemical potential p for three different rectangu-
lar quantum wells at constant magnetic field 8 = 1 T
(m*=0.0665mo as in GaAs): (a) infinite potential well, width
L, =200 A, T =0 K; (b) finite potential well, Vo ——228 meV (cor-
responding to an Alo 3Gao 7As barrier), L, =200 A, T=4.2 K;
and (c) Vo =228 meV, L, = 120 A, T =0 K. Note the small tem-
perature effect on the shape of the curves.
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into Eq. (3) we obtain for T =0:
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FIG. 2. Infinite potential well, harmonic oscillator potential,
and probability density

~
f(z)

~

for two values of
zp ———Ak /eB (schematic): (a) zp ——0. 1L, and (b) zp=0. 75L, .
The horizontal lines indicate the ground-state energies for
k~=0: The narrower the region to which the electron wave

functions are being confined the higher are the energy eigenval-

ues.

the ratio of maximum and minimum values of the magne-
tization. Table I lists the ratios of the first maximum to
the first minimum for wells of width 120, 200, and 300 A
and for two different values of the barrier height:
Vo =228 meV and Vo ——323 meV, corresponding to
conduction-band offsets of 60% and 85%, respectively.
The difference in the offset changes the magnetization ra-
tio by about 25%, an effect that should be observable in
precision magnetization measurements. ' ' At B =5 T
the magnetization changes between the first maximum
and the first minimum by 2.5 A/m in a 200-A well. In a
superlattice of 1 cm)(1 cm area perpendicular to the
growth direction the corresponding change in magnetic
Aux is 0.3 fiux quanta per quantum well. Determination
of the offset from experiments will require consideration
of the magnetization due to holes, and of the well defor-
mation because of accumulated charge densities. This
can be done if the actual system parameters are precisely
known.

Just to show that other than square-mell potentials also
give rise to structures in the magnetization we consider a
parabolic potential well V(z) =m'coaz /2. For the well-

known composite harmonic oscillator ' ' the energy
levels have been calculated analytically. Inserting the en-

ergy eigenvalues

The result for the paramagnetic part of the magnetization
is then easily obtained:

m* eB
V 2 "'m, rL, f'P'' (10)

where f (p) =N for p between E~+psB and Ez+,
psB, and f—(p, ) rises linearly from N —1 to N for p be-

tween EN —p&B and EN+p~B. This paramagnetism is
proportional to (m*/mo) while the diamagnetism of Eq.
(6) is proportional to (mo/m ). The diamagnetic contri-
bution then dominates the paramagnetic contribution by
a factor of (mo/m*) which is of the order of 100 in

semiconductors.

Vl

CS

with co, =eB/m" and m =p/@~, +cuo
dex of the uppermost occupied subband. The plot of the
magnetization in Fig. (3) is very similar to the infinite
square-well magnetization of Fig. 1(a). We also expect
structures in the magnetization of metal-oxide-
semiconductor field-effect transistors in parallel B fields
when with increasing gate voltage the Fermi level of an
inversion layer moves through higher subbands.

Taking into account the spin paramagnetism does not
change the overall picture: For T =0 and low fields the
paramagnetism can be calculated approximately from the
density of states of the field free square well of infinite
height:

N

D(E)=L„L g e{E E„(0,0)) . —

TABLE I. Ratio of the first maximum to the first minimum
value of the magnetization for three well widths and band
offsets of 60% and 85%%uo and relative difference of these values,
calculated for T =0 K and B = 1 T.
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Well width

Offset 60%
Offset 8S%
Difference

120 A

1.28
1.49

16'Fo

200 A

2.13
2.64

24%

300 A

3.33
4.54

36%

FIG. 3. Negative magnetization —M as a function of the rel-
ative chemical potential m =p/A(co, +cop)' ' for a parabolic po-
tential well. V(z)=m*copz /2 at constant parallel magnetic
field B =m *m, /e and T =0 K.
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V. CONCLUSIONS

In order to measure the dependence of the magnetiza-
tion of a quantum well on the Fermi energy and observe
the predicted oscillations, a system is needed in which it
is possible to change the number of electrons in the well.
This may be done, e.g., by photoexcitation. However,
one has to make sure that there is no recombination of
the produced electron-hole pairs. This can be achieved if
the holes can tunnel out of the hole quantum well into an
energetically favorable level that is spatially separated

from the electron well. Such a system is realized in a
hetero-n-i-p-i superlattice, where rectangular quantum
wells are situated at the minima of the n-i-p-i superlattice
potential. Here our method of calculating the oscillating
magnetization in conjunction with its measurement
should make it possible to determine the band offset.
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