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Size efFects in multisubband quantum wire structures
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%'e present a Monte Carlo simulation of multisubband quasi-one-dimensional GaAs-Al Ga& As
structures. The simulation includes polar-optical-phonon and inelastic acoustic-phonon scattering
and investigates the effect of changing confinement on electron velocity. Even at low longitudinal

0
fields, for confinements in the range 50-230 A, intersubband scattering has a profound effect on

transport parameters. Under optimum conditions, differential mobility in excess of twice the bulk
value at 300 K is obtained. Asymmetric geometry and high degree of confinement result in interest-

ing differences from magnetotransport. In addition, resonance analogous to the magnetophonon
effect occurs when the separation between lowest subbands is equal to the polar-optical-phonon en-

ergy.

I. INTRODUCTION

In recent years there has been increasing interest in the
investigation of quasi-one-dimensional (lD) structures.
Progress in epitaxial technologies combined with the em-
ergence of new fine-line —patterning techniques have
made the fabrication of artificial low-dimensional struc-
tures feasible in the near future. ' From a fundamental
viewpoint, the interest in 1D systems has been motivated
by the fascinating consequences of the localization
theory, which predicts that in weakly disordered struc-
tures no extended state exists and, consequently, the 1D
conductivity goes to zero at low temperature. ' At in-
termediate temperature and finite transverse confinement,
however, the "particle-in-a-box" picture seems more real-
istic and the concept of a quasi-1D system is a natural ex-
tension of the ultraconflned two-dimensional (2D) elec-
tron gas. Sakaki suggested that semiconductor quantum
wire structures could be the basis for very fast transport
processes. ' Because of the reduction of phase space, the
number of available final states during the scattering pro-
cess (only forward or backward scattering) is very limited
and results in the enhancement of the 1D mobility with
respect to the bulk value. Theoretical investigations of
the electronic properties of semiconductor wire struc-
tures have recently been accomplished. " ' For III-V
compounds, calculations of the most important scattering
mechanisms, i.e., impurity, ' ' acoustic, ' and optical
phonons, ' show the importance of significant size effects
which have been confirmed by Monte Carlo simulation. '

In modulation-doping structures, ionized-impurity
scattering is vanishingly small, which suggests 1D mobili-
ty above 1&10 cm /Vs. '

However, because of the high level of quantization,
most of the transport models assume the extreme quan-
tum limit (EQL) and neglect the influence of multiple
subbands (one-subband models). ' ' This approximation
is precarious when the spacing between subbands is com-
parable to kT, as recently discussed by Das Sarma and
Xie for low temperature in Si, or when hot-electron

effects induce intersubband scattering. Although these
processes are analogous to longitudinal magnetotransport
phenomena, ' they occur with a variety of features
which are specific to artificial 1D systems. For instance,
the two transverse confining potentials are, in general, in-
dependent; this provides a situation completely different
from the harmonic-oscillator-like spectrum of energy lev-
els resulting from the cylindrical symmetry of the mag-
netic field. The different character of the two types of
wave functions and the unequally spaced energy spec-
trum of the artificial 1D structures significantly
influences the intersubband transitions. Furthermore,
energy-level spacing of the order of the optical-phonon
energy or the thermal energy at room temperature can, in
principle, be achieved with artificial confinement; this an-
ticipates resonance conditions superior to magnetotrans-
port. Therefore, in order to assess realistically the trans-
port properties of quantum wires, the development of a
multisubband transport model is desirable.

The paper presents a Monte Carlo simulation of a mul-
tisubband quasi-1D GaAs-A1„Ga, „As structure. Be-
cause of the small electron effective mass, quantization
effects are more pronounced than in Si. Our purpose is to
study the effect of varying confinement on the transport
properties of the 1D system. %e specifically focus on lat-
tice scattering and analyze the influence of intersubband
transitions on the transport properties. In the first ap-
proximation, we limit our simulation to the I valley in
GaAs and neglect high-energy processes such as interval-
ley scattering and real-space transfer. In addition, we
neglect nonparabolicity corrections in the energy disper-
sion relation. Our model involves up to seven subbands,
which allows a realistic simulation of confinement condi-

0
tions in the range 50—230 A. As the exact position of
electronic states is not of primary importance for this
work, elementary confining-potential profiles have been
assumed. This assumption does not limit the validity of
our model, as the real transport features may merely be
shifted but not altered with respect to our simple elec-
tronic model.
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II. MGDEL

Our model consists of a GaAs-Al„Ga& „Asquantum
well (QW) with a perpendicular gate electrode and a tri-
angular electrostatic potential. At present, we assume a
geometry similar to the V-groove field-e6'ect-transistor
(FET) structure proposed by Sakaki' [Fig. 1(a)]. This
device configuration may not be suited for high-speed
transport due to interface states between the insulator
and the active region resulting from processing which

may degrade the mobility. However, the V-groove wire
characterized by a quantum. well in the y direction and a
triangular potential in the z direction offers, in principle,
the largest degree of confinement which can be controlled
by external transverse electric fields (gate fields) F, . In
addition, the quantizations resulting from the square we11

and the triangular potential are rather difFerent and result
in various interesting features in the transport charac-
teristics. The model is flexible enough to also simulate a
multiwire gate FET structure of the type proposed by
Warren and Antoniadis. ' In the present simulation
all electrons remain in the I valley and all subbands are
parabolic. We assume that electrons will transfer to
three-dimensional (3D) states (primarily by intervalley
scattering or real-space transfer ) before they reach 400
meV above the well bottom. The program currently has
no routine for these processes, which limits the maximum
electron energy that we can model. If an electron reaches
an energy of 400 meV, we stop the simulation of its path
and choose a new electron to replace it. We are thus lim-
ited to longitudinal fields (F„)of 1 kV/cm or less and
typically 500 V/cm to avoid electron runaway at 300 K.
At lower temperatures we can go to somewhat higher
fields because of the lack of phonon absorption. We have
run simulations at 300 and 77 K with well widths L„in

0
the range 250—50 A. Wider wells require too many levels
for an accurate simulation; however, this is not a serious
constraint, as there are few electrons at the higher ener-
gies anyway. To save memory in the code, the lowest en-
ergy we consider is 100 meV above the bottom of the
well, which sets a lower limit on the range of confinement
conditions we can model. Our transverse electric fields
F, range from an upper limit of 200 down to 20 kV/cm
and are subject to the same restrictions as those on well
widths.

For the y direction we calculate wave functions in the
infinite-square-well approximation. The z wave functions
are computed using a variational approach, with ex-
ponentially damped polynomials as the trial wave func-
tions. We compute the first three y and z wave functions
and combine them to obtain nine wave functions. Then,
the total wave functions %' are given by

1/2
2 . $77y —a z

S111 e Ck jz
k=1

i =1,2, 3, j =1,2, 3 (1)

where a and ck are determined by a variational calcula-
tion. The corresponding energies [Fig. 1(b)] are functions
of the longitudinal electron k vector and are given by

FIG. 1. (a) Schematic representation of a FET 1D quantum
wire [after Sakaki (Ref. 10)]. (b) A representation of the
con6ning potentials and two-electron energy levels and wave

functions in the wire structure.

A' kE;J(k)=, +E;+EJ, i =1,2, 3, j=1,2, 3 (2a)

with E;, the square-well energy, calculated from

E;=, i =1,2 3.(A@i)

2m 'L (2b)

Although EJ, the triangular potential energy, is obtained
from a variational calculation, a useful approximation is

' 1/3

E = ( ,'m.qF, ) ~(j ——,') —~, j =1,2, 3 . (2c)

These approximations are good if the energy level lies
deep in the well. The higher y levels should be spaced
more closely as they approach the top of the QW, and the
z levels more closely as screening flattens out the triangu-
lar potential. The y =2, z =3 and y =3, z =3 states are
omitted because of memory constraints in the Monte
Carlo code. For most confinement conditions of interest,
these two levels are above the edge of the GaAs-
Al„Ga, „Asbarrier and can be neglected. Although the
lowest-energy level is clearly E», the ordering of the
higher subbands depends on the confinement conditions.
To avoid confusion, the subbands wi11 be numbered with
a single subscript v, which will range in order of increas-
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ing energy from 1 for the lowest subband to 7 for the
highest subband. The y and z quantum numbers will, in

general, not be used.
Currently, we consider only polar-optical-phonon

(POP) and inelastic acoustic-phonon scattering. The 1D
transition probabilities from an electron state k, in initial
subband v to a state kf in final subband p are calculated
according to Fermi's golden rule as

kf ) 5k —k +q f +"f +"dq dq,
~ M3D p(q„,qy, q, )

~

'(& + '+ —')5(—E (kf ) E (k )+flCl) ) (3)

where q„is the longitudinal- and qy q, the transverse-
phonon wave vectors, respectively. N is the phonon oc-
cupation number with the + corresponding to phonon
emission or absorption. The double integral over q and

q, represents the calculation of the 1D matrix elements

M&D, „(q„)from the normal 3D matrix elements. Here
we consider only bulk- (i.e., 3D) phonon modes and
neglect 1D and surface modes. This does not introduce
significant error as long as the confinement is not exces-
sively high, i.e., less than 50 A. The POP dispersion rela-
tion is assumed to be a constant, which makes N and the
energy-conservation 5 function independent of q; there-
fore they can be factored out of the double integral.
However, the nonconstant dispersion relatioa for acous-
tic phonons makes computation of the integral consider-
ably more complex. The numerical integration routine
has q„asan input parameter, which we vary to obtain
1D matrix elements. For acoustic phonons we evaluate
the integral for q„in the range 7)(10 &q„&1.5&10
cm . The acoustic-phonon-transition probabilities are
essentially independent of q„for smaller values, while
1.5&10 cm ' is the largest possible momentum ex-
change. For POP transitions the integral is evaluated for
1X10 &q„&1)(10cm

The 5l, term in Eq. (3) represents conservation of longi-
tudinal momentum, with the 4 sign corresponding to
phonon absorption or emission, respectively, and is used
to select a value for q„and the corresponding matrix ele-
ment. Scattering rates are computed by integrating the
transition probabilities over the final electron k states.

The total scattering rate for POP's or acoustic phonons
from the initial state k; in subband v is then given by

2'
A,„(k;)=g f dkf

~
MlD „„(q„)~

@=1

X5(k, —kf kq„)f ~ g2 k
(4)

where we have transformed the energy-conservation 5
function into a wave-vector-conservation 5 function. For
each 1D subband the wave-vector-conservation 5 func-
tion reduces the integral to a sum over the four possible
final states corresponding to forward or backward emis-
sion or absorption.

A broadening of the phonon energy, R/rpop was used
to smooth out the divergence in the scattering rate due to
the final density of states. The physical justification for
this broadening is that electrons encounter a broadened
final density of states as they are scattered by phonons
distributed within a finite energy range. This approxima-
tion should be distinguished from the explicit broadening
in the density of states as considered by Das Sarma and
Xie. Because of its long tail, a Lorentzian-broadening
factor allows for unrealistic phonon energies; this is espe-
cially noticeable at low temperatures. To avoid this un-

realistic distribution, a Gaussian profile was used to
drastically reduce the number of POP's with energy sub-
stantially different from 36 meV. In the first approxima-
tion this replaces the 1/kf factor in Eq. (4) by its convo-
lution with a Gaussian distribution:

1 1 +pop p+&
(2m*)'" &Z~ f-- exp

(E' ficoLo)z— 1

2(A/rpop) [E'+E (k =0)—E„(kf)]'~

A similar broadening factor was also used for acoustic-
phonon scattering.

We consider energies from 100 to 400 meV above the
bottom of the well. This energy range is divided into 400
intervals of uniform size to compute the scattering rates.
For each energy interval in each subband, we consider
forward and backward emission and absorption for both
POP's and acoustic phonons to each possible final sub-
band. This gives us 56 (2X2~2X7) possible independent
scattering mechanisms for each initial state. This num-
ber is then multiplied by the number of initial subbands

(seven) and the number of points in the energy mesh (400)
to obtain the total nulnber of rates stored in the code.
This large number of scattering rates is the primary limi-
tation on the maximum number of subbands in the code
since the storage required is proportional to the square of
the number of subbands. These scattering rates are saved
in files and used as input to the Monte Carlo code. The
rates show a large number of peaks; each peak is propor-
tional to the density of final states and corresponds to an
emission or absorption to the bottom of a subband [Fig.
2(a)]. The large single peaks are due to POP scattering,
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begin collecting statistics on it. Although the velocity
converges after less than 4)&10 scattering events, we
simulate 4X10 (not including the 6X10 needed to
achieve steady state) events to obtain better convergence
on the distribution functions. If an electron goes above
our maximum energy (assumed to have scattered to a 3D
state), it is lost to the simulation and a new electron is in-
jected in the bottom subband. While the energy range for
computing scattering rates is split up into 400 intervals,
the Monte Carlo code has a resolution of 5E=0.075
meV, which corresponds to 4000 intervals on the same
range. We compute k (E}at the start of the program for
each interval and save it in a table for later use in evaluat-
ing free-flight times.

Because of the large number of peaks in the rates, nor-
mal methods for computing free-flight times are
ineScient. Using constant or piecewise-constant scatter-
ing rates with self-scattering would have introduced a
very large percentage of self-scattering events. An itera-
tive gamma method was tried, but the sharpness of the
peaks meant that a large number of iterations were need-
ed to find an appropriate gamma. Instead, a direct in-
tegration method was used. For a given subband v, if r is
a uniformly distributed random number on [0,1], then

4J

10 ~=

10-Q «««« I «««« I «««« I ««««
100 150 200 250 300

Energy (meV)

FIG. 2. (a) Total (POP and acoustic phonon) scattering rates
for a quantum wire with L~ =135 A and F, =120 kV/cm at 300
K. Peaks correspond to an emission or absorption to the bot-
tom of a subband. Large peaks represent POP transitions; small
double peaks are due to acoustic phonons. For clarify, only the
first three subbands are shown, with the heaviest line represent-
ing the lowest subband and the lightest representing the second
subband. (b) Electron-distribution function for the same quan-
tum wire.

—lnr =
„

t' t',

Ef
—lnr = g 1, {k„(E))b,t{E),

E=E
t

with

(7a)

and

b, t (E)= «««, k„(E)eF„ (7b)

where t is the time of the free flight, k„(t)is the momen-
tum as a function of time in subband v, and A,„(k„)is the
scattering rate as a function of momentum for that sub-
band. The program approximates the integral as a sum
and moves the electron in uniform energy steps of size 5E
from an initial energy E; until a final energy Ef is found
such that

the small peaks in pairs are acoustic phonon absorption
and emission pairs to subband bottoms. These peaks
make the velocity and distribution functions [Fig. 2(b)]
sensitive to the energy separation between subbands, par-
ticularly between the first and second subbands. Below
the POP emission threshold, rates are somewhat smaller
than in bulk, while at high energies the large number of
subbands enhances the rates with respect to the bulk
value. The rates drop above 344 meV because we no
longer allow for POP absorption beyond that point.

III. MObl IK CARLO CODE

%e run a steady-state single-particle Monte Carlo
code. An electron is placed at an arbitrary position in the
bottom subband and undergoes 6X IO scattering events
to eliminate any e8'ect of the initial conditions before we

hk, (E}=
~

k„(E+5E)—k„(E)
~

(7c)

the k depending on whether the electron is accelerating
or decelerating. In 3D simulations it is virtually impossi-
ble to store k{E) in tabular form because of the large
number of possible k values. In iD systems there are
only two scalar k„values for each energy and each v (tab-
ulated earlier by the program) and, hence, Ak„is essen-
tially a look-up function which avoids the tirne-
consuming square-root computation required to deter-
mine k„(E).Moreover, in three dimensions, ht is a com-
plicated function of k, involving squares and square-root
computations, which typically prohibits direct-
integration algorithms in Monte Carlo codes. For 1D
systems, however, direct integration compares favorably
with other methods.

The electron state is sampled after every free flight to
obtain the before-scattering distribution nb „(k)for the
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vth subband. The correct distribution n„(k)is obtained
from

ni, „(k)
n„(k)=C„ (8)

where C„is a normalizing constant required to preserve
the relative electron population in each subband. This
distribution is saved and used to calculate all the quanti-
ties of interest.
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In general, velocities in quasi-1D systems are higher
than in bulk (3D) GaAs, despite the fact that scattering
rates exhibit large singularities and background values on
the average comparable to bulk rates. We attribute this
increase to the reduction in phase space of the 1D sys-
tem. Because of the lack of transverse scattering and the
I/q dependence of the electron-POP interaction, the
scattering is more strongly forward peaked than in three
dimensions. Although acoustic phonons were included in
this simulation, they do not play an important role and
simply tend to reduce the velocities by about 10%.

Figure 3 summarizes the effects of various confinement
conditions on the velocity. The degree of confinement is
represented by the energy of the first subband relative to
the bottom of the well. Although this is a simplification
and ignores the fact that confinement (and velocity) is a
function of two variables (L„andF, ), it demonstrates the
primary effects on velocity. From a general standpoint,
when the structure is in the EQL (i.e., when only the
lowest subband is occupied), increasing confinement
reduces the velocity. This is in agreement with the size
effects predicted by several authors. ' ' In this case the
overlap integrals (form factors) in the matrix elements ap-
proach unity and enhance the scattering rates. However,
this also occurs under less restricted conditions below the
EQL when increasing confinement does not affect the
separation between the first and second subbands, as can
be seen from curve a in Fig. 3, where F, is varied from
100 to 200 kV/cm while holding L at 200 A. For these
conditions, the first-excited subband is the y =2, z =1
subband, and since L remains constant the separation
between the bottom and first-excited subbands remains 42
meV. As confinement increases, the velocity at F„=500
V/cm decreases from 6.11 &( 10 to 5.63 X 10 cm/s.

At low con6nement, upper subbands play a significant
role because more final states (more final subbands) are
available for scattering and velocities are lower than the
EQL values. Consequently, increasing confinement to-
wards the EQL increases velocity as intersubband scatter-
ing is suppressed. In the low-energy portion of curve b,
as the bottom subband moves from 128 to 138 meV (L is
varied from 165 to 135 A while holding F, fixed at 120
kV/cm), the separation between the lowest subband and
the first-excited subband is increased from 62 to 93 meV.
This increases the fraction of carriers in the lowest sub-
band from 80% to 92% (for F„=500 V/cm) and
enhances the velocity from 6.89& 10 to 8.08 X 10 cm/s.

These two mechanisms —increasing overlap integrals

FIG. 3. Variation of velocity with confinement for F =500
V/cm and T=300 K. Confinement is expressed as the position
of the bottom subband relative to the well bottom. In curves a
(o ) and c (0), F, is varied while L„remains constant, while in
curve b (k) L~ is varied and F, is constant. Curve a shows
confinement increasing without affecting the separation between
the bottom two subbands. In curves b and c the separation be-
tween the bottom two subbands does change as a function of
confinement.

and decreasing inhuence of upper subbands —explain the
general trends as confinement is varied. For instance, un-
der conditions resulting in the first-excited state being the
y =2, z = 1 state, increasing F, does not change the sepa-
ration between the ground-state and first-excited sub-
bands; consequently, velocity drops as the overlap in-
tegrals increase. However, if L is decreased, the separa-
tion increases and results in velocity increase as long as
the first-excited state remains the y =2, z =1 state, even
though the overlap integrals approach unity. This is in
contradiction with other 1D results, where only one sub-
band is considered. ' If L is reduced suSciently, the
first-excited state will become the y =1, z =2 state in-
stead of the y =2, z =1 state; further reductions cause
the velocity to decrease as the overlap integrals increase
without reducing the inhuence of scattering to the second
subband. The last four points on curve b of Fig. 3 show
this effect as L~ is lowered from 135 to 105 A and the ve-
locity decreases to 7.42X10 cm/s. The peak in velocity
(near 138 meV on curve b in Fig. 3) is a tradeoff between
increasing overlap integrals and approaching the EQL.
When there is a crossover between the first-excited y state
and the first-excited z state, increasing one confinement
parameter increases the overlap integrals without reduc-
ing the infiuence of intersubband scattering (the other ex-
cited state does not move relative to the ground state and
the separation remains the same). On the other hand, de-
creasing one confinement parameter decreases the over-
lap integrals, but only at the expense of moving away
from the EQL (the corresponding excited state drops rel-
ative to the bottom state). This tradeoff condition is
achieved for L =135 A and F, =120 kV/cm. The peak
has a first-excited state at 93 meV relative to the ground
state and 92% of the carriers are in the bottom subband
for F, =500 V/cm.

It is clear from the above discussion why the velocity
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in curve a is lower than in curves b or c. While the latter
curves represent a tradeoff between the conflicting effects
of overlap integrals and intersubband scattering, the
former curve has both high overlap integrals due to high
confinement in the z direction and high intersubband
scattering due to low confinement in the y direction.

While these two mechanisms explain the general trends
in velocity as confinement is varied, there are several oth-
er important effects to consider. The first is due to the
asymmetry between the y confinement and the z
confinement. Since we assume an infinite square well, the
y wave functions do not spread out for higher-energy lev-
els like the z wave functions do. This tail in the z wave
functions lowers the overlap integrals in the scattering
rates and tends to enhance the mobility in subbands with
z index greater than 1 with respect to subbands with y in-
dex greater than 1. Hence, systems with the second sub-
band corresponding to y =1,z =2 tend to have higher
mobilities than structures with the second subband corre-
sponding to y =2, z = 1 due to the higher mobility in the
second subband. In addition, the y energy levels increase
as i [Eq. (2b)], while the z levels are roughly proportion-
al to j ~ [Eq. (2c)]. Curve c in Fig. 3 shows the same
trends as curve b, but in this case F, is varied from 80 to
160 kV/cm while L» is held fixed at 135 A. Initially, the
second subband is the y = 1, z =2 state and as F, exceeds
120 kV/cm the second subband becomes the y =2, z =1
state. Although the variation of bottom subband energies
in curve c is greater than in curve b, the corresponding
velocity variation is smaller, for two reasons. First, the
separation between the first and second subbands is less
sensitive to confinement (from 72 to 93 meV versus 62 to
93 meV in curve b) because of the sublinear dependence
of the energy on the z quantum number j. In addition, at
low F, the second subband is a z=2 state with weak in-
tersubband scattering even when the separation between
subbands is small.

The velocity-field relation for the confinement condi-
tion giving the highest velocity (L =135 A, F, =120
kV/cm is shown in Fig. 4(a), along with the equivalent re-
lation for bulk GaAs. The velocity at F, =500 V/cm cor-
responds to a mobility of 16160 cm2/Vs, which is over
twice the bulk value of 8000 cm /Vs. An important
effect is the dependence of the differential mobility on the
field. At low fields it is over twice the bulk value, but
converges toward the bulk value at high fields. We attri-
bute this effect to intersubband scattering (breakdown of
the EQL) at high fields. The inset of Fig. 4 shows the
average electron energy in units of kT as a function of F„.
For low fields the electron energy is roughly equal to kT
and most of the electrons are near the bottom of the first
subband. At higher fields hot electrons become
significant, with higher scattering rates due to the pres-
ence of other subbands (i.e., they are not in the EQL),
which reduces their differential mobility. The velocity-
field curve for the same confinement conditions at 77 K is
shown in Fig. 4(b). Again, at low fields differential mobil-
ity is higher in the 1D system than in the bulk, while at
high fields the velocities approach the same value.

Finally, when the separation between first and second
subbands is near fuup&p a resonance condition can occur
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FIG. 4. Velocity-field relation for highest-velocity
confinement condition (L~ =135 A and F, =120 kV/cm) com-
pared to bulk values [after Haase (Ref. 29)] at (a) 300 K and (b)
77 K. The inset in (a) shows the average electron energy in
units of kT as a function of the longitudinal field.

with the electron jumping back and forth between the
first and second subbands. This can be seen clearly in the
distribution functions near and at resonance. In Fig. 5(a)
the separation between the first two levels is 28 meV and
the structure is below the resonance condition. (The
sharp narrow peaks in the distribution functions are ar-
tifacts of the method used, corresponding to peaks in the
scattering rates). The first-subband population falls off
slightly at 122 meV and more dramatically at 138 meV.
122 meV is the onset of POP absorption to the third sub-
band, while 138 meV is the onset of emission to the first
subband. The distribution function of the second sub-
band at a given energy is not significantly different from
that of the first subband. 60% of the electrons are in the
first subband, with 30% in the second subband, and the
remainder primarily in the third subband. In Fig. 5(c)
the separation is 44 meV and the system is above reso-
nance. 71% of the electrons are in the first subband,
24% in the second, and 5% in the third. In Fig. 5(b) the
separation is 36 meV and the two subbands are in reso-
nance. The first-subband population shows marked de-
creases at the onset of emission to both the first and
second subbands, while the second subband shows a de-
crease at the onset of emission to the second subband.
More importantly, the second-subband population is al-
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locity on confinement at this point, which may be analo-
gous to the magnetophonon effect. ' This resonance
effect may also appear in 2D systems, but not so dramati-
cally, since the density of states is constant instead of
singular. As an example of the flexibility in the structure
due to the asymmetry between y and z directions, in Fig.
5(b) the bottom three subbands are the y =1, z =1,2, 3
states, and not only is the second subband in resonance
with the first, but it is also very near resonance with the
third subband. For the equivalent case with the lowest
three subbands being the z =1,y =1,2, 3 states, when the
first two subbands are in resonance (F, =150 kV/cm and
L =215 A), the second and third subbands are separated
by 61 meV.

V. CONCLUSIONS
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most 3 times that of the first-subband population for the
same energy and almost as great as the first-subband pop-
ulation at the bottom of the subband. 55% of the elec-
trons are in the first subband and 38%%uo are in the second
subband, with the remaining 7% being primarily in the
third subband. We observe a weak dependence of the ve-

FIG. 5. Distribution functions for F„=500V/cm and 300 K
near the POP resonance condition. The heaviest line is for the
second subband and the lightest for the third subband. (a) Sys-
tem below resonance. (b) System at resonance. (c) System
above resonance. For clarity, only the lowest three subbands
are shown.

We have presented a multisubband Monte Carlo model
of quantum wire systems including POP and acoustic-
phonon scattering mechanisms. The transport parame-
ters are not a simple function of the confinement condi-
tions and result primarily from the respective influence of
two factors: the magnitude of the wave-function —overlap
integral in the transition probability and the relative
infiuence of the upper (mainly second) subbands. The
asymmetry between y and z states is significant in deter-
mining the relative importance of the above factors. Un-
der optimum conditions, mobilities near twice the bulk
value at room temperature are anticipated. Resonances
similar to the magnetophonon effect with enhanced
second-subband populations occur when the subband sep-
aration is 'RNppp.

The ability to achieve, in principle, energy-level spac-
ing comparable to kT at room temperature makes
artificial 1D structures well suited for comparison to
magnetically confined systems. Quantum wires present
additional important features which differ from longitudi-
nal magnetotransport. The absence of azimuthal degen-
eracy and the flexibility in varying independently the y
and z confinement provide a useful means of controlling
externally the transport parameters. In the FET
configuration, negative-differential transconductance can
be obtained by simply changing the gate voltage to modi-
fy the subband spacing. Similarly, transitions from one
to two dimensions could be investigated by gradually
turning off the external field. Finally, owing to the finite
well depth, negative-differential resistance though real-
space transfer, or intervalley scattering, is expected to
occur under strong longitudinal fields.
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