
PHYSICAL REVIEW B VOLUME 38, NUMBER 12 15 OCTOBER 1988-II
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Optical nonlinearities in semiconductor microcrystallites are analyzed theoretically. The third-
order optical susceptibility is evaluated for different crystallite-size regimes ranging from weak

quantum confinement, where only the center-of-mass motion of the electron-hole pairs is modified,
all the way down to very small quantum dots, where the individual motion of the electrons and
holes is confined and the Coulomb attraction is unimportant. Large optical nonlinearities are com-

puted for sufficiently narrow linewidths of the microcrystallites. It is predicted that the induced
two-photon absorption resonance (biexciton resonance) shifts from below to above the exciton reso-
nance when the crystallite radius is reduced from bulk to less than the exciton Bohr radius. The
magnitude of the expected optical nonlinearities in the different confinement regimes is analyzed for
various semiconductor materials.

I. INTRODUCTION

Quantum confinement efFects in optically excited semi-
conductor microstructures arise if at least one spatial di-
mension of the material becomes comparable to or small-
er than the characteristic length scale of an electron-hole
pair. Well-known examples of such semiconductor sys-
tems are the multiple-quantum-well structures made of
alternating layers of active and transparent material.
Laser excitation in the appropriate frequency regime gen-
erates electron-hole pairs within the quasi-two-di-
mensional active layers. These layers provide
confinement in one space dimension, which is already
sufficient to largely enhance in particular excitonic
effects.

In two dimensions, the binding energy of the excitons
with principal quantum number n is given by'

E„=Ett /(n +—,
' ), n =0, 1,2, . . . , where ER is the exci-

ton Rydberg, whereas in three dimensions E„=E&In,
n =1,2, . . . . The binding energy of the lowest exciton
state is therefore 4 times larger in two than in three di-

mensions. This particular feature makes exciton effects
easily observable even at room temperature, as was

shown, e.g., in GaAs-Al„Ga& „As multiple-quantum-
we11 structures. For more details and for a recent review

of the linear and nonlinear optical properties of multiple-
quantum-well structures see, e.g., Ref. 3.

Stimulated by the large optical nonlinearities observed
in quantum we11s, quite recently semiconductor micro-
crystallites are being investigated, which confine the

laser-excited electron-hole pairs in all three space dimen-
sions. ' Presently available examples of such systems
are colloids or semiconductor microcrystallite-doped
glasses, ' as well as microstructures obtained by so-
phisticated etching procedures. ' ' It has been shown
that special glasses doped with CdS, CdSe, CuC1, or
CuBr crystallites can be fabricated, which clearly exhibit
quantum confinement. The microcrystallites in these
glasses form out of the supersaturated solid solution of
the basic constituents originally brought into the glass
melt. The average size of the crystallites follows a
universal growth law ' R =t ', where t is the duration
of the heat treatment during which the crystallites actual-
ly grow. The crystallite sizes are distributed according to
the universal Lifshitz-Slyozov distribution, ' and they are
more or less randomly arranged in the glass matrix. Well
controlled average crystallite sizes from around 10 A up
to several 100 A have been reported in Ref. 4.

The first attempts of manufacturing GaAs microcrys-
tallites have recently been reported. ' '

Applying an
anisotropic reactive ion-etching and/or sophisticated
doping procedures to multiple-quantum-well structures,
both quantum wires as well as arrays of quantum dots
have been fabricated. The luminescence properties of the
samples have been investigated, but no detailed studies of
the nonlinear optical properties of these systems have
been reported yet.

The first theoretical investigations of quantum
confinement in semiconductor microcrystallites have
been reported by Efros and Efros and by Brus. Various
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regimes of quantum confinement have been introduced,
depending on the ratio of the crystal1ite radius R to the
Bohr radius of the electron-hole pairs, at) f——i e2/pe,
holes, az ——A' e2/mI, e, and electrons, a, =A ez/m, e, re-

spectively, where 1/@= 1/m, + 1/m„and ez is the back-
ground dielectric constant of the semiconductor material.
Efros and Efros attributed to these regimes quantization
of the exciton, R &a&, quantization of the electron,
a, & R & a&, and quantization of electron and hole,

a„az & R, respectively. Using the effective mass approxi-
mation these authors showed that the increasing kinetic
energy of the confined quasiparticles leads to a b1ue shift
of the electron-hole-pair groundstate energy. This blue
shift is always proportional to I/R, but the prefactors
are different in the different confinement regimes.

Optical nonlinearities in various quantum-confinement
regimes have been discussed in Refs. 17-20. For crystal-
lite sizes well exceeding the bulk exciton diameter, we
have predicted an excitation-induced blue shift of the ex-
citon resonance as a consequence of the plasma screening
of the attractive Coulomb interaction between electrons
and holes. ' Large optical nonlinearities for weak quan-
tum confinement have also been predicted by Hanamu-
ra, ' whereas the regime of extremely strong quantum
confinement has been discussed in Ref. 19.

In the present paper we calculate the third-order opti-
cal nonlinearity in the different size regimes, and we com-
pare the predicted effects with known results both of bulk
semiconductors and of atomic systems. In Sec. II we out-
line the theory of the third-order optical susceptibility
and we derive the expression for X3. The parameters in

g3 depend on the confining geometry and are evaluated
for the so-called boson model in Sec. III, where this mod-
el is generalized to include the effects of weak quantum
confinement. In Sec. IV we treat the situation of
moderate quantum confinement, where the crystallite ra-
dius exceeds the Bohr radius of the hole, but is consider-
ably smaller than the electron Bohr radius. This situa-
tion is very interesting for most direct-gap semiconduc-
tors due to the large difference of the effective masses of
electrons and holes. Our theory predicts that the induced
two-photon (biexciton) resonance is shifted from energeti-
cally below the exciton resonance in bulk materials to
above the exciton resonance under moderate
confinement.

In the regime of strong quantum confinement, one may
neglect the Coulomb energy in comparison to the
confinement energy. Hence, the system becomes an
equivalent to an atomic system with discrete levels. For
completeness, we compute the third-order susceptibility
also for these conditions in Sec. V. The results for the
different regimes of quantum confinement are summa-
rized in Sec. VI and the magnitude of the expected non-
linearities is evaluated for a variety of semiconductor ma-
terials.

where p,„ is the interband dipole matrix element f, zi, is
the annihilation operator for an electron or a hole, and o.
is the spin index, respectively.

If one introduces a phenomenological decay constant
y, the Liouville equation for the density matrix p can be
written as (fi:—1 in the remainder of this paper)

i p= [—H, (t), p] i (p —po)y—, (4)

with the initial condition

P I i =o=po(H)

where po(H) is the unperturbed density matrix of the
Hamiltonian H. In the following, we transform Eq. (4)
into a form suitable for perturbative solutions. It is con-
venient to introduce the new operators

Q= 2AN

(6)

H =H ——,'CP —Q,
where 8', and 8'h are the number operators for electrons
and holes, respectively. Assuming [Q,po]=0, Eq. (4) be-
comes

P iHt —iHt ty (7)

with p(0) =po. The solution of Eq. (7) can be written as

p=p(0)+y f dt'e' 'p e ' 'e'r (&)
0

g3 which we use in our analysis of the optical nonlineari-
ties in the various regimes of quantum confinement. We
denote by H the Hamiltonian of the unperturbed
electron-hole Coulomb system in two-band approxima-
tion, and we treat the interaction between the system and
the external field in dipole approximation. The total
time-dependent Hamiltonian is then given as

H, =H PC—cos(tot),

where 8 is the applied electric field and P is the interband
dipole moment operator (interband polarization). In ro-
tation wave approximation we can write

P cos(tot ) =(P +P+ ) cos(cot )

( (P elcrli+P e
—lcdt)

2 +

where P+ and P are the polarization components cor-
responding to creation and annihilation of an electron-
hole pair, respectively. Expanding the polarization in
terms of electron and hole operators, one has

P =p,„gfdxg, (x)ir'i), (x), (3)

II. THEORY OF THE NONLINEAR
OPTICAL SUSCEPTIBILITY

In this section we sketch the derivation of the expres-
sion for the third-order nonlinear optical susceptibility

or, by using the definitions (6) and partial integration,

iQi f 'dt~ e(—i i)y iH(i r)' — ' —
p —p0 —re

0

[Hp]e iH( t —t)eifit' (9)
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In the present paper we are interested in the steady-state

situation, t~ao, assuming that the external field is ap-

plied at t =0. Using Eq. (9) we obtain the expectation
value of the polarization as

(p )( )
+inst2'

&& f dt'e'rtr(e' '[H, po]e
' 'P+) .

(10)

Since we are working in rotating wave approximation,
the relation between the macroscopic polarization and
the external electric field can be written in the form

1—(P)(t)=-'(e' 'X'+e ' 'X)t
2

where V is the crystal volume. Using Eqs. (9}—(11},we
can extract the susceptibility as

f dt e t ]'( [e i—Ht'p eiHt' p] ) (12)

+ ~ ~ ~ (13)

where A. =it, A =H fI:H—o, —8=—8(P++P )/2 so
that A+k=H. Truncating the expansion amounts to
treating S perturbatively. Expanding Eq. (12} in powers
of electric field we obtain the different orders of the opti-
cal susceptibility as

where ( . . )0 denotes the average using po. Since we
cannot evaluate Eq. (12) in closed form for most practical
cases, we apply perturbative methods using the expansion

A( A+8) A. A
&e

0

0 0

X,= ——f dt([P(t), P (0)]) e'

X2=0,
2

X3——' f dt, f dt2 f dt3([P(t3) [P(t2), [P(t, ), P (0)]]]&oe '

(14)

where

(15)

For the sake of simplicity, we now assume that the system is originally (at t =0) in its ground state, i.e., there are no
electrons or holes before the laser field is applied. Furthermore, we restrict our basis of states to the energetically
lowest electron-hole-pair state, which may be degenerate, E]s E] for all allow——ed 5. Under these conditions, Eq. (14)
can be rewritten as

and

iA 1

+r (16)

i8 4A ~ 2 2
4V (t~]+y )(~']+y') . [i (~2 ~l }+y ](~]+y')

+ 1 1

(ito]+y)(it02 +y) i(F02 CO])+y—
1

ECO) +f

where

A=+ /(0)p (1A) /',
(18)

energies E, and E2 for different regimes of quantum
confinement.

8 = g(O~P ~1A&(lk~p ~2t7&

and co, =E) —co and m2~
——Eq~ —2'. Here, E( and E2

are the energies for the one-pair and two-pair states, re-
spectively.

Equations (16)—(18) are the basic equations used in our
further discussion. In the following sections of this pa-
per, we evaluate the coeScients A and 8, as well as the

III. THE REGIME OF WEAK QUANTUM
CONFINEMENT

In this section we discuss the regime of weak quantum
confinement, where the radius R of the quantum dots is
much larger than the exciton Bohr radius in the corre-
sponding bulk material. In this case, one may apply the
so-called boson model to discuss the different electron-
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with the energy

E2, ——2E) .

The biexciton state is

(21)

hole-pair states. The boson model has been developed for
bulk semiconductors and we first outline this case for
later reference. Here, one treats the excitons as nonideal
bosons which have two possible spin states: spin up and
spin down, denoted as A. =+1 and —1, respectively. As
a consequence of the van der Waals attraction between
two excitons, an excitonic molecule or biexciton state
may exist whose energy is reduced by the binding energy
E„„in comparison to the energy of a state with two exci-
tons. In this paper, we consider only the biexciton singlet
state.

We denote the one-pair state as

~

1A, ) =e',
~
0), A, =+1 (19)

where erat is the exciton creation operator and the two-
electron-hole-pair state is

eiteit.
~

0) for A,QA,
'

(erat )
~

0) for A, =A, ',
2

In the boson model, both excitons and biexcitons are as-
sumed to obey Bose commutation relations. Equation (3)
then becomes particularly simple,

~—= g (po e~+i.be ~b }
A,

where the vacuum-exciton dipole matrix element is
1/2

(24)

and the exciton-biexciton dipole matrix element p,b is not
volume dependent. Inserting Eq. (24} and the wave func-
tions into Eq. (18), one obtains the coefficients A and B as

A =4Po,

8 =23
for the two-exciton state and

(25)

& =4PoP b (26)

for the biexciton state. Inserting (25) and (26) into (17)
one sees that the contribution of the one-exciton state in
g3 cancels exactly that of the two-exciton state, leaving
only the contribution of the biexciton. From Eq. (16) we
obtain

[
b &=b'[0), (22)

where b f is the biexciton creation operator, and the ener-

gy is

2
2pcu 1

~aB3 N —El+fr ' (27)

Eb ——2E; =E„„. (23) and Eq. (17) yields

E„„/2
naa (co E, ) +y —~—Ei+E„„+&7' (co E, +iy) (co—E, +E„„/2—+y/2)(co E, +E„„+—iy)

(28)

Eb Eb + (——n/R)'
4(m, +mi, )

(29)

Actually the boson model for bulk semiconductors allows
the exact calculation of the full nonlinear susceptibility
which we, however, do not need for the discussion in this
paper.

In the remainder of this section we now discuss the
modifications of the boson picture which arise in semi-
conductor microspheres under weak quantum
confinement. Since the microsphere radius exceeds the
exciton Bohr radius, it is reasonable to assume that the
relative motion of the electrons and holes in the bound
states (exciton and biexciton) is basically not influenced
by the confinement. However, the center-of-mass
motions of excitons and biexcitons are modified by the
boundary conditions at the surface of the sphere. The
corresponding quantization of the kinetic energies yields

I

showing that the spectral distance between the one- and
two-photon absorption peaks varies as function of the mi-
crosphere radius. Moreover, the contributions of the
one-exciton and two-exciton states to the third-order sus-
ceptibility do not compensate anymore. The confining
geometry of a microsphere introduces deviations of the
matrix elements from their bulk values given by Eqs. (25)
and (26) and the idealized relationship, Eq. (21), between
the energies of the one-exciton and two-exciton states
does not hold anymore. These modifications are easy to
understand if one keeps in mind that excitons and biexci-
tons in reality are not elementary bosons, but bound
states of electrons and holes. Therefore, in a finite
volume two excitons cannot be treated separately, but the
Fermi nature of their components has to be taken into ac-
count. These arguments can be made quantitatively by
writing the wave function of the exciton as

and 4(x„xi, ) =4(x, —xi, )P(X}, (31)

E~, =E2, + (n./R)
m, +m„

(30)
where X is the center-of-mass position of the exciton,
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m, x, +mzxI,X= (32)
m, +m&

is the ground-state wave function of the relative
electron-hole motion (hydrogen wave function), and

describes the motion of a particle in an infinite potential
well of radius R', with R'=R —az and 6 is the usual
Heaviside unit step function.

Now one may construct the different spin states of two
excitons using the wave functions (31)—(33). The singlet
state is

y(X) =e(R ' —X)
&2m.R 'X (33)

~

e th ~, e th t ) =fdx, fdx, f dxl, f dxi, q'( x, , x~ )+(x, ,xl, )P, t(x, )g, t(x, )P ht(xh )P h~( xl )
~

0)

and the (double degenerate) triplet state is

~
e, h„,e, , h, ) =—fdx, fdx, f dx, fdx„, 4( x... x„, )%( x... x„,)p'„( x, , )g,'„( x,, ) (1J (txp, , )f„ ((A, )

~
0),

(34)

(35)

with the normalization factor
' 1/2

N=&2 — 2f dx, f dx, f dx„ f dxI, 4(x, ,xz )%(x, ,xl, )%(x, ,x& )qi(x, ,xz ) (36)

Estimates for the radius dependent corrections of the
coefficients A and 8 and of singlet and triplet energies
can be obtained using Eqs. (31)-(36). These calculations
are straightforward but lengthy and we suppress the de-
tails here. As a result of the discussed modifications, one
finds that the nonlinear contributions around the exciton
resonance do not vanish anymore, as they do in the bulk
limit.

A word of caution should be mentioned here regarding
the bulk limit R~~. When considering electron-hole
systems in bulk semiconductors it is actually not correct
to keep only the lowest energy levels when computing the
nonlinear optical response. The contributions of the ex-
cited levels become more and more important. There-
fore, when using our Eq. (17) we do not have a descrip-
tion which approaches asymptotically the correct infinite
volume limit. To obtain the correct limiting behavior one
has include the contributions of increasingly many energy
levels.

IV. THE REGIME OF MODERATE
QUANTUM CONFINEMENT

2
=+ +5V(x, ,x~),

ez I x, —xz I

(38)

where the positive (negative) sign is for equal (opposite)
charges. The modification of the Coulomb potential has
been discussed by Brus and the results relevant to our
calculations are summarized in the Appendix of this pa-
per.

To compute the coefficients for the third-order optical
susceptibility, we need the wave functions and energy ei-
genvalues of the one- and two-pair states. Since we as-
sume strongly quantum confined electrons, the electron
wave function is simply

constant e2 which are embedded in a material with back-
ground dielectric constant e&. The full Coulomb interac-
tion between two point charges in this case consists of the
Coulomb interaction between the particles inside the
sphere plus an additional term caused by the induced sur-
face charge of the sphere,

V(x„x2) i a ——V(x, , x2) i z „+5V(x,, x2)

The regime of moderate quantum confinement is
defined as the situation, where the radius of the quantum
dot is smaller than the electron Bohr radius but larger
than the hole Bohr radius,

aI, &R(a, . (37)

This situation is very relevant for most direct-gap semi-
conductors because of the large difference between the
effective masses of electrons and holes. To model the sit-
uation of moderate quantum confinement, we assume
that the confinement dominates the motion of the elec-
trons, but the Coulomb forces are still important for the
motion of the holes. Effectively the holes move in the
cloud of the strongly confined electrons which, hence,
produce a mean Coulomb potential.

In order to deal with Coulomb effects, we assume semi-
conductor quantum dots with the background dielectric

sin(nx, /R)
(39)

and we compute the motion of the hole in the average
electron potential.

A. The one-pair state

&(4q(xq ) =0 . (40)

Since we are dealing with quantum-dot sizes fulfilling the
condition (41), we use the expansion

First we analyze the one-pair state. The effective
Schrodinger equation for the hole is

I
Vl + dx, g, (x, )V(x„xl, ) „—E,q

2

Zmg
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P, (x, )
dxe

4aBER 1 sin. ~x
dx

R o x 6 R

2

(41)

where terms with odd powers disappear for symmetry
reasons. Inserting (41) into (40) and using Eq. (A9) yields

where the expressions for a„ is given in the Appendix
[(A7)] and

E1h ——E1h +DE,
bE being given by Eq. (A10) and only terms up to or-
der (xh /R ) have been kept. Equation (42) is the
Schrodinger equation for the harmonic oscillator. If we
replace the boundary condition at the surface of the
sphere, 4(x =R ) =0, with the boundary conditions at ao,
4(x = 00 ) =0, we obtain the eigenfunction of (42) as

~h+
1

2mh

22K Eg Qg cx1e
2

3R3 +
2R3 h

—
1h

—Zh /ZP
h h 3/4 3/2

77 XO1
(43)

)(@»(xh ) =0 . (42) and the energy eigenvalue is

4a~E~
E1 =E1h+E1e = +

R2m, R
sin (nx) 3

dx +
o x 4

4m'
+2@

1/2 '

(44)

where

XO1

R

and

ah /R

2&/3+ 2e'
(45)

I

The total Coulomb potential V(x&,x2, x3,x4) fo«he in-
teraction of the two electrons and the two holes is dis-
cussed in the Appendix. We separate the wave function
p(xh, xh ) into a part g describing the center-of-mass

1 2

motion and a part 4 describing the relative motion,

e2/e, —1
E' =

e2/el +2
(46)

Since the hole is strongly localized around the center, the
violation of the boundary condition at the surface of the
sphere turns out to be very insignificant, as we have
verified by comparison of the approximate results (43)
and (44) with numerical solutions of Eq. (42).

$2»(xh, xh )=4(x)g(X) . (48)

with X=(xh +xh )/2 and x=xh —xh .
1 2 1 2

Inserting (48) and (47) and using (A12)-(A15), we ob-
tain for the center-of-mass motion

1 2 4me a a 2
6e'a E

B. The two-pair states

We consider here the lowest two-pair state, which is a
Coulomb-correlated ("bound") state. Unlike the case of
weak quantum confinement, in the presently discussed re-
gime of moderate confinement, one cannot have a two-
pair state of relatively independent excitons. In the dis-
cussion of this correlated two-pair state, we use the same
approximations as in the case of the one-pair state. It is
easy to see that there is only one possible spin combina-
tion for the two-pair state, in which the sum of the elec-
tron (hole) spins is zero. Because of the strong electron
confinement, the two-electron wave function can simply
be approximated as the product of the single-electron
wave functions, Eq. (39). The two holes are subject to the
combined fields of the electrons and the surface charge

with the solution

=e, g(X), (49)

0 5( X/Zp~ )

3/4x 3/2
XO2

(50)

1/2

2R R 3
+'" (51)

where

XO2

R
Qh

R (16m /3+12e')

1/4

For the relative motion, the Schrodinger equation result-
ing from Eq. (47) is

2mh
p2 ++2

hl h~

+ dx, dx, , x, , x,

X V(xe)Ixe2Ixh)Ix»2) l R 2» (t'2»(xh)I »2)

(47)

where

V„,(x)=
e'asE„

3R e2 2R
+ X +

EZX

V„+V„,(x) 4(x) =e„,4(x),
mh

(52)

(53)
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To obtain an analytic solution, we expand the potential
V„, around its rninimurn,

R
(2H/3+ 1/2e') '

Equation (54) is the Schrodinger equation for the shifted
harmonic oscillator which has the parabolic cylinder
functions as eigenfunctions

Keeping terms up to second order, Eq. (52) becomes

a' ~2e2 6 aBER
mhR

ag' 362

2

(g—g ) .U(g)=(e,', —e )U(g),
e2ko

(54)

U(g) =el, Dp 4 (~ + 4&')' (g g—o)
QI,

and the energy eigenvalues are

e,', =e,'+ (2p + 1)[(R /a„)(m'+0. 75e') ]'" .

(55)

(56)

where we have introduced the new variables

X +min U
R' R ' x

QB
eo ——3E& (2n. /3+ 1/2e')'/

QBQP
e« ——e«2ER

The parameter p has to be determined from the boundary
condition Uz(/=0) =0 and the normalization constant c
is obtained from the condition

f dg U (g)=1 .

The two-pair state can be expressed as

) = f e Jt e, f xl, fdxa, 0 (x)de(x)@(xl, xl, )PetW iktfal I
0) ~ (57)

Adding up all the contributions to the energy, we obtain

=2&(a, /R )

+ I
—15.6+3(2m /3+0. 5e')'/

R

+(a /R)1/2[(4~2+ 3ei)l/2

+3(4~'/3+3e')'/'] j . (58)

The number 15.6 is the computed result of the expression

2 P, (x, )P, (x, )

x, x, =15.6ER .
e& e2

The numerical evaluation shows that for realistic semi-
conductor parameters the energy difference E2 —2E, is
positive in the moderate-confinement regime. For the
simplified case of e2 ——e, , evaluation of the terms in Eqs.
(44) and (58) yields

Coulomb attraction between electrons and holes over-
compensates the electron-electron and hole-hole repul-
sion, leading to a biexciton state whose energy is that of
the two-exciton state minus the biexciton binding energy.
However, in the case of sufficiently small microcrystal-
lites, the quantum confinement for two holes is stronger
than that for a single hole. This increased quantum
confinement is indirectly a consequence of the Coulomb
repulsion between the two holes, which forces them to be
somewhat displaced from the center of the sphere, in con-
trast to the single hole, which always stays close to the
center. As a consequence of the confinement, the two-
electron-two-hole complex cannot rearrange itself to
reduce the repulsive forces between the two holes and,
hence, the total energy increases.

C. Evaluation of the optical susceptibility

Using the expressions derived in Secs. IV A and IV B,
we are now in the position to obtain the matrix elements
entering Eqs. (17) for the nonlinear susceptibility X3. Us-
ing Eqs. (45) and (46), it is found that

aB Qg
E2 —2Ei -ER 1.8

R R

1/2

—0.4

The two-electron-hole-pair state, which we may loosely
call the quantum-confined "biexciton", has a higher ener-
gy than twice the one-electron-hole-pair state ("exciton").
This is in contrast to bulk semiconductors, where the

(0(~ [1)
=2 /7r' p,„(R/a/, ) (2~ /3+2&')

1 —0.5r (2d/3+2'') (R/ai, )
dr r sin(m. r)e

0

The other matrix element is

(59)
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8p (R/x ) (R/x )
(lk, iP i2)=

(2m )' (R /x() ) +0.5(R /x()()
I . —0.5[(R/xo&) +(R/xo) ]x
dx sin nx.e

0

0
(60)

Inserting the results (44) and (58)—(60) into Eqs. (17) and
(18) we can now evaluate the nonlinear susceptibility P3
for the regime of intermediate quantum confinement.
Defining

4~83 R
E2

3= 3 3 4@P
S'cv

(61)

we introduce a normalized susceptibility 73, which de-
pends only weakly on material parameters.

As a typical example of the results for the regime of
moderate quantum confinement we show in Fig. 1 the
imaginary part [Fig. 1(a)j and the real part [Fig. 1(b)] of
X3 for three different values of the damping constant y.
For this figure we have chosen e2/e, =10, which is typi-
cal for semiconductor microspheres surrounded by air or
by glass, and a), /a, =0.2. We see in Fig. 1(a) that the
imaginary part of P3 exhibits a positive and a negative
resonance. The negative resonance occurs at co=E,
describing the saturation of the one-pair transition
(bleaching of the exciton resonance). The positive reso-
nance occurs roughly at co=E~/2. Since the imaginary
part of the susceptibility is directly proportional to the
absorption coefBcient a of the semiconductor material, a
positive X3 describes absorption which increases with in-
creasing light intensity. The positive resonance around
Ez/2 is therefore reminiscent of the induced absorption
resonance (biexciton resonance) in bulk semiconduc-
tors. ' However, in contrast to bulk semiconductors,
in the microspheres the positive resonance of X3 occurs
on the high-energy side of the one-pair resonance. This is
a direct consequence of the quantum confinement which,
as discussed at the end of Sec. IVB, causes Ez/2~E).
The real part of X3 exhibits a somewhat more complicat-
ed structure with a strong positive peak occurring at the
energy in between the negative and positive resonances of
Img3 ~ This positive peak is due to the fact that a
decreasing-absorption peak has a positive dispersive peak
on its high-energy side and an increasing-absorption peak
has a positive dispersive peak on its low-energy side.
Hence, both positive contributions add up in Re J3, giv-
ing rise to the strong positive resonance. Both on the
high-energy side and on the low-energy side of the posi-
tive resonance Reg3 exhibits negative resonances. The
results for the different damping constants y in curves
1 —3 show the general trend that the magnitude of the
nonlinearities is strongly reduced with increasing y and
the width (FWHM) of the structures increases.

To study the influence of the surface polarization of
the microspheres, we have evaluated 73 also for 6'2/6& = 1.
The resulting spectra are quite similar to those shown in
Fig. 1. Most notably, the absence of surface polarization

effects causes the separation between the negative and
positive resonances in ImX3 to increase by approximately
50%, whereas the magnitude of the peaks decreases by
less than 10%. These observations indicate that the sur-
face polarization modifies the energy difference E2 —2E&
but changes the matrix elements only slightly.

More pronounced modifications of the 73 spectra are
obtained when changing the ratio of the electron and hole
Bohr radii. In Fig. 2 we show results which have been
computed for the same conditions as Fig. 1 but choosing
a()/a, =0.1. The comparison reveals that the overall
structure of 73 remains unchanged, but the smaller ratio
a), /a, causes an increasing energy difference Ez —2E,
which leads to a wider separation between the positive
and negative resonances in Img3. At the same time, we

40- (oj

20-

()x 0
E

-20-

-40-

-60
(b)

60-

20-

I ~ I r I

0 ) 2

(%ta-E))/ER

FIG. 1. Imaginary part (a) and the real part (b) of the nor-
malized third-order susceptibility P3 in the regime of moderate
quantum confinement vs energy for three different values of the
damping constant. y/Ez ——0.6 (1), 0.5 (2), 0.4 (3). Here, E, is
the energy of the one-electron-hole-pair state and E„ is the
binding energy of the exciton in the bulk semiconductor materi-
al. The other parameters are ez/e& ——10 and az /a, =0.2, where,
respectively, e, and e& are the background dielectric constants of
the surrounding medium and of the semiconductor, and a, /I, is
the Bohr radius of the electron or hole in the semiconductor mi-

crocrystallite.
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The absorption change is

47Tco
Aa = Img3

c ']]/ e2

and the refractive index change is

2&
bn = Reg3 .

Qe2

(65)

(66)

In terms of the normalized susceptibility X3, we therefore
have

5a 24m10 3/2 aa ~Ez aB3 6 3

2 62 3 2 Im+3 =K& 3 Im+3
c R E R

(67)

and

hn 12m 10' aa E~ a~
E2 3 2 Reg3—=K2 3 ReX3,

c R E R
(68)

where I is the light intensity inside the microspheres in
units MW/cm . To obtain Eqs. (67) and (68) we have
used the well-known relation between the dipole matrix
element and the semiconductor band gap, p,„=]]le/
"]/4pE, obtained in k p perturbation theory. (The fac-
tor 10' enters because of the conversion of 8 into light
intensity I in units of MW/cm ).

As a consequence of the fact that the strongest materi-
al dependence in (67) and (68) is in terms of the bulk-
exciton Bohr radius, it is clear that semiconductor ma-
terials with large Bohr radii are the best candidates for
strong nonlinearities. To compare different semiconduc-
tors we choose the representative examples GaAs, CdS,
and CuCl. The relevant material parameters are

confinement using materials like CdS or CuCl, or even
GaAs. In terms of numbers, the radius of such structures
would have to be less than approximately 14 A in GaAs,
less than approximately 4.5 A in CdS, and less than ap-
proximately 1.5A in CuCl. Besides the complication of
fabricating such truly microscopic structures, it seems to
be very doubtful that the theoretical description in terms
of semiconductors with bands and effective masses can
still be applied. In this sense, we have included the
analysis of the regime of strong quantum confinement
only for comparison.

Because of the large difference between the effective
masses of electrons and holes, the requirements for
moderate quantum confinement are far less stringent than
those for strong confinement, and some structures in this
moderate-confinement regime have already been pro-
duced. However, another parameter which is extremely
important in determining the magnitude of the expected
nonlinearities in all regimes of quantum confinement is
the broadening factor y. The different curves in Figs.
1-3 show the rapid decrease of the nonlinearities with in-
creasing y. So far, we have only been discussing homo-
geneous broadening. Additionally, however, one also has
to worry about inhomogeneous broadening, which is
mainly caused by the size distribution of the microcrys-
tallites. Our analysis of inhomogeneous broadening will
be discussed in another publication. Here we only want
to emphasize that we expect a strong reduction of the op-
tical nonlinearities for an increasing width of the particle
size distribution. This leads us to the conclusion that
achieving a narrow size distribution is probably the most
important, certainly also the most challenging task in the
production of actual semiconductor microstructures.

E~ (eV) ER (meV) a2](A) m, (ma) m&(ma)

GaAs
Cds
Cucl

1.519
2.583
3.354

4.2
27

152

124 0.0665 0.52
30.1 0.235 1.35
7.5 0.5 2

K] (cm ) K2

where mo is the free-electron mass. Evaluating the pre-
factors K& and K2 which scale the absorptive and disper-
sive changes, we obtain
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APPENDIX: THE COULOMB PROBLEM
IN SEMICONDUCTOR QUANTUM DOTS

GaAs
Cds
CuCl

181
6.0
0.223

1.18X 10
2.3 X 10
6.88 X 10

As shown by Brus, the Coulomb interaction between
two point charges in a semiconductor microsphere of ra-
dius R with background dielectric constant e2 embedded
in a material with background dielectric constant e& is

indicating that the expected nonlinear changes in GaAs
are substantially larger than in the other two materials.

Equations (67) and (68) show that there is the addition-
al factor a&/R scaling both ha and hn. Even though a
comparison between Figs. 1 and 3 indicates that the mag-
nitude of X3 in the regime of moderate quantum
confinement is larger than in the strong-confinement re-
gime, the factor az/R causes us to expect the largest
nonlinearities for strong quantum confinement. Howev-
er, in practice it seems to be exceedingly complicated to
realize microstructures exhibiting strong quantum

V(x]|x2)
~ g —V(x]yx2)

i ]] „+5V(x]yx2), (A 1)

l X2) Ql Xl)+Ql(X2)+Q2 X] X2) (A2)

where —(+) is for charges with opposite (equal) sign.
The different terms in (A2) are

Q, (x)= g Q] „(x),
n=0

(A3)

where the additional term is caused by the induced sur-
face charge of the sphere. According to Ref. 5, 5 V can be
written as
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with

2

Qt „(x)= a„(x/R) ",
and

(A4)

c(e)= g f dx sin (mx)x " . (All)(» —1)(n.+ 1)
en+n+1 0

Equations (A9) —(A12) are used in Eq. (42).
Considering the four-particle Coulomb terms entering

Eq. (47), we use a separation like (Al},

Q2(x&, xz}= g Qz „(x,xz),
n=0

with

(A5)

~2 X)x
Q2 „(x„x2)=a„P„(cos(8)),

R
(A6)

(ez/e, —1)(n +1)
n e2(nez/e, +n +1) (A7}

where 8 is the angle between x& and x2, P„ is the nth-
order Legendre polynomial and

V(xe &xe Ixh fxh )
I 8 V(xe&~xe&~xh&&xh2) I R = ao

+5V(x, ,x, ,xh, xh ),
where

V(xe, xe, xh, xh )
~ a

=V(xh, xh )~a „+V(x, , xh )~a

+V(x xh ) IR= +V(x xh )
I a=

+ V(x, ,xh }
~ „„+V(x, ,x, )

~ R

(A12)

(A13)
In the main part of this paper, we need the Coulomb po-
tential averaged with the spherically symmetric wave
function, Eq. (39). Considering the expression

fdx, g, (x, )5V(x„xh)

entering Eq. (40}, we see that only the term Q2 o in Q2,
Eq. (A5), gives a contribution since the integral over the
nth-order Legendre polynomial vanishes for all n&0.
Furthermore,

Q2, o(&,»h ) =Qi, o(&.)+Qi, o(xh» (A8)

2

fdx, P, (x, )5V(x„x„)= x„+bE,
2R

(A9)

where hE is independent of x&, introducing merely an en-

ergy shift

bE= g fdx, g, (x, )Q, „(x,)=
n=1

20'
Ea c ( e2/& i ),

(A 10)

with

leaving only the contributions of Q& „(x,)+Qt „(xh),
n & l. Expanding in terms of (xh/R) and keeping terms

up to third order, we obtain

is just the sum of the bulk Coulomb potentials. The
correction term is

5V(x, ,x, ,xh, xh )

=Ql(& )+Ql(X )+Ql(Xh )+Qi(xh

+Q2(x, ,x, )+Q2(xh, xh ) —Q2(x, , xh )

Q2(xe(&xh~) Q2(xe~&xh( ) Q2 +e~&xh~

In Eq. (47), we only need the averaged potential correc-
tion

fdx, f dx, P, (x, )((),(x, )5V(x, , x, , xh, xh ) .

Inserting (A15) and using (A3)-(A8) one can show that
the contributions with n =0 from the sums in (A3) and
(A5) cancel exactly. Keeping again only terms up to or-
der (x„/R ), we obtain

fdx, f dx, ((),(x, )((),(x, )5V(x, ,x, ,xh, x„)
2

a, [(xh /R) +(xh /R) ]+26,E, (A15)

where b,E is given in (A10).
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