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Interchain order, soliton confinement, and electron-hole photogeneration in trans-polyacetylene
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Two neighboring trans-polyacetylene chains are modeled individually by the Su, Schrieffer, and
Heeger Hamiltonian and coupled by an interchain electron-transfer term. Geometrical considera-
tions show that the interchain transfer integrals alternate in size and possibly even in sign. In the
latter case parallel ordering of dimerization is favored. Due to the bonding produced by the split-
ting of midgap levels for parallel ordering, two neutral solitons on neighboring chains are strongly
bound. The binding energy is calculated in the continuum limit using the analogy to the solvable
model of a diatomic polymer chain. The direct interchain photoproduction of electron-hole pairs is
calculated for the two orderings and for polarization perpendicular to the chain axis. It is found
that not too far above threshold (co=26) this contribution is comparable to the intrachain optical
absorption.

I. INTRODUCTION

Theoretical descriptions of conjugated polymers are
often restricted to a single isolated chain. While this can
yield a good approximation for certain properties like the
amplitude of dimerization or the optical gap, it fails com-
pletely for describing other aspects, especially those for
which the interchain electron transfer is crucial. In an
earlier paper' we studied the effect of this interchain
transfer on the relative order of dimerization on neigh-
boring chains and concluded that the order should be out
of phase (antiparallel). Through the recent synthesis of
homogeneous, well-oriented samples it has become possi-
ble to address the question of interchain ordering using
x-ray diffraction. In contrast to theoretical predictions,
the experiments point to in-phase (parallel) alignment of
the dimerization. In this paper we show that the puzzle
can be resolved by looking more closely at the geometri-
cal arrangement of neighboring chains. This arrange-
ment implies that the interchain transfer not only has
different sizes on even and odd sites but can even have
different signs. In this case the in-phase alignment is en-
ergetically preferred.

The question how the (CH)„chains are arranged in
crystalline polyacetylene has been addressed by Baugh-
man and Moss and by Stafstrom using semiempirical
approaches. These calculations predict that neighboring
chains are rotated relative to each other, in agreement
with experiment. However, within the accuracy of the
finite chain calculations the two possible alignments of
dimerization are energetically degenerate. On the other
hand, parallel alignment has been predicted by Jeyadev
on the basis of interchain Coulomb and dispersion forces.
However, these effects appear to be about an order of
magnitude smaller than those originating from interchain
electron transfer. ' Therefore, we neglect the interchain
Coulomb effects in this paper and limit ourselves on the
interchain hopping term. A similar model has been stud-
ied by Brazovskii and co-workers in a different context.

A good measure for the relative sizes of intra- and in-
terchain transfer integrals is provided by the anisotropy
of electrical transport and optical absorption. Since in

polyacetylene the dc conductivity is strongly influenced
by sample inhomogeneities it is preferable to rely on opti-
cal data. A complication arises from the planar structure
of hydrocarbon chains which implies that intrachain ab-
sorption occurs for two polarization directions, one
parallel and one perpendicular to the chain. ' Therefore
it is not easy to separate intra- and interchain optical
transitions. On the other hand, the interchain photogen-
eration of electron-hole pairs appears to be crucial for
photoconductivity and photoinduced optical absorp-
tion, ' since carriers generated on different chains have a
reduced chance to recombine compared to those generat-
ed on the same chain. The intra- and interchain contri-
butions to the optical absorption have also been studied
recently by Danielsen" and by Gartstein and Zakhidov, '

however, assuming a constant interchain transfer in-
tegral.

Our generalized model for interchain coupling is intro-
duced in Sec. II. It is shown that, depending on the rela-
tive signs of subsequent interchain transfer integrals, the
dimerizations on two neighboring chains will be in phase
or out of phase. Parallel ordering leads to strong binding
of two solitons located on neighboring chains. This is
shown in Sec. III where the two-chain problem is mapped
onto two decoupled diatomic chains which can be treated
exactly in the continuum limit. The confinement poten-
tial which arises from the misalignment of neighboring
chains between two solitons and which increases linearly
with the intersoliton distance is calculated in Sec. IV. In
Sec. V both intra and interchain optical transitions are
discussed for the present model of three-dimensional po-
lyacetylene. The interchain absorption is found to de-
pend on the relative ordering of the chains. Further-
more, near the absorption edge it is found to be of the
same order as the intrachain absorption. Possible impli-
cations for photogeneration experiments are mentioned
in Sec. VI.

II. INTKRCHAIN ORDER

Consider two neighboring trans-(CH)„chains de-
scribed individually by the Su, Schrieffer, and Heeger
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(SSH) Hamiltonian"

JIJ = ,'E—g( uj „—u J „+,)
(b)

—g [to+a(uj „—uj „+,)](c.„c „+,+H. c.),

where u „and c „are, respectively, the displacement
coordinate of a CH group and the annihilation operator
of a m electron on the jth chain at the nth lattice site.
For simplicity the spin indices have been omitted. The
geometrical arrangement of chains as obtained from x-
ray diffraction is illustrated in Fig. 1. One notices that
neighboring chains are tilted with respect to each other
by a large angle of about 70'. It is well known that two-
center integrals between m orbitals attached to two
different sites strongly depend on the relative directions
of the two orbitals and of the spatial vector connecting
the two sites. ' For an idealized arrangement with neigh-
boring chains at right angles within a quadratic unit cell
(i.e., a =b and 4=45' in Fig. 1 the interchain transfer in-
tegrals would be alternating along the chains, as illustrat-
ed in Fig. 2. Since also the distances between C atoms are
alternatively longer and shorter we assume the following
form for the interchain coupling:

H'= —g [t, +( —1)"t ]z(c,„e z+c „z,c„) . (2)

Introducing annihilation operators ajk and bjk through
the relation

The gap parameters 5 =4auj are assumed to have the
same magnitude,

(
b, , ~

=
( hz ~:—b.o, but they are al-

lowed to differ in sign. HJ is diagonalized by the Bogo-
liubov transformation

a k
——cos8jka k+sin8 kp k,

bj =cos8j pjk Sln8JkQ—j
provided that

tan28&k —— (b,j !2to)t—ank . (7)

In terms of quasiparticle operators ajk and p k the Ham-
iltonian H~ assumes the form

Hj y Ek(+jk+jk Ijk~jk } (&)
k

FIG. 2. Geometrical arrangement of m orbitals on neighbor-
ing chains for an idealized quadratic unit cell: (a) head-to-head
on even sites, (b) head-to-tail on odd sites, or vice versa.

1—g e'""[(—1)"a,k+ib, k], ,'n & k & —,
'—m. —

k

(3) where the spectrum is given by

N being the number of sites per chain, and assuming per-
fect dimerization on each chain, i.e., uj„=(—1) uj, we
find

H~ =g [ 2rocosk. (a&kajk bjkbjk )—
k

Ek (4t ac——os k +b, sin k }'

whereas the interchain term becomes

&'= —g [ [t,cos(8,k
—

8zk )+itzsin(8, k
—8zk )]

k

X (Qlk &2k +PlkPzk )

+h, sink(a kb, k+b ka,k)],
H'= —g [ t((a Ikazk+b )kbzk )

k

(4) —[r i»n(81k 82k ) —itzcos(81k 82k }]

X(alkpzk puazk }+H—.c. [ . (10)

+itz(a &kbzk —b Ikazk )+H.c. ] .

FIG. 1. Relative orientations of the planes of the (CH)„
chains in trans-polyacetylene. According to Ref. 2 the parame-
ter values are a =4.18 A, b =7.34 A, and 4=57.

It follows already from this expression that the two
transfer integrals have different effects. For in-phase
alignment where 8,k ——8zk, t, connects the valence-
(conduction-) band states of one chain to the valence-
(conduction-) band states of the other, whereas tz con-
nects the valence-band states of one chain to the
conduction-band states of the other. The reverse is true
for out-of-phase alignment where 8&k ———elk, at least for
the states close to the Fermi energy (i.e., for

~
k

~

——,
'm. ).

Since energy can be gained by mixing valence-band states
of one chain with conduction-band states of the other we
expect t2 to favor in-phase alignment and t, out-of-phase
alignment. This can be easily verified by diagonalizing
the full Hamiltonian H =H, +H2+H'. For parallel or-
dering (8,„=8z„}the energy spectrum splits into

Ek =(Ek+rz)'"+ri

and the energy gain amounts to



38 INTERCHAIN ORDER, SOLITON CONFINEMENT, AND. . . 8137

bE't" = —4 g [(E~+ t ~ )
' —Eq ]

k

—(Nt 2 /7rto )ln( 8to /60) (12)

bonding operators

b„=2 ' (c,„+c2„)and a„=2 ' (c,„—c2„),

For antiparallel ordering (8,&
———Oz& ) the spectrum

splits into

Ez ——[E&+tf+t2+2[ t&(4tocos k+tz)

respectively, we obtain the following form for the elec-
tronic part of the Hamiltonian H =H, +H2+H':

H, =g [ [t
&
+ ( —1 }"t2 ](a„a„b„—b„}

+ t 2 g2sjn2k]1/2 }
1/2

This produces an energy gain

bE"=BE't"+N(t' t',—)Int, .

(13)

(14) && ( ata„+& +b„b„+& +H. c. ) } . (15)

It follows that for t2 & t, in-phase alignment is favored,
whereas for t2 & t, out-of-phase alignment is preferred. It
is worth noticing that for the special case where t2 ——t,
the two orderings are energetically degenerate. Inter-
chain hopping to more distant sites and Coulomb forces
would then become crucial for deciding about the
ground-state configuration. Since the relative size of t,
and t2 is expected to depend sensitively on the angle be-
tween the C-H planes of neighboring chains (Fig. 1) the
observed value of this angle may in part be determined by
the competing effects of these two transfer integrals.

III. INTERACTION BETWEEN SOLITONS
ON NEIGHBORING CHAINS

The interchain ordering has important consequences
on the translational freedom of solitons. Consider two
solitons on neighboring chains. In the antiparallel case
the wave-function amplitudes of the midgap state vanish
on the even site for one chain but on the odd sites for the
other. Therefore, as noticed earlier in the continuum lim-
it, there is no splitting of the midgap levels. On the oth-
er hand, in the parallel case the wave-function amplitudes
are finite either on even or on odd sites for both chains
and therefore the two midgap states are mixed and the
levels are split. ' It follows that the two solitons are more
tightly bound in the case of in-phase ordering as com-
pared to out-of-phase alignment. On the other hand, for
two solitons on the same chain there is no significant
difference between the two cases.

It is convenient to consider first two solitons centered
at the same site as illustrated in Fig. 3. We assume that
they are described by the same inhomogeneous order pa-
rameter 5, „=A& „=—6„, where b, „=2a(—1)"
X(u~„—u „+,). Transforming to bonding and anti-

This represents the Hamiltonian of two uncoupled hy-
pothetic a and b chains. For t& ——0 the individual chains
correspond to the AB polymer introduced by Rice and
Mele. ' The different sign of the local energy on the two
chains implies that if L„represents an A soliton on the a
chain it corresponds to a 8 soliton on the b chain (and
vice versa}. The continuum approach of Rice and Mele'
is easily generalized to include a finite t, The e.lectronic
structure of the two solitons is illustrated in Fig. 4. It is
the same as for the A and B soliton of the AB polymer
except for rigid shifts by +t &. The energy of this complex
(as compared to the homogeneous ground state) is found
to be

hE =2E 0 (4/m)(t, —+t2)tan '(bolt&), (16)

E& ——(4/n )(t2+t& )tan '(ho/t2), (17)

where the plus sign refers to two kinks and the minus
sign to antikinks. If t2 is much smaller than Ao the bind-

ing energy becomes

where E 0
——(2A )60 is the soliton energy' in the

absence of interchain coupling. Notice that the
configuration of Figs. 3 and 4 is not unique. Shifting sin-
gle and double bonds in Fig. 3 by one lattice constant
would be the same as replacing the kinks by antikinks or

by —b „+&
in Eq. (15). A simple transformation

a„~b„+&,b„~a„+&brings H, back to its original form
except that t

&
is replaced by —t, . This implies that the

electronic structure of the A soliton which was shifted
upwards by t, previously is now shifted downwards by
—t, , and correspondingly for the B soliton. The energy
of a pair of antikinks is given by Eq. (16) with t

&
replaced

by —t&. The binding energy induced by interchain cou-
pling (for two neutral solitons on neighboring chains) is
therefore

Eb =2(t2+t, ), (18)

FIG. 3. Bound pair of solitons in the case of parallel order-
ing.

which is simply the bonding energy provided by the split-
ting of the rnidgap levels. For two positively or two nega-
tively charged solitons both levels in the gap are empty or
doubly occupied and there is no net binding. The same is
true for a positively and a negatively charged soliton.
Therefore, this interaction energy between two solitons
on neighboring chains does not enhance the recombina-
tion of charged solitons generated optically on different
chains.
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the two-component fields g, (x) and f~+(x)
Performing the trace and the spatial integrations we

find

-~o'i
-t~ -t~

-ao —t,

~E = —4 2 I Mk, k'
I

/(Ek++k')+X
I
Mk I

/Ek
k, k'

(23)
FIG. 4. Electronic structure for a bound pair of kinks.

IV. SOLITON CONFINEMENT

We have shown in the previous section that the split-
ting of the midgap levels leads to a strong binding of neu-
tral solitons on adjacent chains. This is the main mecha-
nism if the solitons are close to each other, namely for
1 g=uF/50. For larger distances the overlap of the lo-
calized wave functions becomes exponentially small and
the bonding mechanism is ineffective. However, as real-
ized by several authors, ' ' in this case the energy of the
soliton pair increases linearly with distance due to the
misalignment of the chains between the two solitons.

In Ref. 1 we have calculated this confinement potential
for antiparallel ordering and t2 ——0. It is straightforward
to extend this analysis to finite t2 and to the case of paral-
lel ordering. We introduce spinor fields

u (x)
&(}= '()J

(19)

to describe the right- and left-moving electrons on the jth
chain. The continuum version of the Hamiltonian (1) be-
comes

H = (2m', v~) ' fdx h, (x)

+f dx g+(x)[ iuFB„o3—+6 ( )ox, ]g,(x), (20)

X(t) —o pt2)

X G, (x',x,co)], (22)

where the factor 2 results from the spin summation and
G~(x, x', co) is the Green's-function matrix associated with

I

where A. =2a /(m'Kto), vF ——2tuao (au being the lattice
constant), and o, , o 3 are Pauli matrices. Similarly the in-
terchain coupling, Eq. (2), becomes

H'= f dx P& (x)( —t&+tzoz)$2(x)+H. c. (21)

For large enough distances between the solitons the over-
lap between the wave functions of the midgap states is
negligible and we can use nondegenerate perturbation
theory. To lowest order in H' we obtain a correction in
energy,

hE = —2i dx dx' tr ti u2t2 Gi x xdco

2'

where the first term represents interband transitions and
the second term involves transitions between the midgap
state and conduction and valence bands. The matrix ele-
ments Mk and Mkk are calculated in the Appendix where
also the remaining integrations are performed. We find
for I &&g,

hE =(nuF) '[ L(t', /A—, )+21 coth(1/g)(t' , t f )]—.

(24}

In view of the gap equation relating A, to 60 this result is
consistent with Eqs. (12) and (14) of Sec. II.

V. INTERCHAIN CONDUCTIVITY

Due to the zig-zag structure of a trans-polyacetylene
chain there are two contributions to the intrachain con-
ductivity, one for an electric field polarized parallel to the
chain axis, the other for a polarization perpendicular to
the chain axis but still within the planar structure. These
two contributions have been calculated for the SSH mod-
el and identified experimentally. Here we calculate only
the interchain contributions. We consider two chains
separated by a distance d and described by the Hamil-
tonian of Sec. II, Eqs. (1) and (2}. For perfect dimeriza-
tion the electron transfer between the chains occurs ex-
actly perpendicular to the chain axes in the case of in-
phase alignment, but slightly oblique if the two dimeriza-
tion patterns are out of phase. It follows that for a field
polarized parallel to the chains there is no interchain con-
ductivity in the case of in-phase alignment whereas out-
of-phase ordering allows for a small contribution of order
(u/d) . In fact, for parallel polarization the current
operator is given by

0 for in-phase ordering

jl —— 2ieuo g—[(—1)"t&+t2]c&„c2„+H.c.

for out-of-phase ordering,

whereas for perpendicular polarization the current is

j,= ied g [t, +(——1)"tz]c,„cz„+H.c. ,

both for parallel and antiparallel ordering. (For simplici-
ty, we consider an idealized quadratic unit cell and
neglect the small variations in distances between C atoms
on neighboring chains. ) In the following we treat only
the case of perpendicular polarization. Using Eqs. (3)
and (6) we write j~ as

A = —ied g I [ticos(6}ik —()zk )+it~»n(t)ik —~l2k }](aika~k+Pikp2k)
k

+i [tzcos(8, k i12k )+itisin(gik —~)z—k )l(aikp2k —Kka2k )] +H. c. (27)
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We discuss the two cases of parallel and antiparallel or-
dering separately.

A. Parallel ordering {8»——8» )

[(16to c—o }(co 4—b,o}]
F(co)= »o& I

~
I

&4to

0, otherwise .
(30}

&ki, liilk2 ~ &k2 I ji I ki. &=edt2 ~

This yields an interchain conductivity

(28)

The matrix elements connecting valence and conduc-
tion bands of the two chains are readily deduced from
Eq. (27),

There are two square-root singularities, one at 2b,o the
other at 4to. It is noteworthy that in the case of parallel
ordering the interchain conductivity depends only on t2
(but not on t, ).

B. Antiparallel ordering (8&q ———82k )

o;„„,(co) =2(2m /cod )(edt2 )~L ' g 5(co 2E&—)
k

4e
t2F(co),

ao

where

(29)

In this case Eq. (27) implies

&ki. I ji I k2u ~ &k2e
I Ji I

kiu &

=ed ( 2t0 t, cosk +i b Ot 2sink )/E„,
giving rise to an interchain conductivity

(31)

o;„«r(co)=2(2n/cod )(ed) L 'g [(2tot&cosk) +(bot2sink) ]Ek 5(co —2Ek)
k

F(co){4to[t2+(t i t2 )(2b—,o/co) ]—riot
& I /(4to —LEO) .

ao
(32)

The limiting form for the particular case t2 =0,
4e0;„„,(co)= F(co)ti(bo/co) (16to co )l—(4to —bo),
ao

(33}

agrees with an earlier calculation by Danielsen. " As t2
increases towards t, Eq. (32) smoothly approaches Eq.
(29). Therefore, if t, and t2 are approximately equal it
would be difficult to deduce the interchain ordering from
observed optical absorption spectra.

It is instructive to compare the interchain conductivi-
ties given by Eqs. (29) and (32) with the intrctchain contri-
bution

two dimerization patterns depends essentially on the vari-
ation of the interchain resonance integrals along the
chains. In view of the three-dimensional packing of the
chains deduced from x-ray diffraction it is plausible that
the resonance integrals vary strongly and possibly even
change sign between neighboring sites. In this case paral-
lel ordering is preferred. Furthermore, solitons on neigh-
boring chains form a tightly bound pair with a binding
energy of the order of 2

~
ti

~

=0.2 eV. This is true for
two neutral solitons or for a neutral soliton on one chain
and a charged soliton on the other chain, which can gain
energy from the splitting of the midgap levels, however
not for two positively or two negatively charged solitons,

2

cT;„„,(co)=—
z

co F(co) .d' (34)
o-lcr,

(35)

For co close to 2b,o Eq. (32) becomes essentially equal to
Eq. (29) with tz replaced by ti. Thus at threshold

j.

=6(d/a ) (t /b )
~inter(~ }

0.005—

-chain

where tt =max(t&, tz). With parameter values appropri-
ate for polyacetylene, 50=0.9 eV, t~ =0. 1 eV, and
d/a0=3. 5, this ratio is about 1. Therefore the two con-
tributions are comparable at threshold. However, for
larger m the intrachain transitions clearly dominate, as
shown in Fig. 5.

VI. CONCLUDING REMARKS

We have studied a two-chain model for trans-
polyacetylene and shown that the relative ordering of the

—chain

0 1

0 0.5 co/(@to)
FIG. 5. Real part of the conductivity for polarization per-

pendicular to the chain axis in the case of parallel alignment of
neighboring chains. The parameters are (d/ap) =3.5, hp ——0.9
eV, t2 ——0. 1 eV, tp ——2.5 eV, and op=e /(AQp)=2. 1)&10
(Q cm)
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where it is the linear increase of the energy as a function
of the intersoliton distance which produces confinement.

This qualitative difference between parallel and anti-
parallel ordering is expected to be appreciably modified if
(intrachain) electron-electron interactions are included.
It is well established that in contrast to the case of the
SSH model where the wave-function amplitudes of the
midgap state vanish on even or odd sites, models includ-
ing Coulomb interactions lead to more uniformly distri-
buted amplitudes. ' Therefore, one may expect level
splittings due to interchain electron tunneling and conse-
quently a strong binding of solitons both for parallel and
antiparallel ordering.

We have also calculated the interchain conductivity
and found that it is negligible for polarization parallel to
the chain, but of the same order at threshold as the intra-
chain contribution for polarization perpendicular to the
chain. Since one expects that an electron-hole pair has a
better chance to escape geminate recombination when
created on two different chains (as compared to intra-
chain photogeneration), it is conceivable that the yield
both for photocarriers and for photoinduced defects is
relatively large for polarization perpendicular to the
chain axis. This expectation is borne out by recent exper-
iments. '

APPENDIX: CONFINEMENT ENERGY
FOR PARALLEL ORDERING

A kink on a single chain of the form

b, (x ) = b,otanh[(x —l ) /g], (Al)

gb(x)= ,'g —'~sech(x/g) (A2)

The extended states are given by

Wk(x) =-,'( ~k /Ek )e'""
Ek +[v~k + ih(x)]

iEk Wi [upk+ib(x)] (A3}

where

E ( 2k 2+ g2)1/2

Ak =(L icos p—k)' with coskk=ho/Ek,

(A4)

(A5)

where g=uF/bo, produces a midgap state with wave
function'
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and the plus and minus signs refer to the conduction and
valence bands, respectively. Consider a situation with
two kinks centered at 0 and l on neighboring chains 1 and
2, respectively. The matrix elements determining the in-
terchain contribution to the energy are

Mb ——fdx fb1(x)(t1 —t2o2)fb2(x)=(t, +t )2(1 g/)(sinhl/g)

f dx ~1k (x}(t1 t2~2)42b(x)

,'n. Ak (t, + t2 )g—' sech( —,'n'kg) j e '"'sinpk +i [1—e '"'cosh(l /g)]cospk (sinhl /g)

Mkk fd» ('ilk (x}(tl t2~242k'(x)
'k'I

~k ~k'[e t2~~k, k'+ ~P 1+t2)[ s 4kcos4k'e co 0ks nkk'e

+i cospkcospk (e '" ' —e '"')coth(l/g)][sinh —,'m(k —k')g]

(A6)

(A7)

(A8)

where sinpk vFk/Ek. These——expressions agree with the results of Danielsen and Ball' in the limit t2 ——0. (Notice,
however, that for parallel alignment on which the present analysis is based t2 has to be larger than t, .) For i ))g the
contribution of Mb is negligible and the second term in Eq. (23) becomes

g ~
Mk

~
lEk ——(ng/8)(t, +t2) f dk sech ( kg1r'/2)/E +kO(e ' ~) . (A9)

k
—oo

The interband contribution in Eq. (23) consists of three terms,

& I Mkk'I l(Ek+Ek. )=I, +Ib+I, ,
k, k'

where

(A 10)

I, = t 2 g I. A k l( 2Ek ),
k

Ib ———t2(t, +t2 }60(1/L)g Ek [coth(I/g) —UFk/50],
k

(Al 1)

(A12)
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I, =(ti+t2) (mvF/2L) g (Ek+Ek ) 'Ek Ek
k, k'

X
~
vF(ke '" —k'e '" )+iso(e '" —e '" )coth(l/g)

~
[sinh —,'m(k —k')g]

In view of the gap equation

fdk Ek ' ——(uFA, )

we find

I, =Lt2/(4muFA)+t. 2/(~b, , ) .

Furthermore,

Ib —— (nu—F) . 't2(t&+ti)l coth(l/g) .

Introducing the variables E =—,
' (k +k') and a =k —k', we write the third interband term as

I, =(t, +t2)'(ut;/4) f d~(sinh —,'ngx)

X E Ek+Ek. 'Ek Ek. 2 Ek+Ek. sin —,'~ +UF~ Uz~cos~ —2 Osin~

(A13)

(A14)

(A15)

(A16)

(A17)

Neglecting the contributions from rapidly oscillating terms and expanding the integrand in powers of ~ we obtain to
leading order in l /g

I, =—,'(ti+t2) vF f dx sin ( —,'zl)/sinh ( —,'egg) f dE Ez

=&2vvF) '(ti+t2) [I coth(l/g) —g] . (A18)

Adding Eqs. (A9), (A15), (A16), (A18), and neglecting constant terms of order 1 we finally obtain Eq. (24).
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