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Friction coefficient of adatoms on metal surfaces at low temperatures
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The friction coeScient of adatoms on metal surfaces is investigated with the aid of the Newns-
Anderson model. In particular, its temperature dependence is clarified on the basis of the local
Fermi-liquid theory at low temperatures. It is shown that the friction coeScient strongly depends
on the temperature as well as on the magnetic field.

I. INTRODUCTION II. FRICTION COERCE ICIENT

The friction coefficient is one of the fundamental quan-
tities which characterize dynamical processes of particles
on solid surfaces such as adsorption, desorption, scatter-
ing, diffusion, and catalysis. For instance, in Kramers s
description' of chemical reactions as a Brownian motion
of the reacting species, which can be applied to the
desorption and the diff'usion processes, it has been shown
that the reaction rate strongly depends on the friction
coefficient of the reacting species. In the process of ad-
sorption the moving particle loses its kinetic energy, be-
cause it experiences a friction force, and is captured in
the potential well near the surface if the energy loss
exceeds the initial kinetic energy. In general, the friction
force may result from the creation of phonons and the
electronic fluctuation. At low temperatures, however,
the friction force for adatoms on metal surfaces results
mainly from the electronic fluctuation.

With the aid of the Newns-Anderson model the fric-
tion coefficient of adatoms on metal surfaces has been in-
vestigated by several authors. In particular, the case
without the electron correlation has been discussed
thoroughly by Nourtier and subsequently with the use of
an approximate method the electron correlation effect
has been investigated by Yoshimori and Motchane. In
the previous paper with the use of the Bethe-ansatz solu-
tion for the Anderson model the friction coefficient has
been calculated as a function of the magnetic field at the
absolute zero of temperature. It has been shown that the
friction coefficient strongly depends on the magnetic field.

The main purpose of the present paper is to investigate
the temperature dependence of the friction coefficient on
the basis of the local Fermi-liquid theory. ' The ana-
lytic expression for the friction coefficient as a function of
the magnetic field is also given at the absolute zero of
temperature.

In the next section the model Hamiltonian and the ex-
pression for the friction coefficient are given. It is shown
in Sec. III that the vertex part of the expression can be
written in terms of the Green function of the adatom and
its self-energy up to second order of the temperature. In
light of the present understanding of the Green function
and its self-energy the friction coefficient is evaluated in
Sec. IV. Summary and discussions are given in the last
section.
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where Ck (Cz ) is the electron creation operator for the
state

~

k ) with spin o and energy e„of the conduction
electron in the metal (for the orbital

~

d ) of the adatom
with spin o and energy ed), n =C C, and Vk is the matrix
element of hybridization between the conduction electron
and the electron on the adatom, which we assume to be
real. The last term represents the intra-atomic Coulomb
interaction for two electrons on the adatom.

The friction coefficient g is given in terms of the force
correlation function as
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0

(2.2)

where M is the mass of the adatom, T the temperature in
the unit of ks ——1, ( ) denotes the thermal average, and
P is the fiuctuating force defined by P=F (F). Here a-
one-dimensional system is assumed for the motion of the
adatom. Following Bohnen et al. we may take F as

F= g Wk(Ck~Cd~+Cd~Ck~) (2.3)
k, o

and

Wk ——— (2.4)

where X is the coordinate of the adatom. For simplicity
we assume that cd and U are independent of X.

Using the Fourier transform of the two-particle tem-
perature Green function and expressing it in terms of the
one-particle Green functions and the vertex functions, we
can express g as

9(1,1)+9(2, 1)+9(2,2) s

ag„„(iv)
lim Im

Mv 0+ alv

(2.5)

(2.6)

The Hamiltonian of the system we investigate is given
by

Hg = y e/ nk +ed y nd
k, a
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Q(, i)(iv)=T g G (ico)[P(ico)+P(ico+iv)], (2.7)
g (ico)= g

l CO —E,k

(2.12)

Q(z i)(iv)= T g g (ico+iv, ico)[ A (ico+iv, ico}], (2.8)

and

and

Li (ico+iv, ico)=T g I .. (ico+iv, ico', ico'+iv, ico)

Q(i i)(iv)=T g A (ico+iv, ico)g (ico+iv, ico)

XL, (ico+iv, ico) . (2.9)

Xg (!co +iv, leo )

X A (i co'+i v, i co'), (2.13)

Wk
P(ico)= g

k le —Ek
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Here G (ico} is the Fourier transform of the one-particle
temperature Green function of the adatom with
co=(2n +1)nT.(n integer) and g (ico+iv, ico)
=G (ico)G (ico+iv) with v=2nnT. T. he quantities
P(ico), A (ico+iv, ico), and Li(ico+iv, ico) are defined

by 2 dfds — ImG (s+iO+}
0'

X Imp(e+iO+ } (2.14}

where ek ——ek gp&—H, ek ——ek+g @AH (H is the magnetic
field) and I' ..(inco+iv, ico', ico'+iv, ico) is the total ver-
tex function.

Using the usual contour-integral method, we can ob-
tain

A (ico+iv, ico)=g (ico)+g (ico+iv), (2.11) and

ri(2)) —— g f de — (ImG (e+i0+)Im[G (e+iO+)P(e+iO+)2]+[Im[G (s+iO+)P(e+iO+)]j ),2 df
nM —m de

(2.15)

where

G (e+iO+) =[e+i0+—ez B(e+—iO+ }

—X (e+iO+)]
I
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E.+10
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the simple expression in terms of the self-energy and the
Green function of the adatom (see the next section}. The
above expressions for g~ & &~

and g[2 &~
have been derived

by Yoshimori and Motchane and the temperature
dependence of g[»] has been investigated in the absence
of the magnetic field. The temperature dependences of
q[2 &~

and g~22] are investigated at low temperatures in
Sec. IV, where it is shown that the main contribution to g
is made by ri(2 2) and that the value of ri(») is almost can-
celed out by that of g[2 & ~.

III. EXPRESSION FOR g(2 2)
AT LOW TEMPERATURES

Here f ( s ) is the Fermi distribution function,
eq ——eo gp~H (eq ——eq—+gpaH), and X (e+iO+) the
self-energy. The quantities ( Wk ), , ( Vk Wk )„and
( Vk), denote the averages of Wk, Vk Wk, and Vk on the
energy contour Ek

——e, respectively, and p(E) is the densi-

ty of states of the conduction electrons in the semi-
infinite metal. Since g(z 2], contains the vertex functions,
the separate treatments are necessary in order to derive

In this section it is shown that ri(z z) defined by (2.6)
and (2.9}can be written in terms of the Green function of
the adatom and its self-energy up to T on the basis of
the local Fermi-liquid theory. ' In order to calculate
(2.9) it is convenient to use the following expansion for
a discrete sum of a function S (i co+i v, i co) over
co=(2n +1)m T (n integer) which has singularities at co=0
and co+v=0:

T g S()co+tv, cco)= dcoS(ico+iv, ico)+ 1 (mT)
2' 2m 6

a S (i co+i v, i co )

40=0
a+ S(ico+iv, ico)

cd = —v+0 +

co= —v+0
+ 0 ~ ~ (3.1)
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where

a S(i co+i v, i co)
N= 0

S (Eco+l v, Eco)
Bco

S(ico+i v, ico)
N=O

(3.2)

Using the relation (3.1) we can write down the expression for QE2 2E(iv) as follows:

QE E(EV)= g f dcof dco'A (ico+iv, ico)g (ico+iv, ico)I (ico. , ico', iv)g (ico'+Ev, ico')A (Eco'+iv, lco')
o', o' (2'�)
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BN

N = —V+0 +

N= —V+0
+ e ~ ~

(3.3)

where I' (ico, ico', iv) is the abbreviation of I (ico.+iv, ico', ico'+iv, ico) The .derivative of the above expression
with respect to v, whose imaginary part gives g[2 2] in the limit of v~0+, can be calculated in the following way. First
we express the total vertex function I .(ico,ico;iv) included in (3.3) in terms of the proper vertex function
I' (i co, i co', i v) and the one-particle Green function using the Dyson equation

I (ico, ico', iv)=I (ico, ico', iv)+T g I (ico,ico";iv)g (ico"+iv, ico")I (ico",i~ co', iv) . (3.4)

Secondly with regards to the positions of singularities, we expand the discrete sum over co", co" ', and so on appearing in
the expression up to T using the relation (3.1). Then taking the derivative of the obtained expression with respect to
v, ' we can derive the following expression up to T:
~Q(2 2) 'v 1

d G
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dco G lcd + l CO
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+ 1 (nT)
2n 6

c)
G
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where

Lz (i~piv, i')= T g I (ico~ ', ice;iv)g (ice'+iv, ice') A (iso'+iv, ico') . (3.6)

Finally we can write g[2 2] in terms of the Green function of the adatom and its self-energy as

ImG (io+) ImG (io+)P(io+)+ImG (io+)P(io+) ImG (io+)2 , ar (io+) . . . . , . . . . , ar (io+)

CT

'2

+ QImG (io+)ImG (io+)1 ax (io+)
m.M

+ M 6 g —«, [P(&+iO+)+P(e+io )]G (~+io+)G (E~io )

c=p

+Re z [P(c+io )+P(~+io )]G (c+io )G (c+io )

2

a=p

(TENT) ~ R a
G&&( 0~ )G&&( 0 )

aX (8+io )

2M 6 c)2 aX

—Re G (E+io )G (a+i 0 )
Bc

(3.7)

Here we have used the Ward identity,

ax (ice)L, (ice&ice) =L2 (ia)&'co X
(3.8)

and the following manipulations:

f d G ( )
a (' + )r( + ) p( )aG ( + ) [L (. .
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p= ——f dc Im 4[G (Etio+)-] P(c~io+) 1—M (c~io+)
77 —oo BE

ar (~~io+) ax (E~io+)
Bc BX
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G ('0 )
~ 0 —1 6G

G ( 0 )g ('0 )
l

'
Bx ~ 1

' '
Bx (3.9)

and
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1 ~ . . . . BG (ini+iv)
hm dcoLz(]co+iv, ]co)6 (in]) . L—] (ie]+iv, ice)

v~0+ 277 Bl v

1 56 . . Br (iO)6 iO=
2~ i BX

——f de, Im [6 (s+iO+)]' 1— BX (s+iO+)
BE

'2
BX ('E+lO )

(3 IO)
BX

where 5G is defined by 56=6(iO+) —G(iO ). The
main results of the present section are the expression (3.7)
for q~z z] up to T . In the next section we evaluate g~z z]
together with g~»] and g~z &] in light of the present un-
derstanding of the self-energy and the Green function of
the adatom" and clarify the temperature dependence of
g at low temperatures.

coefBcient g as

4 g& 2 2X, BX,

mM 2 3 Bb, Bh

——',(X,—X ) b,

IV. TEMPERATURE DEPENDENCE OF g ——', (X, —X, ) n T (4.5)

2 2 2 2 2i n(—X, ——X,. ) (E +n. T ), (4.1)

When the k dependence of V„ is dropped and the den-
sity of states of the conduction electron is assumed to be
constant, the quantities B (e+iO+), P(e+iO+. ) and
P(e+i 0+ ) are independent of e and are written by ib„—

i g, —and i g, r—espectively. Furthermore the self-energy
around the Fermi level (chosen as the origin of energy) is
known as"

X(a+ i0+ ) =——[mb (X, +X, ) —I ]s
U

where the relation g/b, =g /b, has been used. It is noted
that the main contribution to g is made by q~z z], which
contains the derivatives of 7, and 7, with respect to b,

and brings a strong temperature dependence. The value
of g[»] is almost canceled out by that of g~z, ] and hence
they give a small contribution to g. In Fig. 1 we show
the T dependence of rl. As the value of U/24 increases,
the slope of g as a function of T becomes steeper. In
the so-called s-d limit (s, +U/2=0, U being large,
X, =1/2n Tz, and X, =0), rl can be written as

where b =npV and X, (X,) is the magnetic (charge) sus-
ceptibility at T =0. Here we consider the symmetric case
(sz+U/2=0) in the absence of the magnetic field. In
this case we can use the analytic expressions for g, and
g, which have been derived with the use of the exact
solution for the Anderson model. Substituting (4.1) into
(3.7) we can derive rl(2 2] as

4 g 2 BXs BXc
n(22)

——
~M b,2 3 Bb,

+
Bb,

20

BX~ BXq——,'(X, —X, )

+—'XX —2X —2X ~ T (4.2)

~Z
P'

10

Similarly up to T, g~»] and g~z & ~
are given by

and

71(] ]) [1 (Xg +Xg 3XgXg )1r T ]
mM b

(4.3)

00 05 ~2y 2 1.0

2

rt]p]]= &[ 1+(&X +&X —3XX )~ T ]~M gz

(4.4)

The summing up q~&
.
] over I and j, we obtain the friction

FIG. 1. The temperature dependence of the friction
coefficient g at low temperatures for U/2b =1.4, 2.0, 2.4, and
2.6. The inset shows A as a function of U/2L, where A is
defined by g=(4/nM)(g'/b')A(HT/b)'. The value of A at
U/25=0 is 2/3m .
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4 g 2 g b, dT»

aM g~ 3 T~ dh

T
2TK

dT»

T» db,

(4.6)

where Tz is the Kondo temperature defined by
T» (&——2Uhln)exp( mU—I85). One can see that the
main contribution to g comes from the first term in the
bracket of the above expression, in this case.

As for the magnetic-field dependence of g at T =0 the
numerical calculations have been made in the previous
paper. Using the exact solution for the Anderson mod-
el we can also derive the analytic expression for g in the
high as well as in the low magnetic field:

8 g' b d» H
mM g~ T~ dA 2T~

for H «Tz

(4.7)

and
'2

4 g2 ~2 g dT»
'9=

2m.M g~ 8 T~ dh TH
ln for H& TH,

V. SUMMARY AND DISCUSSIONS

The electronic contribution to the friction coefficient g
of adatoms on metal surfaces is discussed along the ap-
proach by Bohnen et al. On the basis of the local
Fermi-liquid theory ' the expression for g is derived at
low temperatures. It turns out that g can be expressed in
terms of the self-energy around the Fermi level, its
derivative with respect to the coordinate of an adatom
and the one-particle Green function of the adatorn. It is
shown that g increases strongly with T dependence as T
increases. The coefficient contains, in addition to X, and

X„their derivatives with respect to 6 and becomes very
large when U is large as compared with h. At the abso-
lute zero of temperature the localized electron on the
adatom tightly couples with the conduction electrons.
Hence the fluctuation of the force defined by the expres-
sion (2.3) scarcely occurs and g is practically zero. As
the temperature increases, however, the coupling is re-
laxed. Then the fluctuation of the force may appear.
Hence q takes finite values and increases rapidly due to
the electron-correlation effect as the temperature in-
creases. As for the behavior of g at high temperatures
(T & T») it seems to be difficult to investigate its tempera-
ture dependence. It may be necessary to introduce some
kinds of approximations. We may, however, make the
following conjecture. Since the temperature dependences
of physical quantities such as the susceptibility and the

(4.8)

where TH is defined by TH &2m le——T». It can be seen
from the above expressions in addition to the previous re-
sults that, as a function of H, g increases with H
dependence for H « Tz, reaches a maximum, and then
decreases with lnH dependence for H & TH.

+ +++ ~ ~ ~ ~ ~
& EP ~POQ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ IN ~ 0 % 0 ~ I ~ I ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ 0 1.0

/

air.
~ l . 100
X
F'

05

'o 0.5
X/a

1.0

FIG. 2. The friction coeScient g as a function of the coordi-
nate of an adatom X at low temperatures for the symmetric case
of cq/2', (0)=—5 and U/26, (0)=10 ( ). The case of sur-

face diffusion is considered and the X dependence of V(X) is
taken as V(X)= Vo(1+Pcos[(2n/a)X] J and P=0.01. Also X
dependences of h, (X)/h, (0) ( ) and T~(X)/T~(0) (———)

are drawn in the figure.

electronic resistivity due to a magnetic impurity in dilute
alloys described by the Anderson model are quite similar
to their magnetic field dependences if the value of U is
fairly large, and since it may be considered to be the case
for g [see (4.6) and (4.7)], it may be said that q has a max-
imum and decreases with lnT dependence as the tempera-
ture increases at T & Tz.

As for the position dependence of g it can be con-
sidered as follows. When adatoms are moving in the sur-
face layers (surface diffusion), a periodic X dependence
may appear to 7) through a periodic X dependence of
V(X). If we take V(X)= Vc t I+Pcos[(2m/a)X]I, for in-
stance, g shows the periodic behavior as shown in Fig. 2,
where the quantities a and P are related to the lattice con-
stant and the corrugation of the surface layer. The value
of ri becomes zero where V(X) takes maximum as well as
minimum values, and takes a maximum value in between.

On the other hand, when adatoms are moving along

10—

0'
0.2 0.4 eX

I

0.6

FIG. 3. The friction coefficient g as a function of the coordi-
nate of an adatom X in the magnetic field at the absolute zero of
temperature. The X dependence of V(X) is taken as
V(X)= Voexp( —aX). Used parameters are U/2L(0)=5 and

H/26(0) =1.0)& 10
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normal to surfaces, V(X) may be an exponentially de-
creasing function of X, V(X)= Voexp( —aX). In Fig. 3
we show the position dependence of g in the magnetic
field at T =0. As one can see from the figure, g has a
peak structure as a function of X. It can also be shown
that the peak position comes nearer to the surface as the
magnetic field gets higher. It can be considered that the
position dependence of g at low temperatures show simi-
lar behavior to that in the magnetic field and has a peak
structure. For simplicity only the symmetric case has
been considered in the present paper. It can be said that
the feature of g in the asymmetric case is qualitatively
the same as that in the symmetric case.

In the present calculation we have dropped the k
dependence of Vk. The feature of g described by the
present calculation may suffer little modifications quanti-

tatively if we taken into account the k dependence of Vk,
although the qualitative feature of g may be the same. '

From the results of the present investigation it can be
suggested that the dynamical processes of adatoms such
as hydrogen on metal surfaces strongly depend on the
temperature and on the magnetic field through the tern-
perature and the magnetic-field dependences of the fric-
tion coefficient.
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