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Phonon dispersion in a metallic glass
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Analytical expressions for the dispersion of the longitudinal and transverse phonons are obtained
for a two-component metallic glass employing a self-consistent phonon theory for amorphous solids
as developed by Takeno et al. The effective pair potential used for the computation of the eigenfre-
quencies of the longitudinal and transverse phonons in Ca70Mg30 glass is obtained by making use of
the Ashcroft pseudopotential for the pure components. Eigenfrequency expressions reproduce the
main characteristic features of the dispersion curves obtained by neutron scattering and computer
simulation techniques, both for the longitudinal and the transverse phonons. The results of the
present computations are in good agreement with the available experimental data.

I. INTRODUCTION

In recent years there has been considerable interest in
the physics of the glass-forming alloys to investigate the
properties of elementary excitations such as electrons,
phonons and magnons. Phonons are of particular in-
terest in the study of polycrystalline and amorphous
solids and liquids because their dynamical structure fac-
tors can be measured by neutron inelastic scattering.
These investigations involve the measurement of the col-
lective density waves at larger momenta, and for a few
metallic glasses it has been possible to follow the dynami-
cal structure factors up to very large wave vectors. '

Characteristically the dispersion relations derived from
the dynamical structure factors show a minimum at a
certain value of the wave vector, where the static struc-
ture factor of the glass forming alloy has its first max-
imum. Computer simulations ' and analytic calcula-
tions have demonstrated that this minimum arises from
a process analogous to the Umklapp-scattering in the
crystalline solids; the sharp first maximum in the static
structure factor acts like a smeared out reciprocal-lattice
vector. The experimental probe provides an evidence to
the longitudinal density waves, contrary to that for the
transverse excitations, which is monotonic and shows no
minimum. However, at low momentum transfer the
dispersion relations of both types of excitations are strict-
ly linear.

Although we have sufhcient understanding of the prop-
erties of collective density waves in amorphous solids,
still these studies have paid relatively little attention to
the multicomponent nature of the metallic glasses. Par-
tial wave-number dependent spectral functions have been
computed for the simple metal Ca-Mg and Mg-Zn al-
loys, but there are very few systematic investigations ' of
dynamical concentration fluctuations in metallic glasses
or glass-forming alloys. Although experimental studies
are as yet scarce, computations and molecular dynamics
have been done in a few metallic glasses ' from the point
of view of investigating the phonon dispersion.

In the present paper a detailed theoretica1 investigation
of the dispersion relations of collective excitations in a

glass-forming alloy, taking Ca7QMg3Q as an example, have
been presented. The theory of phonons for amorphous
solids and its application for the study of phonon disper-
sion in simple liquids and liquid metals is well tested'
and well established. However, no efforts have been
made to use the theory to study the phonon dispersion in
metallic glasses. The expressions for the phonon eigen-
frequencies for the binary metallic glasses are developed,
treating them as amorphous materials.

II. THEORY
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when the pseudopotential is supposed to be local. The
form factor of the ion, cob(q), is that of Ashcroft' and is
given by

4+Ze
cob(q) = — cos(qr, ),

q 0,
(2b)

where r, is an adjustable parameter and is known as the
core radius, and 0 is the volume per electron. The

The proposed method for the calculation of the longi-
tudinal and the transverse phonon modes is based on the
theory of phonons for amorphous solids. Consider a
glass-forming alloy of A~&, ~B type, which has 1 —x
concentration fraction of A component and x concentra-
tion fraction of B component.

The usual form of effective ion-ion pair potential in a
single component fluid (metal) A or B is given as

Z 8 2
V (r) = +—Idq F (q)exp( i q r) .—

r 7T

Z is the valence and q represents wave-vector transfer.
The first term in the above relation gives the Coulomb
repulsion between the ions and the second term is an in-
direct interaction through the conduction electrons,
which adds an attractive contribution. The function
F(q) is known as the energy wave-number characteristic
and is given as"

38 8093 1988 The American Physical Society



8094 SAXENA, RANI, PRATAP, RAM, AND SAKSENA 38

dielectric response function, e(q), is given by

(4~e /q )X(q)eq =1—
1+(4me /q )X(q)G(q)

(2c)

Here, X(q) takes into account the Coulomb interaction
between the electrons and is expressed as

where VA and VB are the molar volumes of A and B
components, respectively. Now, using Eq. (1), V„„(r),
VAB(r), and VaB(r} can be written as

(Z„e) 2(Z„e) sin(qr) zV~~(r) = dq cos (qr,")
r 7T (qr)

mkF 1 4kF —q 2kF+ q
X(q)= ln

2 8kFq 2kF —q
(2d)
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where m is the mass of the electron, e is the charge on the
electron, h is Planck's constant, and kF is the Fermi wave
number.

The function G(q), called the local field function, ac-
counts for the exchange and correlation energies among
the electrons, and is that of Hubbard and Sham
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Once the pair potentials for the single components of

the liquid metals are known, a mean effective density-
dependent interatomic potential in the case of a glass-
forming alloy of the type A, „Bcan be written as

Vffe(r)=C& V„z(r)+2C&Cz

V„z(r)+CATV&z(r)

. (3)

Here, V„„(r)is the pair potential for the A-A com-
ponent, V„s(r)for A Bcompo-nent and V~s(r) for the
B-B component in the A, ,B, alloy, having concentra-
tion CA of A type and CB of B type. These concentra-
tions are obtained in terms of concentration fractions and
molar volumes as

(1—x)V„
(1 —x)V„+xVz

and

xVB
CB ——

(1—x)V„+xVe

(4c)

e(q)'s used in Eq. (4) can be obtained using Eqs. (2c)—(2e).
The value of r," can be obtained in terms of r," and r,
from the expression

Z„r,+ZBr,
r AB

Z

where Z is the mean valence of the glass-forming alloy.
The effective pair-potential obtained above has been

used to study the structure and stability of binary metal
glasses. The pho non eigenfrequencies are physically
more meaningful quantities with which we study the
anharmonicity of the glass-forming alloy under con-
sideration. Besides the spherically symmetric effective
potential V,s(r), the expressions of the longitudinal and
the transverse phonon eigenfrequencies contain many-
body correlation functions and are given by

col(k) = dr g,lr(r) rV', fr(r) 1 — +[r V Ir(r) rV',fr(r)]—(4 AB) sin(kr) 2
~AB (kr)
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where, p" is the mean number density and M is the
mean atomic mass of the glass-forming alloy.

III. RESULTS AND DISCUSSION
O.Q-

The hornovalent Ca7QMg3p glass alloy is investigated in
the present studies. Equation (4) is used to obtain the
pair potentials Vc, c,(r), VC, Ms(r), and VMs Ms(r) em-

ploying the local empty-core model potential approach of
Ashcroft' and screening function of Hubbard and
Sham. ' The value of r,"and r, in Eq. (4) are taken from
Ref. 12 and the values of Fermi wave number of A-A and
and 8-8 components in the alloy are taken from Har-
rison' whereas kF for the A-B component is determined
using the expression
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These pair potentials are shown in Fig. 1. It could be
noted from the figure that the Vc, Ms(r} curve falls in be-
tween the Vc, c,(r) and the VMsMs(r). Moreover, its
minimum is shifted towards a lower r value and is deeper
than the corresponding value for the average of Vc, c,(r)
and VMs Ms(r). In Fig. 1 the potential that has been cal-
culated for the Ca-Mg alloy provides an evidence in favor
of the "additive hard-sphere" model. A change in the
hard-sphere diameters of the pure component occurs due
to charge transfer from one to the other on alloying.
This is suggestive of the fact even if the same pseudopo-
tential is used for a given ion, the screening varies from
medium to medium resulting in a change in diameter.
The effective pair potential for the glass-forming alloys is
thus computed using Eq. (3} and is also shown in the
same figure. It is observed that V,s(r) lies in between the

Vc, c,(r) and VMs Ms(r) and shows long-range oscilla-
tions. Calculations of these potentials indicate that in
general, if one sphere grows upon alloying the other de-
creases in such a way that the total hard-sphere volume
remains practically constant.

The phonon eigenfrequencies are given using Eq. (5),
which is analogous to the eigenfrequency relation ob-
tained earlier for amorphous solids using the theory of
phonons. The effective pair-correlation function g,fr(r) is
taken from the x-ray diffraction results of Nassif et al. '

The computed phonon dispersion is shown in Fig. 2 for
the longitudinal and the transverse phonon modes. The
neutron scattering results of Suck et al. at 273 K and
the theoretical results of phonon dispersion in Ca7pMg3p
glass by Hafner and Bhatia et ai. are also shown in the
same figure. It can be noted from Fig. 2 that the oscilla-
tions are prominent in the longitudinal phonon modes as
compared to the transverse phonons and this provides
evidence for the existence of the collective excitation at
larger momentum transfer due to the longitudinal pho-
nons only. Moreover, it is seen that the transverse pho-
nons undergo larger thermal modulation than do the lon-
gitudinal phonons, due to the anharmonicity of atomic
vibrations in the alloy. This effect may be closely con-
nected with the instability of the transverse phonons in
the alloy. It is also observed that the first minimum in
the longitudinal phonon branch of the dispersion curve is

FIG. 1. Pair potential for Ca70Mg3Q ' ' ' Vcg Q.(r);
s Vca Mg(~)' ' ' ' '& VMI MI(r);, Veff(~).

—1at a value k=2 A ', close to the value of k where the
static structure factor $(k) shows its first peak. Further,
there is close agreement between the experimental results
of Suck et al. , obtained from the neutron scattering data
on the dynamic structure factor $(k, co), and the present
computations. But it should be noted that the $(k, co)
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FIG. 2. The longitudinal (L) and the transverse phonon (T)
dispersion relations for Ca70Mg30.-,our results; --0 —C),
those due to Bhatia et al. (Ref. 8); —~—~—,those due to
Hafner (Ref. 5); ~, experimental points from neutron scattering
obtained from Suck et al. (Ref. 7).
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here, is an average of three dynamical correlations be-
tween the different (two) types of atoms, and an exact
comparison between these co values and those derived in
Eq. (5) is not significant. It may also be noted from the
same figure that the theories developed in Refs. 5 and 8
overestimate the frequencies as compared to the scatter-
ing experiments, and the minimum of the longitudinal
mode does not fall at the k value of maximum static
structure factor S(k) precisely. Moreover, the calcula-
tions and computer simulations of these authors involve
extensive parametrization and the phonon dispersions
reproduced are in quantitative agreement with the experi-

mental results. Thus, we conclude that the theory of
phonons for amorphous solids is consistent in describing
the collective excitations in glasses and glass-forming al-
loys quantitatively as well as qualitatively.
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