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The optical activity in Rb,ZnBr, crystals has been measured along three directions in a tempera-
ture interval from above 400 K down to 50 K. In the incommensurate phase already a nonvanish-
ing element of the gyration tensor has been observed, despite the fact that the average crystal struc-
ture has inversion symmetry. In order to explain this, phenomenological space-dependent dielectric
and gyration tensors, being invariant with respect to the superspace group of Rb,ZnBr,, have been
considered. The selection rules imposed by symmetry, when compared with the experimental re-
sults, give a first indication on which long-wavelength Fourier components of these tensors are
eventually responsible for the optical activity observed. A generalization of our considerations to

other incommensurate structures is discussed.

I. INTRODUCTION

Rb,ZnBr, is a member of the large family of 4,BX,
dielectrics, which show a variety of phase transitions be-
tween different modulated phases. Many of these
dielectrics—including Rb,ZnBr,—have an incommensu-
rately modulated phase in a certain temperature range.!
For an understanding of the mechanisms responsible for
the phase transitions in these materials, a knowledge of
the symmetry properties of the different phases is of great
importance. Especially in the incommensurate phase,
where a normal space-group description is not possible, a
study of the symmetry properties is interesting as one can
test the validity of the so-called superspace-group descrip-
tion.> These superspace groups have already been very
useful for an understanding of a number of physical prop-
erties both in incommensurate and commensurate
phases.’

The determination of optical activity—a third-rank-
tensorial property of crystals—is a powerful tool for
finding certain symmetry properties of crystals. By this
means one tests, on the scale of the wavelength of the
light used, for example, the presence of an inversion
center or a mirror plane. Although the precise measure-
ment of optical activity for directions other than the opti-
cal axes of the crystal has been very difficult, the intro-
duction by Kobayashi and Uesu of a new type of polarim-
eter [high-accuracy universal polarimeter (HAUP)] made
the measurement much more reliable and versatile. We
have measured the optical activity of Rb,ZnBr, in three
independent directions, in order to be able to compare
the superspace description with another more conven-
tional approach, which makes use of the symmetry of an
average structure in the incommensurate phase, per-
turbed by the modulation.

Our specific choice for Rb,ZnBr, was made for several
reasons. First of all, the symmetry of the incommensu-
rate phase has not been determined very conclusively in
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spite of great effort and the presence of structural charac-
teristics shared with many other compounds of the same
A,BX, family.® Secondly, this crystal has several low-
temperature phases, of which the structure is even more
unclear,’~8 and, thirdly, no measurement of optical ac-
tivity of this compound has been reported up to now,
whereas that is not the case for other members of the
family.

One has, however, to note that there is a (3 4 1)-
dimensional superspace group fitting the best with the ex-
perimental results, not only for Rb,ZnBr,.‘, but also for
most of the other 4,BX, compounds. This superspace
group, moreover, contains as maximum Euclidean sub-
groups the space groups of very many of the commensu-
rate modulated phases observed. This is not accidental:
simple interaction models allow one to understand the
common structural features.! For all these reasons we
have adopted the superspace group [denoted
Pcmn (00y )(ss1)] as being the symmetry group of the in-
commensurate phase of Rb,ZnBr,. The aim of the paper
is to analyze whether such a symmetry group is compati-
ble with the experimental data on optical activity. The
challenge of such an aim is represented by the simple fact
that both the space group of the average structure (Pcmn)
and the above superspace group are centrosymmetric.
To adopt the point of view that the symmetry group is a
lower one missing a center of inversion is very tempting,
but not consistent (in a simple way) with very many other
experimental results.

This paper is organized as follows. In Sec. II we will
give a description of the sequence of phases in Rb,ZnBr,
and an overview of alternative approaches for the optical
activity, with special attention to the incommensurate
phase. In Sec. III we will treat the symmetry properties
of both the dielectric and the gyration tensor in the su-
perspace approach. The next section deals with the ex-
perimental details including the evaluation procedure
used for the results. A discussion of these results is given
in Sec. V and, finally, we will give a conclusion.
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II. OPTICAL ACTIVITY IN Rb,ZnBr,

The setting we will use will be the one chosen by
Hogervorst in his comparative study of the modulated
structures of the 4,BX, family,l for which, at room tem-
perature, a =13.33 A, b=17.66 A, and ¢ =9.71 A, with
basic space group Pcmn. Rb,ZnBr, has a paraelectric
phase between the melting point (753 K) and the incom-
mensurate phase transition (347 K). The incommensu-
rate modulation consists mainly of rotations of the
ZnBr42“ tetrahedra, combined with small shifts of all
ions along the b axis,” the modulation wave vector being
along c*: q=yc* (y=~0.293).° At T,=190 K the wave
vector jumps from its rather constant value in the incom-
mensurate phase to the value y =1, resulting in a com-
mensurate ferroelectric® threefold superstructure (lock-in
phase) between T, and T3 =112K (F phase). At T; a new
phase transition (to phase IV) appears, as van Kleef
et al.% concluded from measurements of the dielectric
constant. The symmetry in phase IV, however, does not
differ from the lock-in (phase-III) symmetry. The struc-
ture of the lowest-temperature phases (phase V between
77 and 50 K and phase VI below 50 K) is not very clear.
According to Ueda et al .k the rational value of Y stays %,
only some symmetry elements being lost.

See Table I for an overview of the expected symmetry
groups and some measured properties.

With the use of the point-group symmetry of the struc-
ture in the different commensurate phases, one can easily
predict which elements of the gyration tensor (g;;) are ex-
pected to be zero (see, for example, Nye!® and further on
in this section). The results are summarized in Table II.
Here we find that for temperatures below 77 K both g,
and g3 need not to be equal to zero, if we assume an m,
point symmetry, while between 77 and 347 K this holds
only for g,;. In the high-temperature paraelectric phase
the gyration tensor is zero because the point group is cen-
trosymmetric.

In the incommensurate phase the normal space-group
description is not adequate for the analysis of the gyra-
tion tensor. Instead of the normal three-dimensional
space group, one can, however, make use of higher-
dimensional space groups, with the aid of which the
lattice-translational symmetry of the crystal can be re-
stored.? It is still not definitely settled which superspace
group describes the symmetry of the incommensurate
phase of Rb,ZnBr,. Hogervorst and Helmholdt® have
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performed a structure determination on the basis of the
(3 4+ 1)-dimensional space groups Pcmn(00y)(ss1),
Pc2,n(00y)(s 11), and P2,2,2,(00y)111) and found
the best—though doubt still exists—agreement with
Pcmn(00y )(ss1); they claim, in agreement with measure-
ments of Iizumi and Gesi,’ that the actual structure is
commensurate with y =2, down to 10 K above T,, al-
though usage of the space group corresponding to that
superstructure leads to less good results than when using
the superspace group. A major difference between
Pcmn(00y)(ss1) and the second-best candidate,
Pc2,n(00y )(s 11), is that the former is centrosymmetric,
while the latter is not. The commensurate superstructure
with y =2 would have symmetry Pc2;n, which is not
centrosymmetric and, in fact, would give the same pre-
dictions for the gyration tensor as given for phase III in
Table II.

A general theory on the symmetry of tensors describ-
ing physical properties of structures with a superspace
symmetry is not yet available despite the fact that,
mathematically speaking, the restrictions imposed by a
superspace group on tensor fields are well defined. The
problem lies more in the fact that in the physical three-
dimensional space, where the laws of physics are well
known, the distinction between microscopic and macro-
scopic properties is less well defined than in the case of a
normal crystal, because in three dimensions the unit cell
of an incommensurate crystal is infinite and the notion of
macroscopicity cannot be defined as involving length
scales much larger than the elementary cell of the micro-
scopic structure. In the (3 + d)-dimensional space, how-
ever, such a distinction is possible as the volume of the
higher-dimensional unit cell is finite. The problem then
arises of an appropriate extension of the physical laws to
the higher-dimensional space. Such an extension is in
principle possible, but not at all trivial. Here, the restric-
tions imposed by the superspace symmetry will be con-
sidered without extending the physical laws, but includ-
ing more Fourier components than the constant one, as is
done in the commensurate crystal case. An introductory
approach to the problem can be found in Ref. 11. Some
specific local tensorial properties, however, have already
been examined within the context of superspace symme-
try. For example, the electric-field-gradient (EFG) tensor
in incommensurate phases has been studied by van Beest
and Janner.'? In the light of this treatment, the experi-
mental data for the Rb EFG tensors and the Rb NMR

TABLE 1. The different phases of Rb,ZnBr,. Given are the phase-transition temperatures (Ref. 5),
the modulation wave vector (q=7yc*), the space-group symmetry, and reported ferroelectric and anti-

ferroelectric properties.

Phase
VI v v 111 II I
Temp. (K) <50 <77 <112 <190 <347 <753
Y 1 1 + 1 ~0.293 0(Z=4)
Space group Pc11(?) Pc11(?) Pc2\n Pc2.n Pcmn(00y )(ss1) Pcmn
Ferroel. b b b b

Antiferroel. a
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TABLE II. The various forms of the gyration tensor in the commensurate phases of Rb,ZnBr, al-

lowed by symmetry.

Phase
VI v v 111 I
Gyration 0 g 8n 0 g gn 0 0 g 0 0 gp 0 0 O
tensor g, O 0 gn O 0 0O 0 O 0O 0 O 0 0 O
813 0 0 g O 0 g3 0 O g 0 O 0 00

line shape in both Rb,ZnBr, and Rb,ZnCl, are compati-
ble with Pcmn(00y(ss1) as the superspace-group symme-
try of the incommensurate phase in these compounds.'
Hence, Rb,ZnCl, would have a centrosymmetric incom-
mensurate phase and consequently no optical activity.
The latter conclusion, however, is in flagrant contradic-
tion with the observations by Uesu and Kobayashi'* and
Sanctuary,’”> who found, though their results differ, a
clear presence of optical activity in Rb,ZnCl,. This
discrepancy does not mean that a superspace description
is not appropriate, but it does show that care must be
taken when considering the symmetry of different physi-
cal properties. In fact, the essential difference between
NMR (EFG) and optical activity is the microscopic (mac-
roscopic) nature of the phenomena. The NMR measure-
ments mentioned above were performed on Rb sites, and
they do not (or much less sensitively) probe the symmetry
of the Zn and Br or Cl sites. In other words, the
superspace-group symmetry element m, (s) can be present
for the Rb atoms, but absent (or nearly so) for the other
atoms. Optical activity, on the other hand, gives infor-
mation regarding the symmetry on a much larger scale,
of the order of the wavelength of the light used. There it
probes, to a good approximation, the full symmetry of
the crystal, though on a semimacroscopic scale. Care
should be taken, however, in using the macroscopic limit,
because for optical activity the wavelength of the light
can essentially not be considered as infinite compared to
the cell parameters, as the phenomenon is understood to
be observable only for finite wavelength and, as already
said, the cell parameters are themselves not all finite.'®
Furthermore, one has to realize that a centrosymmetric
superspace group does not have the same structural
consequences as a centrosymmetric space group. In the
latter case the crystal has infinitely many inversion-
symmetry points (at least one in each unit cell). That is
also the case for the superspace unit cell, but not for the
three-dimensional crystal, where (in general), at most, one
inversion-symmetry point exists in the whole infinite
crystal, the unit cell being of infinite size. In a finite crys-
tal volume there is, therefore, strictly speaking, no center
of inversion at all.

Instead of the superspace description, some authors
use the approach which was introduced by Golovko and
Levanyuk!” in the case of (NH,),BeF,. They describe the
dielectric function as a local property of the crystal, devi-
ating from that determined by the average symmetry.
Fousek and Kroupa'® studied the particular case of
Rb,ZnCl, in this approach. The average symmetry is in
the case of Rb,ZnBr, the point group m,2,m,.

At this point it is worthwhile mentioning that the con-
cept of local symmetry does not often provide the most
exhaustive description. For example, in the NMR mea-
surements, by adopting the same principle of a local
crystal-field symmetry, a mirror operation m, would not
be involved, even not for Rb alone. So the local symme-
try is not wrong, but does not fully take into account
symmetry elements which possibly imply additional
selection rules and is, furthermore, not always a well-
defined concept. This is particularly the case when in a
rational approximation, leading to a superstructure, the
point group depends on the approximation adopted in the
size of the unit cell.!® Therefore, we think that it is advis-
able to take seriously into account the structural restric-
tions imposed on a microscopic scale by the superspace
group in a way appropriate to the physical phenomenon
considered. The present treatment of the dielectric and
gyration tensor can serve as an illustration of how that
can be done. Eventually, the correctness of this approach
will have to be found in a comparison between experi-
ment and theory.

III. OPTICAL SYMMETRY PROPERTIES
IN THE INCOMMENSURATE PHASE

A. General

Our treatment of the symmetry properties of the
dielectric tensor in an incommensurate phase is based on
the superspace characterization of such a phase. We will
specialize to the superspace-group symmetry of
Rb,ZnBr, and discuss the generalization to other
members of the A4,BX, family members with the same
superspace group [Pcmn (00y)(ss1)].! We will describe
the optical properties of the crystal in terms of Fourier
components of the tensor in question, which are relevant
for the wave propagation of light and include the restric-
tions imposed by the superspace symmetry.

The basic equation is given by

D(r,t)=€(r)E(r,t) , (1)

where we have taken a local dependence of the displace-
ment field D on the electric field E. We implicitly have
assumed that we are far from resonances, i.e., the prob-
lem can be treated statically, with a time-independent
dielectric tensor. This tensor €(r) must have the symme-
try of the crystal, and therefore Eq. (1) can be written as

D(k)= 3 e€(h)E(k—h), ()

hem*
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where M* is the set of Fourier wave vectors occurring in
the crystal structure. This implies in the present case
that M* is a Z module of rank 4, which is freely generat-
ed by a*, b*, c* (spanning the reciprocal lattice A* of the
basic structure), and q=yc* (the modulation wave vec-
tor). Note that all these vectors are defined in a three-
dimensional space, so that up to now no embedding in a
four-dimensional space is involved. In the description of
light propagation in normal crystals, one realizes that the
wave vectors for visible light are very small compared to
any nonzero reciprocal-lattice vector, so Eq. (2) can very
well be approximated by

D(k)=€(0)E(k) , (3)

where €(0) can be viewed as a space-averaged dielectric
tensor. This equation leads, together with Maxwell’s
equations (n=Xkc /w; o is the frequency of the light),

D(k)=n’E(k)—nn-E(k) , 4)

to the Fresnel equations, whose solutions specify the elec-
tric fields in the crystal and the refractive indices (n) in
terms of the dielectric tensor elements €;;(0). In the case
of an incommensurate crystal, however, periodicities are
present with a considerably longer wavelength than in or-
dinary crystals. In principle, at least, M* includes, be-
cause of the incommensurability between q and A*, arbi-
trarily small Fourier wave vectors. Hence, one can ex-
pect that in these crystals nonzero reciprocal Z-module
vectors also contribute substantially to the propagation of
visible light. The description of the dielectric tensor as a
microscopic entity, influenced by the relatively long
waves, in a Landau-like approach, has been adopted by
Golovko and Levanyuk!’ for (NH,),BeF, and later by
Fousek and Kroupa!® for Rb,ZnCl,. It is therefore im-
portant to compare our results with those of the latter
two authors. We will first solve the Fresnel equations
taking into account additional Fourier elements of the
dielectric tensor and afterwards also discuss the relations
imposed by symmetry on the gyration tensor.

B. The dielectric tensor

The wave vectors in the rank-4 Z-module are specified
by four integral indices (h,k,l,m), according to
h=ha*+kb* + Ic*+mq. In our case we take q=yc*
with y irrational. it is then easy to see that the vectors
(0,0,1,m) for suitable choice of / and m are arbitrarily
small. However, the larger the indices / or m, the smaller
the structural information carried by the corresponding
wave vector and, hence, the smaller its corresponding
tensor €(h) is expected to be. Therefore, we search for
the smallest / and m indices, leading to wave vectors
which are small compared to the dimensions of (say) the
first Brillouin zone of the basic structure. An elegant
method of finding / and m with these requirements is
found in the continued-fraction expansion of y. This ap-
proximation provides a unique series of fractions which
converges to the irrational value of ¥. For each step in
the expansion, say / /m (I and m integer), the next step in-
creases the value of both / and m. The reciprocal-lattice
vector (0,0,/, —m) therefore decreases in length, but with
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each step, normally speaking, also decreases in structural
importance, as is typically observed in morphological and
x-ray-diffraction investigations. We assume that such a
decreasing contribution of Fourier components with
higher indices is also met in the optical properties of
modulated crystals. For ¥y =0.293. . ., the resulting vec-
tors are, in order of increasing length and descending im-
portance, (0,0,1,—3), (0,0,2,—7), (0,0,5,—17),
(0,0,12, —41), . ... If we make a list of these vectors and
determine their length, we find for the first three with the
lowest indices (we use |c| =9.71 A)

h 27/ |h| (A)
(0,0,1,—3) 80.2
(0,0,2,—7) 190.4

(0,0,5,—17) 511.1

(5)

As long as we are in the sinusoidal regime of the modula-
tion, i.e., not too far below the incommensurate phase
transition, the structural importance of the higher har-
monics can be neglected.

The next step will be to determine the form of the ten-
sor €(h) allowed by the superspace symmetry group
[G,=Pcmn(00y)(ss1) in our case]. The restrictions on
the allowed Fourier components, as a result of the sym-
metry of the crystal, are analogous to what one finds
when determining extinction rules for x-ray scattering.
In the latter case, however, one searches for the Fourier
components of a scalar field (the electron density),
whereas in our case the tensor fields e(r) and y(r) are
relevant. As a result, it is possible to find that for a cer-
tain Fourier wave vector (say h) one finds some tensor
elements [€;;(h) or y;;(h)] to be allowed for (nonzero),
while the scalar field p(h) is zero. Using G, the restric-
tions for the scalar field are [h=(h,k,I,m)]

(h,k,l,m): no conditions ,
(h,k,0,0): h+k even,
(h,0,I,m): m even ,
(0,k,I,m):

These conditions imply, e.g., that the Fourier wave vec-
tors in series (5) are not present in the scalar field; hence,
for example h=(0,0,1, —3) has no structural contribu-
tion to the electron density, where only its higher har-
monics of even order [like (0,0,2,—6)] are allowed. As we
will see below, this wave vector, however, does allow for
second-rank —tensor elements. This might seem contrad-
ictory, as one could expect that tensorial properties of a
crystal are a result of the charge density in that crystal.
On second thought, one realizes that the restrictions on
the physical properties of a crystal are those imposed by
the symmetry group of the Hamiltonian on the (many-
body) wave function ¢¥. In an x-ray-diffraction experi-
ment only the scalar charge density | |? is observable
within a fairly good approximation.?’ In the optical re-
gime other restrictions and approximations apply. In the
present paper no attempt is made to arrive at a micro-
scopic understanding of the optical activity. A purely
phenomenological point of view is adopted, based on the
tensorial character of the quantity measured. It remains
true that for those tensorial fields expressible in terms of

1 even .
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a scalar field (like the gradient field of a charge density)
both the selection rules of the scalar and of the tensor
fields apply. Such a restrictive assumption is not made
here. We think that it is possible to have an allowed
Fourier component in the dielectric (or gyration) tensor,
while the corresponding electron density is absent. More
generally, one can realize that in a multipole expansion of
a given crystal structure it is possible to have Fourier
wave vectors present for, e.g., the quadrupole, with a cor-
respondingly zero charge density. Whether or not this
more general situation occurs in Rb,ZnBr, is a question
of experimental facts.

Returning to our problem, we have to determine the
tensor elements €;;(h), allowed by G;. A general element
g, of G, can be written as {R,R; | t,}, with R the three-
dimensional orthogonal transformation, R; the corre-
sponding internal element, and t, a superspace transla-
tion.2 The elements h of M* can be embedded as
reciprocal-lattice vectors h; in the four-dimensional lat-
tice A, with correspondingly the same integral com-
ponents (h,k,I,m). The tensorial Fourier components are
also embedded according to €(h;)=e€(h), and the invari-
ance with respect to g; is given by

i(R;hy)t,
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where the Einstein summation convention (over repeated
indices) is used. If we make a list of the scalar product
(R;h,)-t; for the elements of G; which are relevant, we
find

8; (Rsh; )t
{ce, 1] 1011 m(—h +1+m)
{m,,1]0505} m(—k +m)
{n,,1]1110} w(h +k —1)
{1,1|0000} 0
{2,,1]4011} ah —1 —m)
{2,,1/0401} m(k —m)
{2,,1] 1110} m(—h —k +1)
{1,1] 0000} 0

For h=0, and hence h; =0, Eq. (6) reduces to the sym-
metry condition for ordinary [three-dimensional (3D)]
macroscopic tensors, thus bringing €(0) to a diagonal
form (€;;=¢;8;;) in our (orthorhombic) coordinate sys-
tem.

For h+#0, we find different results. One can specify /
and m by their parity condition, thus finding (€ is diago-

€;(h)=RyR;€,(Rh)e J 6 phal; 0=o0dd and e=even)
J

I,m=0,0 0,0 e, e o,e e,0

€ 0O 0|0 O Ofleg O OO0 O €||0 € O o

0 € O0f|l0 O €]||0 €& O0}J]|O0O O O|les O O

0 0 &JlO0 € O0)J{0 O €&jleg O O0JLO0O 0 O

r

Here we have introduced a short notation for the n3i+n3 —nn, —nn,
different tensor components. Note that e(h)=¢€(—h) due 2 2
to €(r) being real in a lossless medium and because of the F(k)= |—nn, n3+ny —nyn3 |, (10)
total inversion symmetry in G,. —n,ny —nyny; ni+4nk

If we return to our basic equations (2), we could write
these equations, restricting ourselves to (say) the first two
wave vectors given in series (5) and higher harmonics. In
order to limit the calculations, we will make the following
approximation. Equations (2) will be solved in a two- and
a three-Fourier-wave approximation, where one wave is
given by h=0 and the other by one or two of such wave
vectors. In the two-wave approximation, Egs. (2) become
(fields with wave vector k=2h are neglected)

D(k—h)=€E(k—h)+e(—h)E(k),
D(k)=€e(h)E(k—h)+€E(k)+e(—h)E(k+h), (8)
D(k+h)=€e(h)E(k)+€E(k+h) .

where we have written €(0)=¢€. Equations (8) combined
with Maxwell’s equations (4) give a set of equations for
the Fourier components of the electric field, which in
block-matrix form on the basis {E(k—h), E(k), E(k+h)}
can be written as

€—F(k—h) e€(h) 0 E(k—h) 0
€(h) €e—F(k) €(h) E(k) |=]0
0 €(h) e—F(k+h)|[E(k+h) 0

9
In this equation

where F(kth) is the matrix F(k), with n replaced by
ntm. In this matrix, the n; (i =1,2,3) are the refractive
indices for fields with wave vector k (k=nw/c). As no
other frequencies are present in the crystal, we interpret
the fields with wave vector k+h as kth=(m+tm)w/c.
Note that the corresponding excitation can never be a
solution of the normal Fresnel equations since m?%>> €j-
For A=630 nm light, n =1.65; the corresponding value
of m is m =130. The role of m is merely that of an alter-
native refractive index, which specifies the coupling of a
light mode with wave vector k to the long-wavelength
structural contributions to the dielectric constant. In
other words, the normal modes for light propagation will
have refractive indices which are predominantly deter-
mined by the Fresnel equations of the basic structure.
There exists, however, a special case, for which 27/ | h |
is of the order of the wavelength of the light. That re-
gime has been treated in a microscopic approach by van
Beest,?! but will be disregarded here. We will, neverthe-
less, discuss this regime in Sec. V B.

We first solved such a set of equations in a three
Fourier-wave approximation, including k, k*h, and
k+2h, where h=(0,0,1, —3); this in order to be able to
compare the results of our approach with those obtained
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by Fousek and Kroupa.!® In their approach, these au-
thors found a diagonal contribution to €, consisting of a
position-independent part and a part which is modulated
with wave vector 6q, where q is the modulation wave vec-
tor. Furthermore, they found a 3q-modulated contribu-
tion to €,;. In fact, we find comparable results for €(2h)
and e(h), respectively. The difference between their ap-
proach and ours is that they use the symmetry of the (ap-
proximate) commensurate phase (q=1c*) and introduce
a deviation via a space-dependent amplitude and phase of
the modulation, where, as in our approach, we use the
full symmetry of the incommensurate phase, albeit that
we also neglect higher-order Fourier components. The
results for the electric fields in our approximation are
comparable to those of Fousek and Kroupa. Due to their
commensurate approximation being limited to the vector
(0,0,}) and its first harmonic, Fousek and Kroupa have
also a different interpretation of the wave vector of the
modulation, which is superimposed on the fields. In their
approach the corresponding wavelengths are |c|
=9.7 A and |c| /2. In our approach the relevant wave-
lengths that one gets from the Z-module elements are
much larger [cf. series (5)]. Obviously, the coupling be-
tween the light and the structural deformations will be
larger when the wavelengths of both approach each oth-
er. Taking this and the results of the continued-fractions
expansion (5) into account, we conclude that in the
sinusoidal regime of the modulation, the first two Fourier
components of structural importance are h;=(0,0,1, —3)
and h,=(0,0,2,—7) and the contribution of 2h; can be
neglected. Therefore we solved the Fresnel equations in
the same way, now using h, and h,, and found, for the
three principal directions of propagation (m;= | h,| and
p3= | h,}|), the following.

For n=(n,,0,0) ,

2i64nlm3sin(h1'1’)
E ()= 2 2 2,2
(n]—€&)m3—e€)—nim3
2e5(n? —e€;)cos(h, 1) o iker
(n—e)pi—ep—nipl | >
ny—€Np3—€)—nyp;
E,(r)=E%*T, (1
2e,(m%—€)cos(h;'r)
E3(r)= 2 2 _ 2 2
(ni—€3)m5—€)—nims
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And
E(r)=0,
2¢e4cos(h; 1) A
Eyn= | 5—— |E%™, (12)
ni+ms3—e,
Ey(r)=E%*r,
with
n2—6+2—6%~6 +3'€é~6
1 3 n%+m§_62 3 mg 3 -

For n=(0,n,,0),

E (r)=Efe’™T,

2es(n% —e;)cos(h,-r) .

Eyn= |22 |E%™,  (13)
(n2—€3)(p3—€2)—nﬂ73

. 2i€sn,p,sin(h,-r) )

Ey(r)= . 5 21’; 2 — E%'%T |

(n2—€3)(p3—€2)—n2p3
with
2 262(’1%—63)
n2=€

+
" (n2—€)(pl—e)—nip?

26%("% —63)

~€ —

P%fa
And
El(l')=0,
2€4(n% —e;)cos(h,-r) )
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(n2—63)(m3—62)—n2m3
2iesn,misin(hy-r) .
Ey(n)= |1+ — 4N, 23 1 — Eleir
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et 2€3(n3 —e;)
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2eX(n —e,)
~e+————5—
€;3mj
For n=(0,0,n,),
E (r)=Ef%*r,
€ ih,-
Ey(r)= e
(n3+p3) —€ (15)
+ €s e—ihz.r E?eik'r,

(n3—p3)2—62

€ .
E;(r)= ‘—2—4cos(hl-r) Efe®r |

€3
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€3 €

2
ni=e + +
} ! (n3+P3)2—€2 (n3—p3)2—€2

€
zfl+2'—;z€] .
p3
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€ ih.-
Efn= | — =
(n3+p3) —€
PR Edeikr |
(ny—p;)?—e,
E,(r)=E%'*", (16)
€4 0, ik
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€ € €
n3 =€2+ —2—
(n3+P3) —€ (n3—p3) —€; €3
2
€ €
~62—2‘i+2—%z62—2—1
€3 D3 €3

In the different expressions for the refractive indices n;,
several approximations are given for which ms,p;>>n;
and €,,6,,63>>€4,€5 are used. As a direct consequence,
the refractive indices have values that differ only slightly
from the ones in case of a macroscopic tensor. The solu-
tions show a rocking and/or forward and/or backward
movement of the electric field amplitude, depending on
the position along c in the crystal. The magnitude of the
additional field components is, however, very small. The
electric fields and refractive indices at T; approach con-
tinuously the solutions of the para phase, if we assume
that the Fourier components e(h) of the dielectric tensor
can be written as a power series of the modulation ampli-
tude. At the lock-in transition a symmetry change
occurs, the mirror perpendicular to y being lost. More-
over, the wave vectors (0,0,/, —m) lose their long-
wavelength character, jumping to multiple values of c*.
For intermediate temperatures, between the sinusoidal re-
gime and the actual lock-in transition (the so-called
discommensuration regime), the modulation involves
more and more higher harmonics of the modulation wave
with decreasing temperature. In this regime the tempera-
ture dependence of the wave vector also becomes
stronger, but still can be written as q=[1—8(T)]c*. The
first vector resulting from the continued fractions expan-
sion remains (0,0,1, —3), while the following series of
vectors rapidly changes with temperature. Thus, we ex-
pect the optical properties due to the modulation in the
discommensuration regime to be mainly affected by this
Fourier wave vector (0,0,1, —3), with a gradual increase
of the importance of its higher harmonics and relatively
rapidly changing contributions as a function of tempera-
ture of the remaining vectors in the continued fractions
expansion. These latter vectors can, in principle, have
contributions to all dielectric tensor components. For
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the odd harmonics of (0,0,1, —3), both / and m are odd,
while for the even harmonics both are even. In series (7)
we then find that the even harmonics only contribute to
the diagonal tensor, which is the tensor form of the basic
dielectric tensor, while all odd harmonics contribute to
the element €, Therefore, the optical properties are
mainly determined by the tensor elements €, . . ., €, re-
sulting in a continuous behavior in the discommensura-
tion regime, despite the strong temperature dependence
of the modulation. At the lock-in transition one can ex-
pect a small discontinuity in the optical properties due to
the jump of the wave vector to a commensurate value. In
the lock-in phase the long-wavelength periodicities are no
longer present, the vector g=1c* being the longest one.
Because this length is small compared to the relevant vec-
tors in the incommensurate phase, we expect the optical
properties in the commensurate phase to be mainly deter-
mined by the macroscopic dielectric tensor €(0), a nor-
mal constant (orthorhombic) diagonal tensor.

As was already stated by Fousek and Kroupa, the ex-
perimental observation of the small variations in the re-
fractive indices is very difficult; they have to be isolated
from the normal changes in refractive indices due to the
thermal expansion of the cell.

C. Optical activity

In this section we will introduce the gyration tensor to
the problem. For the description of optical activity, we
refer the reader to Sommerfeld'® and Born.?? The effect
of gyration is understood to be due to a nonlocal depen-
dence of the displacement field D(r) on the electric field
E(r). Again, the problem is assumed to be static. Be-
cause of this dependence, one can expect the long-
wavelength structural properties of incommensurate
phases to influence the gyration even more than the ordi-
nary dielectric properties, as described in the preceding
subsection. The basic material equation (1) is statically
rewritten in a Taylor approximation as

D(r)={e(r)+[y(r)V,]}E(r) (17

where the gyration tensor v is a third-rank tensor, an-
tisymmetric in its first two indices. Again, y; is a ma-
terial tensor and therefore it has the symmetry of the
crystal, so that we can rewrite the Fourier transform of
Eq. (17) as

Dk)= 3

heM*

{e(h)+[iy(h)(k—h)]}E(k—h), (18)

where the differentiation has been performed. As
Vijk(r)=—7y;x(—r) and y;;(r) is a real tensor, one has
Vix(h)=—vx(—h). Before determining its form, we
briefly describe the contraction of y to a vector y‘¥/, the
so-called gyration vector, and a second-rank pseudoten-
sor g;;, which are normally used to describe the gyration
properties of crystals. First, a second-rank antisymmetri-
cal tensor is introduced by

YiF(h) =y (hXk, . (19)

The gyration vector is then written as
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yE(h)=1e;yiF(h),

i

(20)
where e;; = 3(i —j)(j — (I —i), resulting in

D(k)= 3 [e(h)E(k—h)—iy*~P(h)XE(k—h)].
heAf

(21)

The effect of optical activity is now observed as a rotation
of the polarization around the wave normal k of the light,
whenever k-y“‘)(r):#o, the effect of the birefringence on
the optical activity being neglected. A more common no-
tation for the optical activity is in terms of a second-rank-
real pseudotensor 8ij» which can be defined from

Yi= "“gijk‘ . (22)

The symmetry properties for the g;; can be found, e.g., in
Nye.!°

Returning to Eq. (17), we will determine the form of
Yijk» using the superspace symmetry of the crystal. The
symmetry condition for ¥, (h) now reads

i(Rshy)t,

Yijk(h)=Riijanp7/mnp(Rh)e (23)

For h=0 using the elements of G,, this leads to
7ix(0)=0, predicting no optical activity within this ap-
proximation. The observed effect is thus due to the
modulation-dependent (m=£0) wave vectors, and again
we restrict our considerations to those given in series (5).
In order to obtain results which can directly be related to
the experimental directions of the wave normals, we give
the gyration vectors for different directions of k, for all
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parity conditions of /,m in h=(0,0,/,m), in Table III. If
we restrict ourselves to the first Fourier wave vector of
important [h=(0,0,1, —3)], we find in this table, without
specifying the exact form of the fields (which still need
further investigation), that optical activity can only be
present for the direction k=(k,0,k;), with k,%0 and
k350. All other directions for k are perpendicular to the
corresponding gyration vector. Physically, this is under-
stood as follows. Only the fields for k=(k,,0,k;) can
show gyrational effects due to the coupling with fields
with wave vector k+(0,0,1, —3). If we include the next
Fourier component h,=(0,0,2, —7), we find that rotation
is, in principle, possible for all directions of k. The ap-
pearance of a net observable rotation depends on other
conditions as well, which are not yet fully explored.
Some of the expected ones are presented in Sec. V.

IV. EXPERIMENT

A. HAUP polarimeter

The measurements were performed by means of a
HAUP polarimeter as described by Kobayashi et al.*
The light source was a He-Ne laser (632.8 nm); the ex-
tinction ratio of the polarizer and analyzer were specified
to be 1075 the resolution of the stepping-motor-driven
Nicol polarizers was approximately 0.001°. For all mea-
surements the polarizers were rotated both from —0.5° to
+0.5° with respect to their zero positions, with intervals
of 0.05°. For each position the intensity was measured
with a photon-counting system for a period of 1 s and

TABLE III. The form of the gyration vectors ¥*'(h) for different wave vectors (k) of the light and
all parity conditions of / and m in h=(0,0,/,m); e denotes even, o denotes odd. The entries are given in
terms of the gyration tensor element i [see Eqgs. (19) and (20)].

Im
k 0,0 0,0 ee o,e e,0
(1,0,0) 0 0 0 0 Y231
0 0 — Y131 0 0
0 Y121 0 0 0
(0,1,0) 0 0 Y232 0 0
0 0 0 0 713
0 0 0 Y122 0
0,0,1) 0 Y233 0 0 0
0 0 0 —7Y133 0
0 0 0 0 Y123
(1,1,0) 0 0 Y232 0 Y31
0 0 —Y13 0 —Y13n
0 Y121 0 Y122 0
©0,1,1) 0 Y23 Yan 0 0
0 0 0 —7¥133 —Yi3n
0 0 0 Y122 Y123
(1,0,1) 0 Y233 0 0 Y23
0 0 —Y3 —7Yi133 0
0 Y121 0 0 Y123
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corrected with a reference signal to take care of drift in
the laser output power.

B. Temperature control

The sample was mounted on a cold or hot finger with
as little stress as possible to avoid induced optical activi-
ty. Thermal contact was improved with thermal paste.
The sample was completely surrounded by a copper radi-
ation shield at the samples temperature (except for two
small holes for the transmitted light). Temperature was
controlled with a heater in the cold or hot finger and a
Pt-100 resistor as a thermometer. For temperatures
below room temperature the sample was cooled with an
additional N, or He flow through the cold finger. A
second Pt-100 resistor, mounted in the sample holder,
was used to measure the temperature of the sample. The
temperature stability was always better than +0.01 K
and the absolute error was estimated to be less than *1
K.

C. Samples

The samples used were grown with a modified Bridg-
man technique. Starting material was obtained from
crystals grown from an aquaeous solution containing
RbBr and ZnBr, in the molar ratio 2:1, slightly acidified
with concentrated HCI to improve growth. The growing
rate from the melt was 0.6 mm/h. The thus-obtained
transparent crystal was cleaved perpendicular to a,
oriented further with a polarizing microscope, and sawed
with a string saw. The faces to be used for the experi-
ment were polished to a local flatness of about 1 um. All
samples were measured no longer than 1 d after they
were polished in order to avoid contamination of the sur-
faces due to the hygroscopic nature of the material.

The off-diagonal gyration tensor elements were mea-
sured along the bisectors of the corresponding axes with
the exception of g3, which was measured along a direc-
tion tilted over 15° from the bisector towards the a axis,
because the optical axis turned out to be approximately
along this bisector (at room temperature). All three sam-
ples used were obtained from the same melt growth. The
samples are denoted as é’ij, where the indices indicate the
orientation of the cut as adapted to the measurement of
the tensor element g;. Their dimensions were
&1, =5x8 mm? and 1.65 mm thick; &;,, ~8X 12 mm?
and 1.95 mm thick; and &3, ~8X 12 mm? and 1.01 mm
thick.

D. Results and evaluation

For the evaluation of the results, we used the following
procedure. All data were fitted to the following formula
describing the measured intensity (I') in terms of the po-
larizer position (6) and the analyzer position (A):

[=Ty{ Ag+[X—cos(A/2)(6—A)]?
+[sin(A/2)(6+ A}, (24)

where I'j is the incoming intensity, 4, a background in-
tensity due to scattering,

X=[(y —2k)sin(A/2)+86 Acos(A/2)]
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with ¥ =p —a the difference in ellipticity of the polarizer
and the analyzer, A the phase difference for the light due
to the sample, 8A a measure for the misalignment of the
sample, and k =g /2 An, where g is the optical activity
and 7 is the effective refractive index. This formula is in
essence the same as that given by Kobyashi* and is de-
rived elsewhere.”> The procedure suggested by
Kobayashi,4 which fits the results to Y (Y=60—A) and
uses in a second fit to O the first-fit results, was not ade-
quate in our case because the data points were quite scat-
tered, mainly due to problems with the mechanical inter-
face between the stepping motors and the Nicols polariz-
er. Therefore we adopted this procedure only to obtain
starting values for the parameters used in another fit pro-
cedure, which fits the data with respect to both 6 and A
simultaneously. = Thus we obtained values for
|cos(A/2)|, X, Ay, and I'; as a function of temperature.
One drawback of the HAUP technique is the fact that
one always needs to know a value of A and the sign of
dA /9T at a certain temperature because the measure-
ment gives only values for |cos(A/2)|. Therefore the
birefringence was measured for all three samples at room
temperature. This was done by measuring very accurate-
ly the three refractive indices with an Abbe refractome-
ter, using an interference filter to obtain light with a
wavelength of 634 nm. The results were (T'=297+1 K)

n,=1.6448+0.0002 ,
n,=1.6518+0.0004 ,
n.=1.6573+0.0002 .

The refractive indices were also measured for other wave
lengths; at 514.5 nm we found

n,=1.659
nb=1666 ,
n,=1.672 .

These values are systematically smaller (0.3-0.5 %) than
those obtained by Horikx,?* but consistent with the data
of Kusto et al.?® (A=589 nm). The value for the
birefringence was calculated for all three samples used
(A=634 nm; An;; is the birefringence as observed for
light traveling along a direction perpendicular to the
sample denoted by & ):

An;; =(5.5+0.5)x 1073,
An,,=(9.0+0.5)x 1073,
An3=(2.3+0.5)x 1073,

These values were used to extract the correct values for
the birefringence as a function of temperature from the fit
results for |cos(A/2)|. The sign of the slope for this
function was assumed to be the same as for Rb,ZnCl, and
taken from Ref. 15. Both y and 8A are assumed to be in-
dependent of temperature. The value for 8A was ob-
tained by averaging all values of X/cos(A/2) with
sin’(A/2) <0.5, and the value y by averaging all values
of [X—8A cos(A/2)]/sin(A/2) in the paraelectric phase,



8084

where kK =0. In this way, g =2k An was obtained as a
function of temperature. The results for the
birefringence are given in Figs. 1(a)-1(c); those for the
optical activity in Figs. 2(a)-2(c).

V. DISCUSSION

A. Rb,ZnBr,

We will first concentrate on the results for the
birefringence as a function of temperature. At this point
we have to emphasize that the small jumps in the
birefringence as predicted in Sec. III cannot be observed
by means of HAUP. Very precise differential measure-
ments of the birefringence, however, can reveal those
jumps.?® Our comparisons with Rb,ZnCl, refer to Sanc-
tuary."

For &), we see in Fig. 1(a) that the value of An, in-
creases almost linearly with increasing temperature
within the incommensurate phase and the lock-in phase
(phase III). There is no clear change at the lock-in transi-
tion temperature (T,). Above T; the slope diminishes;
the same behavior can be seen for temperatures in phases
IV and V. The behavior in the neighborhood of T; is
confirmed by the measurements of Kusto et al,? al-
though they found a value of An;; =4.5x 1073 at 300 K
for A=632.8 nm, whereas we find An,; =5.3x 1073

For &),, the birefringence (An, —3An,, ) shows the
same behavior as for &, only the slope in the para phase
is in this case almost the same as in the incommensurate
phase. At T, a very small change in the slope is present.
In the neighborhood of the transition to phase V, the sign
of the slope changes. In phase V the slope seems to be
constant again, while in the intermediate phase, IV, the
behavior is far from linear.

For &3, again an analogous behavior is observed, al-
though no measurements were done in phase V. The
change in slope at T; is more pronounced than for &,
and in the neighborhood of T,., again, a very small
change in slope can be seen. In all three cases the slope
is—in the incommensurate and lock-in phase—
approximately (0.5-1)x 107> K™}, which is comparable
with the result found for Rb,ZnCl,. The changes in the
neighborhood of the transition temperatures to phases IV
and V do not coincide with the reported temperatures
(112 and 77 K). In fact, at 112 K only small gradual
changes are observed, which is in agreement with the re-
ported® small differences between phases III and IV. The
change in the sign of the slope in the case of §;, is prob-
ably related to the phase transition to phase V, indicating
a higher transition temperature in our sample (=85 K).
Thge highest temperature reported for this transition is 80
K.

Next we will devote our attention to the optical activi-
ty. As was mentioned before, one can see in Fig. 2 that
the data points scatter quite a lot. Nevertheless, we can
draw the following conclusions.

The gyration coefficient g, stays small (< 1 1075) for
all temperatures measured. The small gradual increase
with decreasing temperature is probably due to a small
change of 8A with temperature. Except for phase V, the
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FIG. 1. (a) The birefringence as a function of temperature for
&), (Any,). Indicated are the different phase transitions. (b) The
birefringence as a function of temperature for &), (An,
— %Anyx). Indicated are the different phase transitions. (c) The
birefringence as a function of temperature for &3
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same holds for g, (< 1x107%). Below approximately 77
K, g, systematically increases.

A different behavior is observed for g;;. This
coefficient increases considerably at T; and continues to
do so down to the lowest temperature measured (=100
K). At T, the value for g,; is approximately 2.3 x 107,
cf. Rb,ZnCl,, where g;(T,)=4.0Xx107°. The slope is
approximately —1.0x10"7 K~!.  (In Rb,ZnCl,,
—4.5x1077K™.

If we compare these results with the predictions for the
commensurate phases given in Sec. II, we see that both
values are consistent. The value of g3 increases down to
100 K, indicating that the order parameter responsible
for the optical activity does the same. The nonzero value
for g, in phase V indicates that the symmetry element n,
of phases III and IV is indeed lost, resulting in the point-
group symmetry m,, consistent with the predicted space
group Pcll. If we compare this result with Rb,ZnCl,,
where a low-temperature phase transition to a monoclinic
phase (probably Pc11) is also found,?” we observe that the
phase-transition temperatures in the two compounds do
not differ much [T; =303 K (437 K), T, =192 K (190 K),
and T,, =75 K (77 K) for Rb,ZnCl, (Rb,ZnBr,)]. Unfor-
tunately, the optical activity in Rb,ZnCl, has only been
determined for g, and only down to 150 K.

The nonzero value of g,; in the incommensurate phase
is in agreement with the predictions of Sec. III. More-
over, the fact the g,, and g, stay relatively small indi-
cates that in Rb,ZnBr, the contributions to the optical
activity of the Fourier component h=(0,0,1, —3) are far
more important then those of the next one [cf. series (5)].

The fact that g;; has a nonzero value in the incom-
mensurate phase was also observed in Rb,ZnCl,; the only
difference is that Sanctuary!® finds a nonzero value start-
ing about 50 K below T;, while Uesu et al.'* find (as we
do for Rb,ZnBr,) a nonzero value immediately below T;.
On the other hand, in both Sanctuary’s and our case g;
increases monotonically (almost linearly) with decreasing
temperature, while Uesu and Kobayashi report a tenden-
cy for the gyration to go to zero at the lock-in transition
and increase again upon entering the lock-in phase.
Kobayashi et al. also reported this behavior for
[N(CH;)4),ZnCl,, for which they found another result,
where g3 does not go to zero at T, but rather jumps to a
larger value, in later measurements.* Therefore the effect
at T, seems to depend on the sample. This is consistent
with the view of Saito et al.?® that domain walls (solitons)
represented by discommensuration regions between near-
ly commensurate domains have an influence on the gyra-
tion tensor. Pinning, due to defects, enhance these
effects. This situation can also be described within the
present approach, by including higher harmonics in the
Fourier components considered. On the other hand, our
measurements show very little variation with tempera-
ture within the full incommensurate phase, so that no ap-
preciable difference is observed between the typical
sinusoidal regime (near the incommensurate phase-
transition temperature) and the discommensuration re-
gime, near the lock-in phase. This fact can be considered
to support the present approach in terms of relevant
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FIG. 2. (a) The gyration tensor element (g,,;) as a function of
temperature for &;. Indicated are the different phase transi-
tions. (b) The gyration tensor element (g,,) as a function of tem-
perature for §;,. Indicated are the different phase transitions.
(c) The gyration tensor element (g,;) as a function of tempera-
ture for §;;. Indicated are the different phase transitions.
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nonzero Fourier waves. There is a possibility for a net
rotation, despite the periodic spatial dependence of the
gyration tensor considered, because of the same periodic
properties of the dielectric tensor, which influence the
stabilization of layers relevant for domains, defects
and/or morphologically stable faces. Accordingly, not
all gyration amplitudes are equally probably, leading to a
net rotation which is possibly crystal dependent.

B. Other 4,BX, compounds

As the incommensurate phases of all members of the
A,BX, family of dielectrics studied up to now are be-
lieved to have as their symmetry the superspace group
Pcmn (00y)(ss1),! a generalization of our results for
Rb,ZnBr, to the other members is appealing. This gen-
eralization, however, has to take into account the
different continued fractions expansions of the modula-
tion parameters ¥, which are not the same for different
compounds and can be temperature dependent. The
Fourier wave vector corresponding to the first term in
this expansion is not necessarily (0,0,1,—3) or more gen-
eral (0,0,/,m) with both / and m odd. In Rb,ZnBr, the
modulation wave vector is independent of temperature
for a large temperature range of the incommensurate
phase; approximately 10 K above the lock-in phase tran-
sition it starts to deviate from this constant value.

In Rb,ZnCl, a comparable behavior is observed. The
value of the modulation wave vector is fairly constant
(¥ =0.31).% TIts continued fractions expansion starts with
1> the next approximation being already 1. A few de-
grees kelvin above T, (190 K), the value of y is approxi-
mately 0.32, with § and £ as its first two fractional ap-
proximations. This example shows that the contributions
of the first Fourier wave vector (0,0, 1, —3) are expected
to be the most prominent ones through the incommensu-
rate phase. Of course, the effect of higher harmonics,
playing a more substantial role in the neighborhood of
the lock-in transition, can change this situation.

In [N(CH3),],ZnCl, (TMAZC), however, the modula-
tion wave vector is much more temperature dependent.
Furthermore, its continued fractions expansion (of
y=0.42 at T=290 K) provides as first approximation
h=(0,0,2,—5), thus predicting (see Table III) the possibil-
ity of optical activity for every direction of k. Unfor-
tunately, the gyration effect in this compound has only
been studied for the direction k=(k,,0,k,),* where a
small (100 times smaller as compared to Rb,ZnBr,) effect
was observed. Nevertheless, it would be interesting to
measure the optical activity for other directions in
TMAZC. One has to note, however, that the relevant
7k can differ in magnitude. On the other hand, Table
ITI, together with Eq. (22), shows that if g,; is observable
(which is experimentally verified), also g,, or g;; and
probably g,, or g,; should be observable and have the
same order of magnitude as g,;. The change of y as a
function of temperature, however, makes it more difficult
to find the appropriate continued fractions expansion.
We realize that this variation of ¥ with temperature im-
plies, within our model, that different tensor components
get larger and smaller in value as the temperature is
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lowered. The correct interpretation and physical conse-
quences of this behavior will be disregarded here, but will
certainly be a topic of future work.

As was mentioned before, the Fourier wave vectors
with lengths comparable to the wavelength of the light in
the crystal (approximately 380 nm in our case) could pro-
vide for a kind of resonant behavior. The gyration effect
is expected to be much larger in the corresponding re-
gime, which is often met in cholesteric liquid crystals.*®
As long as the deviation § of the incommensurate wave
vector from its commensurate value is not too small,
these “‘resonant” wave vectors will have very high indices
! and m. In the case of Rb,ZnBr, the value y =0.2930,
which is constant for a large temperature interval, would
imply vectors like (0,0,17, —58) and (0,0,46, — 157) with
lengths of approximately 162 and 971 nm, respectively.
On the other hand, the experimental error is
¥=0.2931+0.001 and therefore one cannot say much
about the relevance of these large-index Fourier com-
ponents, as e.g., ¥ =0.2940 would imply that the vector
(0,0,5,—17) already has a length of 486 nm. In other
words, high-index Fourier wave vectors can be relevant
for an observed gyration effect, but one cannot deduce
from the experimentally observed value of the incom-
mensurate wave vector which indices are important.
Moreover, a temperature dependence of the wave vector
is most prominently effective in these high-index vectors,
resulting again in a rather wild change in relevance of the
corresponding optical Fourier tensors as a function of
temperature. The first three fractions in the continued
expansion (3, 2, and 2) are, however, present for all
values 0.293+0.001.

VI. CONCLUSIONS

We have measured the gyration coefficients g, g1,
and g5 as well as the birefringence of the corresponding
directions in Rb,ZnBr, in its paraelectric phase, the in-
commensurate phase, and the lock-in phase. g,; and g,,
were also determined in the low-temperature monoclinic
phase.

As far as the commensurate phases are concerned, the
expected gyration effects, on symmetry grounds, are in
agreement with the experimental results. The phase tran-
sition at T, (112 K) between two orthorhombic phases
with the same symmetry has no observable effects on the
optical activity, nor on the birefringence. The existence
of a low-temperature monoclinic phase (T <77 K) is
confirmed. The lock-in transition has a very small
influence on the optical properties. The linear depen-
dence of the birefringence on temperature changes its
slope slightly at T..

In the incommensurate phase optical activity was ob-
served only for g;;. In order to explain the observed
effect, we developed a phenomenological theory on the
basis of the superspace symmetry of this phase. In this
theory, the dielectric tensor and the gyration tensor are
semimicroscopic (local) entities. Note that this is com-
monly also done for x-ray diffraction in the kinematic ap-
proximation. The Fourier components e(h) and y(h)
have decreasing contributions to the propagation of light,
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with increasing h, but also with increasing integral com-
ponents of h as elements of a fourth-rank Z module. The
choice of the relevant Fourier components must be based
on phenomenological grounds as long as a microscopic
theory is not available. For normal crystals the smallest
nonzero Fourier wave vector is a reciprocal-lattice vector
whose wavelength is very small compared to the wave-
length of the light used. In the incommensurate struc-
ture, however, relatively long-wavelength structural in-
formation is present in the Fourier expansion, which can
contribute substantially to the spatial variation expressed
by €(r) and y(r). The allowed Fourier components and
their tensor forms follow from the superspace symmetry,
the selection rules being, of course, dependent on the
rank. We used the first three Fourier components expect-
ed to be of importance in Rb,ZnBr, to find the electric
fields in the absence of optical activity, for the three prin-
cipal directions of propagation. In the case of optical ac-
tivity, we determined the symmetry of the different
Fourier components of the gyration tensor and used these
results to explain the observed effect in the incommensu-
rate phase.
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Finally, a generalization of the theory to other incom-
mensurate structures has been discussed.

ACKNOWLEDGMENTS

The measurements were performed in the research
group of Professor Dr. P. Giinter, Laboratorium fir
Festkorperphysik, EidgenoOssische Technische Hoch-
schule-Ziirich, Switzerland. We gratefully acknowledge
the kind hospitality and, in particular, would like to
thank Dr. Herbert Looser and Mr. J. Hajfler for their
contributions. The valuable critical remarks by Professor
Dr. F. Tuinstra have been greatly appreciated and have
helped the authors arrive at a more explicit formulation
of their point of view. Stimulating discussions with Dr.
T. Janssen are also acknowledged. This work is part of
the research program of the Stichting voor Fundamenteel
Onderzoek der Materie (Foundation for Fundamental
Research on Matter) and was made possible by financial
support from the Nederlandse Organisatie voor Zuiver-
Wetenschappelijk Onderzoek (Netherlands Organization
for the Advancement of Pure Research).

1A. C. R. Hogervorst, Ph.D. thesis, University of Delft, 1986.

2A. Janner and T. Janssen, Acta Crystallogr. Sect. A 33, 493
(1977); Phys. Rev. B 15, 643 (1977).

3T. Janssen and A. Janner, Adv. Phys. 36, 519 (1987).

4J. Kobayashi, H. Kumomi, and K. Saito, J. Appl. Crystallogr.
19, 377 (1986), and references therein.

SA. C. R. Hogervorst and R. B. Helmholdt, Acta Crystallogr.
Sect. B 44, 120 (1988).

6S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, and M.
Matsuo, J. Phys. Soc. Jpn. Lett. 43, 2101 (1977); C. J. de
Pater, Phys. Status Solidi A 48, 503 (1978); R.P.A.R. van
Kleef, Th. Rasing, J. H. M. Stoelinga, and P. Wyder, Solid
State Commun. 39, 433 (1981); T. Yamaguchi, S. Sawada, M.
Takashige, and T. Nakamura, Jpn. J. Appl. Phys. 21, L57
(1982).

7I. A. Belobrova, I. P. Aleksandrova, and A. K. Moskalev,
Phys. Status Solidi A 66, K17 (1981).

8Tokashi Ueda, Satoshi Iida, and Hikaru Terauchi, J. Phys. Soc.
Jpn. 51, 3953 (1982).

9M. lizumi and K. Gesi, J. Phys. Soc. Jpn. 52, 2526 (1983).

103, F. Nye, Physical Properties of Crystals (Oxford University
Press, Oxford, 1985), Chap. XIV.

1A, Janner and B. W. van Beest, in Proceedings of the XIth In-
ternational Colloquium on Group Theoretical Methods in
Physics, Istanbul, 1982 (unpublished).

12B, W. van Beest and A. Janner, Physica 122A, 263 (1983).

3B, W. van Beest, A. Janner and R. Blinc, J. Phys. C 16, 5409
(1983).

14y, Uesu and J. Kobayashi, Ferroelectrics 64, 115 (1985).

ISR, A. Sanctuary, Ph.D. thesis, Eidgendssische Technische
Hochschule—-Ziirich, 1985; results concerning the

birefringence can also be found in P. Giinter, R. Sanctuary, F.
Rohner, H. Arend, and W. Seidenbusch, Solid State Com-
mun. 37, 883 (1981).

16See, for example, A. Sommerfeld, Vorlesungen iiber Physik IV,
Optik (Geest & Portig, Leipzig, 1959), Chap. 4.

17V, A. Golovko and A. P. Levanyuk, Zh. Eksp. Teor. Fiz. 77,
1556 (1979) [Sov. Phys.—JETP 50, 780 (1979)].

18] Fousek and J. Kroupa, Czech, J. Phys. B 36, 1192 (1986).

19p. M. de Wolff, Easy and Uneasy Superspace Groups, lecture
delivered at International Conference on Advanced Methods
in X-ray and Neutron Analysis of Materials, Karlovy Vary,
1987 (unpublished).

20M. von Laue, Rontgenstrahl Interferenzen (Akademie-Verlag,
Frankfurt, 1960).

21B, W. H. van Beest, Phys. Rev. B 33, 960 (1986).

22Born, Optik (Springer-Verlag, Berlin, 1985).

23H. Meekes, Ph.D. thesis, University of Nijmegen, 1988.

243, J. L. Horikx, Ph.D. thesis, University of Utrecht, 1987.

25W. J. Kusto, R. Struikmans, and B. Willemsen, in Proceedings
of the Sixth European Meeting on Ferroelectrics, Poznan,
1987 [Ferroelectrics 80, 289 (1988)].

26M. Régis, J. L. Ribet, and J. P. Jamet, J. Phys. (Paris) Lett. 43,
L333 (1982).

27M. Quilichini and J. Pannetier, Acta Crystallogr. Sect. B 39,
657 (1983).

28K . Saito, T. Kawabe, and J. Kobayashi, Ferroelectrics 75, 153
(1987).

29H. Mashyama, S. Tanisaki, and K. Hamano, J. Phys. Soc. Jpn.
50, 2139 (1981).

30See, e.g., H. Kelker and R. Hatz, Handbook of Liquid Crystals
(Verlag-Chemie, Weinheim-Deerfield, 1980), Chap. 7.



