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The “universal” equation of state recently proposed by Vinet, Ferrante, Rose, and Smith is nu-
merically equivalent, to leading order in finite strain, to several well-established two-parameter
equations of state. Notably, it is in accord with the Birch-Murnaghan equation that is derived
from Eulerian finite-strain theory, and hence is applicable to condensed matter involving any
bonding type. It is well established that the Eulerian finite-strain formalism is exceptionally suc-

cessful in describing the compressional behavior of materials at high pressures.

This argues

strongly in favor of the conclusion of Vinet and co-workers that their equation of state is universal
in the sense of successfully reproducing the pressure-volume relations of a wide variety of materi-
als. It appears, however, that no existing two-parameter equation of state is fully in accord with
all measurements of high-order elastic moduli. In detail, published values of compressional modu-
li imply that deviations from the “universal” and Birch-Murnaghan equations of state exist, but
these can be accounted for with higher-order terms.

It has recently been proposed' that the isothermal
pressure-volume (P-¥) relations for a wide variety of ma-
terials can be accurately described by the “universal”
equation of state

P(x)=3Ko(1 —x)x “2expl3 (K{—1)(1—x)]1 . (1)

Here, x-(V/Vo)'/3 is the linear compression, K is the
bulk modulus, prime indicates differentiation with respect
to pressure, and subscript zero indicates zero-pressure
conditions. The form of (1) is based on an expression for
the cohesive energy of a condensed system that is assumed
to vary only as a function of a normalized interparticle
separation (a*). Specifically, the energy is given in nor-
malized form as E*(a*)=—(1+a*+ -- )exp(—a®*),
in which higher-order terms in the Taylor expansion are
ignored in deriving (1). The presence of the exponential
term in the energy has been explained in a general way as
reflecting the typical form of interatomic repulsions, '
and the success of (1) has been shown empirically by way
of comparing the P(x) relation derived from ultrasonic
measurements of Ko and K¢ with the pressure-volume re-
lations obtained by finite-compression measurements
(e.g., static compression or shock-wave Hugoniot data).
Good agreement is found for a wide variety of metallic,
covalent, ionic, and van der Waals crystals, thus support-
ing the view that (1) is universal in the sense that its ap-
plicability is independent of bonding character. Addition-
ally, the success of (1) is remarkable in that the original
derivation of the expression for E*(a*) was motivated by
an interest in modeling cohesive, surface and vacancy en-
ergies; that is, in reproducing the cohesive energy curve in
the regime of “negative” pressures.!*? It should be noted,
however, that this equation of state is not intended for ma-
terials with significant internal degrees of freedom, e.g.,
with bond bending (molecular rotation) or crystallograph-
ic transformation accommodating the compression under
pressure.

An alternative approach to the equation of state of
solids, developed by Murnaghan?® and Birch* is based on
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finite-strain theory. This also leads to an equation of state
that is independent of bonding character in that the
derivation is obtained entirely from continuum mechanics.
A connection with interatomic potentials can be made,*>
but this is not necessary. The main ambiguity is in using
the appropriate frame of reference in defining the finite
strain. However, it is now widely recognized that Birch’s
development based on the Eulerian strain measure
f=[(Vo/V)¥?>—11/2 is empirically the best.*-

A Taylor expansion of the strain energy in terms of f
yields the following equation of state:

P() =3Kof(1+2)[1+af+---1. )

This Birch-Murnaghan relation, truncated at the third-
order term of energy in strain [a, = 3 (K¢ —4)], is known
to be extremely successful in matching finite-compression
data with low-pressure elasticity measurements obtained
by ultrasonic techniques.”® Even the second-order form
(Birch equation, with K(=4) has long been known to
yield a very good approximation to the equation of state of
solids.® Although the enormous success of the Eulerian
finite-strain formulation is not fully understood, a recent
analysis by Grover® provides at least a partial explanation
at the microscopic scale. It is also worth noting that the
generalization to a complete thermal equation of state is
well established. '

As with (1), (2) is found to apply to a wide variety of
compression data for metallic, ionic, covalent, and van der
Waals systems, including structurally complex compounds
and melts*® [again, internal degrees of freedom are ig-
nored, with SiO; glass being a good counterexample: Ref.
10(a)]. Furthermore, it has recently been shown that (2)
is identical, to leading order in finite strain, to the linear
relation between shock velocity (Us) and particle velocity
(u,) which describes most Hugoniot data on single
phases.!! This is significant because although the linear
Us-up equation of state is purely empirical, it is probably
the most abundantly documented by high-pressure mea-
surements on condensed systems.!2 Also, the linear Us-up
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relation appears to successfully describe the cohesive ener-
gies ?3f metals and their behavior under negative pres-
sure.

Both (1) and (2) are two-parameter (Ko,K¢) equations
of state which can therefore be directly compared. It is
clear from Fig. 1 that for the most common range of
values for K§ (3<K(<6) the two equations of state
agree in pressure to better than 7% down to a volume
compression V/V=0.6. As only a few materials have
been compressed to V/Vy=0.6 without undergoing a
phase transition, this in practice represents a close agree-
ment between the equations of state. Algebraically, the
near identity of the “universal” equation of state with the
Birch-Murnaghan form can be seen by recasting (1) in
terms of f to yield

P=3Kof(1+2/)%?
xl+af+5@t—3a;—%)f*+---1. (3)

Recognizing that a;~0 (i.e., K¢~4 for most materi-
als*6~%1!) shows that (1) and (2) deviate by a term of
only ~1—2.4f% in the ratio of the universal to the
Birch-Murnaghan pressure. This difference is small be-
cause of the small magnitude of f (<0.203 for
0.6 <V/Vo=1.0).

At compressions of V/V=0.6, uncertainties of 5-10%
in the equation of state are common either due to experi-
mental uncertainties or because higher-order elastic
moduli begin to contribute significantly to the equation of
state. Thus, Fig. 1 can be taken as an indication of the
good agreement between (1) and the form (2) derived
from Eulerian finite-strain theory. All of the data that
have been shown to be in accord with the Birch-
Murnaghan equation of state, including all of the Hugoni-
ot data which follow a linear U;-u,, relation, are compati-
ble with the universal form (1). Conversely, (1) can be
viewed as an excellent algebraic approximation to the
third-order Eulerian equation of state. As has been point-
ed out by Birch, the Grover-Getting-Kennedy (GGK)
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FIG. 1. Ratio of pressures derived from (2) (Pguierian) and (1)
(Puniversal) given as a function of volume compression for several
values of K¢. The common value K¢ =4 is highlighted by the
bold curve.

equation of state, which was obtained completely empiri-
cally, is also numerically almost equivalent to (2).!4@

The agreement between (1) and (2) goes even further
in that each of these two-parameter forms imply specific
values for the higher-order elastic moduli. Continued
differentiation of (1) with respect to pressure yields
— KoK =(K§/2)%+ (K§/2) —(19/36), whereas trunca-
tion of (2) at third order (i.e., a;=0) requires
—KoKo =(K§)?>—7K§+(143/9). Correspondingly, dif-
ferentiation of the GGK equation of state results in
—KoK¢ =K. These relations are compared with existing
ultrasonic measurements to show that all three equations
of state imply a similar tradeoff between K¢ and KoKq
over the common range 3SK(S6 (Fig. 2). Given the
scatter and uncertainty in the data, it is impossible to
choose one equation of state as being empirically better
than the other two.

What is also shown by Fig. 2, however, is that none of
these two-parameter equations of state fully agrees with
the existing data. If one accepts the published estimates
of uncertainties in the compressional moduli, measurable
deviations from the predicted relation between K( and
— KoK are found in several instances and (1) is no more
universally successful in reproducing the data than either
(2) or the GGK equation. Analogously, the two-
parameter linear Us-u, equation of state is considered to
be only approximately valid in detail.'> It is for this
reason that higher-order elastic moduli (e.g., KoKq ) seem
to be required for describing the equations of state of ma-
terials that have been carefully studied to high com-
pression.*® In the Eulerian finite-strain formulation,
this is readily accomplished by adding the fourth-order
term af 2 to the bracketed expansion of (2) fhere,
ar;=3[KoK¢ +K(K§—7)+(143/9)1/2}. Similarly, the
universal and GGK equations of state can be extended to
incorporate the higher-order terms that appear to be re-
quired by the existing elasticity and compression measure-
ments.
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FIG. 2. Tradeoff between the compressional moduli — KoK¢
and K¢ predicted by the third-order Eulerian finite-strain
(Birch-Murnaghan), universal, and GGK equations of state as
described in the text. Ultrasonic measurements on several crys-

talline compounds and liquid metals are shown for comparison
(Refs. 7 and 15).
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