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Propagator study of the selvedge field in linear and nonlinear nonlocal jellium optics
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Describing matter on the basis of an inhomogeneous jellium model, a nonlocal electromagnetic
propagator formalism is used to study the selvedge field in linear and nonlinear nonlocal surface op-
tics of metals. Fundamental coupled integral equations for the divergence-free and rotational-free
parts of the selvedge field are established and solved analytically in a novel way. Progress is ob-
tained in the analysis by dividing the kernels into parts which are separable and nonseparable in the
observation and source coordinates. Special emphasis is devoted to an investigation of the selvedge
field associated with surface second-harmonic generation, and a detailed comparison to propagator
formalisms of other authors is presented.

I. INTRODUCTION

At the outermost atomic layers of a metal surface, the
density of conduction-band electrons changes from zero
(in vacuum) to the bulk value of the metal. ' The in-
teraction of light with the conduction electrons in this
so-called density-profile region is of fundamental interest
for our understanding of the intricate linear and non-
linear coupling between electromagnetic waves and the
many-particle system of inhornogeneous jellium systems.
To describe the light-jellium interaction one requires a
calculation of the light-induced current density caused by
a prescribed electromagnetic field and, subsequently, a
self-consistent determination of the local field. The links
between the current density and the electric field are the
linear and nonlinear response tensors which for jellium
optics normally have to be calculated in a nonlocal ap-
proach. To determine ab initio the response tensors con-
nected to the inhomogeneous jellium of a metal surface is
in itself a formidable task. A very popular and eScient
scheme for attacking the problem, conceptually, is based
on the well-known and fundamental Kubo formalism.
The Kubo formalism for many-electron systems, howev-
er, does not allow us in any simple manner to extract de-
tails about the behavior of the light-perturbed response of
the surface region. Thus, in the context of nonlocal metal
optics, usually, one has to use the random-phase-
approximation (RPA) theory, or even simpler, micro-
scopic models, e.g. , the finite (FB) ' or infinite-barrier
(IB) model, " the semiclassical infinite-barrier (SCIB)
model, ' ' the Boltzmann-equation (BE) model in the
relaxation-time approximation, ' or the hydrodynamic
(HY) model. ' In the present work we shall assume that
the nonlocal response tensors are known, and hence de-
vote our study to a description of qualitative and analyti-
cal schemes for calculating the selvedge fields. We shall
address the problem on the basis of an electromagnetic
propagator formalism.

The analysis is organized as follows. In Sec. II the fun-
damental integral equation for the selvedge field is estab-
lished. The integral equation is set up so that the "back-

ground" solution is that of the SCIB model. The kernel
of the integral equation contains the screened, so-called
nonlocal, electromagnetic propagator associated with the
SCIB model. ' ' We split the integral equation into s-
and p-polarized parts which are uncoupled. The p-
polarized part is further divided into two coupled integral
equations for the divergence-free and the rotational-free
parts of the selvedge fields. In Sec. III our analysis devi-
ates radically from previous propagator descriptions in
that we use a recent analysis' of the tensor-product
structure of the nonlocal propagator to divide the kernels
into separable and nonseparable parts. By a separable
part we mean a part which can be written as a product of
functions of the coordinates of the observation and
source spaces. In Sec. IV, we discuss various approxi-
mate schemes for calculating the selvedge field. Thus we
present an "exact" solution of the integral equations
based on brute force neglect of the nonseparable parts of
the kernels. We present a sort of first-order Born approx-
imation where the exact solution to the separable prob-
lem is taken as the zeroth-order solution. Finally, we in-
vestigate the solution obtained for the rotational-free part
of the selvedge field if it is assumed that the nonseparable
parts of the divergence-free kernels are constant
throughout the so-called inner and outer selvedge re-
gions. The analyses in Secs. II-IV, which are essentially
linear, can be applied in linear, nonlocal optics, of course,
but also in studies of the free fields associated with para-
metric, nonlinear phenomena. In Sec. V we discuss the
background field in nonlinear surface optics taking
second-harmonic generation as an example, and in Sec.
VI we consider the calculation of the electric field exteri-
or to the selvedge region. In Sec. VII we compare our
analysis to previous propagator theories. Thus, for
second-harmonic generation we demonstrate how our
formalism contains a recent theory of Guyot-Sionnest,
Chen, and Shen as a special case, and we discuss the
progress obtained in the present work compared to the
work of Guyot-Sionnest et al." For the selvedge-field

problem in linear surface optics we compare, in detail,
our results to those obtained in the prominent works by
Bagchi, Barrera, and Rajagopal ' and by Sipe. In the
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propagator formalism by Bagchi et al., ' the classical
Fresnel problem with the associated local propagator is
taken as the background problem and in the vacuum
propagator work of Sipe a nonretarded propagator part
is separated off.

On the basis of the results presented in this paper,
quantitative numerical studies of the selvedge field associ-
ated with second-harmonic generation from a metal sur-
face are conveniently undertaken. Also, the present for-
malism offers an obvious possibility for incorporating lat-
tice effects in the analysis of optical selvedge responses.

One reason for undertaking a conceptual study of the
selvedge field within the framework of the jellium model
is that the possibilities for using optical methods, and
equally promising nonlinear methods such as second-
harmonic generation ' and Raman and Brillouin
scattering, as tools for studies of the dynamical and
structural physical properties of various types of surfaces
and interfaces in a highly reliable way, in my opinion,
rely on our knowledge of the local field inside the sel-
vedge.

II. FUNDAMENTAL INTEGRAL EQUATIONS
FOR THE SELVEDGE FIELD

Let us consider the interaction of a monochromatic
electromagnetic field of angular frequency 0 with a sys-
tem of particles, and let us assume that the light-
unperturbed state of the system is invariant against arbi-
trary translations in the xy plane of a Cartesian (x,y, z)
coordinate system. Now, if we restrict our analysis to
electric fields E(z;Q1,0), which in a plane-wave expan-
sion consist of only a single wave-vector component,
denoted by Ql, perpendicular to the z axis, the basic
equation for the description of the field-matter interac-
tion in the electromagnetic propagator formalism is

E(z;Qi, 0)
=E"'(z;Qi, , 0)

—lpDQ 6 Z Z '
i~

0 'J Z
~~

0 dZ

(2.1)

The idea behind writing the fundamental equation in the
form of Eq. (2.1) is the following. Due to the heavy
difficulties in solving the basic problein in a physically ap-
pealing way, i.e., by analytic means or numerically in
such a manner that the solution offers a simple interpre-
tation, one takes as a starting point a study of a more
tractable problem. The solution for this so-called back-
ground problem we denote by E' '(z; Qi, 0). In linear op-
tics, we choose the background field E' ' as the solution
to a "nearby" problem. Associated with this nearby
problem is a dyadic electromagnetic propagator, named
G(z, z', Qi, 0) in Eq. (2.1). What do we mean by a near-
by problem in the present context? A nearby problem is
one for which (i) a simple, e.g., analytic solution can be
found for E' ' and G, and (ii) the solution contains in a
qualitative sense the gross features of the solution to the
basic problem. In nonlocal metal optics, treated essen-
tially in the jellium approximation, a very attractive

background solution is the so-called semiclassical
infinite-barrier (SCIB) solution. Many authors have stud-
ied the SCIB model' ' in nonlocal metal optics and in-
vestigated the E' ' solution. Since the present author has
also succeeded in constructing the associated electromag-
netic propagator G (Ref. 18) and presented a simple,
physical interpretation of its structure, ' we shall take as
the background solution that of the SCIB model. One
should emphasize that the background field E' ' in para-
metric second-harmonic generation studies besides the
SCIB contribution contains a prescribed (if the linear
field is known) contribution stemming from the forced
nonlinear current density generated by the fundamental
field inside the selvedge, 6 cf. Sec. VI. We note that the
SCIB model is an essentially nonlocal model incorporat-
ing (i) collective polariton and plasmon excitations and
electron-hole pair excitations in the jellium, and (ii) spec-
ular surface-scattering of electrons in an approximation
excluding quantum interference effects. The SCIB propa-
gator incorporates (i} the screening effects stemming from
the above-mentioned excitations and (ii} the reflection
and transmission properties of the field, from the inside
or the outside of the metal, at the sharp metal-vacuum
boundary in a way where all the vectorial properties of
the field are retained.

Equation (2.1) is an integral equation for the electric
field E(z;Q1,0}of the basic problem, since the sowalled
"external" (ext) current density J,„,(z', Qi, 0) is related to
the field E(z;Qi, 0). In the present work, where we are
interested in determining the electromagnetic field inside
(and outside) the metal selvedge, defined here as the re-
gion where the exact, linear conductivity response func-
tion deviates from that of the SCIB model (which we take
as the background model), the external current density is
related linearly and nonlocally to the field as follows:

J,„,(;Qi,0)=f (, ', Qii, 0) E( ';Qii, 0)d ',
SE

(2.2}

where

(2.3)

is the selvedge (SE) linear conductivity response tensor,
given as the difference between the "exact" linear con-
ductivity response tensor o (z,z';Qi, 0) [calculated for in-
stance in the random-phase-approximation (RPA) ap-
proach] and that associated with the SCIB model, i.e.,
Pr (z,z';Q1, 0). Due to the finite range, i.e., in prac-
tice often a few interatomic distances, of the selvedge
response tensor, we have indicated in Eq. (2.2} that the
integral extends over the essentially finite selvedge region
(length}.

Now, by combining Eqs. (2.1) and (2.2) we obtain the
following basic integral equation for the field:

E(z;Qii, 0)=E' '(z;Qii, 0)
+ f K(z ''Qii 0)'E(z Qii 0)d ( )

SE

where the dyadic kernel K(z, z', Qi, 0), determined via a
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nonlocal calculation, is given by

K(z,z';Qi, Q) = —i poQ f G(z, z";Q~~, Q)
SE

~ o (z",z', Qii, Q)dz" . (2.5)

Kl(z, z

Krx

~r, rKryy

0

K

I=T or L

E( 'Q Q}=E ( 'Qi»)+E (;Q,Q}, (2.6)

In writing Eq. (2.4} we have stressed that J,„,is different

from zero inside the selvedge, only.
To make progress in our analysis we split the electric

field into two parts, i.e.,

(2.12)

where 5r r 1 a——nd 5L r 0. ——The decoupling of the s and

p polarizations enables us to introduce a truncated coor-
dinate representation for the fields and kernels. Thus, we

employ the following notation for the fields:

which obey the conditions e'r(z ) =er' (z }e (2.13)

'Qii+e
~' Bz

Er(z;Qii, Q)=0, (2.7)
eg„(z)

+ (2.14)

and e „(z)
eiL (z)—:eg „e„+eg,e, —: (2.15)

'Qii+" ~az
)& Et (z;Ql, Q) =0, (2.8)

respectively, e, being a unit vector in the z direction. The
conditions in Eqs. (2.7) and (2.8) have been chosen in
such a way that the total field E(r;co) (r is a space coordi-
nate}, having plane-wave character parallel to the
vacuum-metal surface, is divided into a divergence-free
(T) and a rotational-free (L) part. The division in Eq.
(2.6) implies that the basic integral equation in (2.4) can
be split into the following two coupled integral equations
for the divergence-free and rotational-free parts of the
electric field:

Er(z)=E'r'(z)+ f Kr(z, z') [Er(z')+EL(z')]dz',
SE

(2.9}

and

EL (z) =EP'(z)+ f KL (z,z') [Er(z')+EL (z')]dz',
SE

(2.10)

in a notation where we have kept the dependence of the
different quantities on Qi and Q implicit. The vectors
Ez' and EL' are of course those associated with the
divergence-free and rotational-free part of the back-
ground field, respectively. How to split the kernel
correctly into its T and L parts, i.e.,

K(z, z') =Kr(z, z')+KL(z, z'), (2.11)

can be inferred directly from the corresponding division
of the SCIB propagator G(z, z'), cf. Eq. (2.5). For a de-
tailed analysis of the tensor-product structure of G(z, z')
and of the associated division the reader is referred to
Ref. 19.

In the jellium approximation s- and p-polarized elec-
tromagnetic fields are uncoupled so that Eqs. (2.9) and
(2.10) can be further simplified. Thus, by choosing the
direction of

Q~~ parallel to the x axis, i.e., Qi ~~e„,where e„
is a unit vector in the positive x direction, the kernels
take the form

We note that eL =0 and that Er ——ez+eI'r and EL ——eL.
Equations corresponding to (2.13)—(2.15) can be written
down for the background field E' ' also, cf. Eqs.
(2.19)-(2.21) below. The truncated tensor notations for
the kernels are

and

K~ =K~yy,

rK~„„K~„,
Kr,~ Kz;zz

r

KL,xx KL,xz
K~L:—

KL zx KL, zz

(2.16)

(2.17)

(2.18)

By inserting Eqs. (2.13)-(2.18) into Eqs. (2.9) and (2.10),
we obtain the results

e&(z)=eP (z)+ f It&(z, z')er(z )dz
SE

e(r(z)=er 'i'(z)+ f Kir(z, z') [eI'r(z')+eiL (z')]dz',
sE

(2.19)

(2.20}

eiL(z)=ez' 'i'(z)+ f Kit(z, z') [epr(z')+eit(z')]dz',
sE

(2.21)

in truncated notation. The s-polarized part of the field is
divergence-free and the associated basic integral equation
(2.19) is a scalar one. The p-polarized field, on the other
hand, consists of both a divergence-free and a rotational-
free part. These parts are coupled and the basic vectorial
integral equations are (2.20) and (2.21).

It appears from Eqs. (2.19)—(2.21) that once the field
inside the selvedge is determined via the basic integral
equations, the field exterior to the selvedge can be ob-
tained by essentially straightforward integrations of
known functions over the selvedge (see Sec. VI).

III. STRUCTURE OF THE KERNEL

To make progress in our analysis of the basic integral
equations [(2.19)—(2.21)] for the selvedge field, we take as



38OLE KELLER

a starting point the result of a recent investigation' of
the tensor-product structure of the SCIB propagator,
G(z, z"). We assume that the sharp-boundary metal oc-
cupies the domain z ~ 0, the rest of the space being vacu-

um. Furthermore, the following superscript notation is

used: « (z" &O,z &0), & & (z" &O, z &0),
{z"&O,z &0), and » (z" &O, z &0). Thus, by denoting
the Heaviside unit step function by 8, we write

G(z, z")=e( —z")8(—z )6 (z,z")

+e( —z")e(z)C {z,z-)

+e{z")e{ z)6

+e{z")e(z)6»(z,z-) . (3.1)

The substructure of G ~~(z,z" ) is

G (z,z")=D TT(z —z")+I ~~~(z+z")+g gg(z —z"),
(3 2)

where D rr and I fz~. denote the so-called direct (D ) and
indirect (I ) contributions to the propagator, respectively,
and g LL the self-field contribution. The subscripts given
to the propagators are to be interpreted as follows. Mul-
tiplying the propagator in consideration with

exp[igl(x —x")], the new propagator is divergence-free
(T) or rotational-free (L) in the (x,y, z) coordinates if
the subscript to the right is T or L, respectively. The
subscript to the left indicates whether the new propaga-
tor transposed is divergence-free (T) or rotational-free
(L) in the (x",y",z") coordinates. The dyadic Green's
functions G ~ and 6 ~ have the substructures

6 (z,z")=6 rT (z,z")+6 z~z~(z, z") (3.3)

and

G ~ ~(z,z")=6 TT (z,z")+GLT (z,z") (3A)

in the above-mentioned subscript and superscript nota-
tion. The propagator 6 ~~ has the most complicated sub-
structure, i.e.,

6 ~~(z, z")=D ~~~(z —z")+D LL (z —z"),
+I ~~~(z, z")+I z~~q(z, z")

+I L,r(Z, Z )+I ( L,tZ)Z+g LL(z —Z ),
(3.5)

where, as in Eq. (3.2), the direct, indirect, and self-field
contributions are denoted by D, I, and g, respectively. A
schematic illustration of the 14 propagator terms in Eqs.
(3.2)—(3.5) is shown in Fig. l.

Now, by substituting Eqs. {3.1)—(3.5) into Eq. (2.5), it is
realized that the KT and Kt kernels of Eq. (2.11) have
the substructures

8"'W
%iii AV

z 0 Z = Z

TL

L

GTf

T

L
G

0

~))
L

FIG. 1. Schematic illustration of the 14 terms of the screened
electromagnetic propagator G(z, z'). Within the framework of
the SCIB model, this propagator describes, in a system of adja-
cent metal-vacuum half-spaces, the plane-wave propagation be-
tween a source plane located at z' and an observation plane at z.
The boundary between the metal and vacuum domains is at
z =0. Four of the terms, denoted by G (with appropriate super-
scripts and subscripts), describe wave propagation involving a
transmission of the field at the boundary. Three terms, denoted
by D, are associated with the direct field propagation between
source and observation planes located on the same side of the
metal-vacuum boundary. Field propagation between a source
and an observation plane located in the same medium can also
take place via a so-called indirect process, i.e., a process which
involves a reflection of the electromagnetic field at the metal-
vacuum boundary. This possibility is described by means of the
five I propagators. If the source and observation planes coin-
cide (z =z) the propagator exhibits a delta-function singularity.
This singularity leads to a so-called self-field contribution to the
propagator. The two possible self-field terms are denoted by g.
An open arrow indicates that the coupling between source and
observation planes is mediated by the rotational-free (L ) part of
the electromagnetic field, and a closed arrow that the coupling
is caused by the divergence-free ( T) component of the field. In
the vacuum domain only divergence-free plane-wave contribu-
tions can occur. For the propagator terms involving a transmis-
sion or a reflection at the sharp-boundary surface a combination
of L and T processes can appear. In an adequate notation,
defined in the main text, superscripts and subscripts are given to
the various propagator terms to locate the source and observa-
tion plane and to distinguish between rotational-free and
divergence-free wave propagation.
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K,(z,z') = —ii,n f [8(—z)e( —z")[D (z —z")+I "(z+z")]
SE

+e( —z)e(z")[G "(z,z")+6;;(z,z")]+e(z)e(—z")G "(z,z")

+8(z)8(z")[D (z —z")+I (z,z")+I (z,z")][ o (z",z')dz", (3.6)

K, (zz, ) = —ii,n f te( —z)e( —z")g,,'(z —z")+e(z)e( —z")G;, (z,z")
SE

+8(z)6(z")[D (z —z")+I (z,z")+I (z,z")+g (z —z")]I o (z",z')dz" . (3.7)

Further progress in the analysis of the kernel structure can be obtained by investigating the tensor-product structure
of the indirect propagators I TT I TT, I LT, I TL, and I LL and the propagators G TT, G I T, G TT, and G TL . The re-
markable result one finds' from such an investigation is that the individual tensor product is of the form A(z ) B(z"),
i.e., a product of vectors which, respectively, are functions of z and z", alone. ' On the basis of the explicit expressions
for the relevant SCIB propagator terms a straightforward calculation shows that the kernel KL can be written as fol-
lows:

KL(z, z')= —ipoQ 6(z)f 8(z")DQ(z —z").o (z",z')dz"
SE

Cp
+ [8(—z)+8(z)e '(Q)]e,e, o (z,z')+&L(z)s f XL(z") o (z",z')dz" (3.8)

where e(Q) is the relative dielectric constant of the jellium in the long-wavelength limit, co is the velocity of light in

vacuum, and e, is a unit vector in the z direction. The first two terms on the right-hand side of Eq. (3.8), which stem
from the direct propagator part and the self-field propagator contribution, respectively, are the terms which make it so
diScult to determine in explicit form the rotational-free field inside the selvedge, cf. Sec. IV C. The last term on the
right-hand side of the equation is associated with the sum of the indirect propagators and the "transmission" propaga-
tor (G &~1~) and is separable into a vector product of functions of z and z' alone. For the subsequent conceptual
analysis, the explicit expressions for &L, (z) and XL (z") are not needed. For completeness, these expressions are given
in Appendix A. The structure of the KT kernel is a little bit more complicated. After some algebraic efforts, however,
one obtains

K (z,z')= ip 0 —f [8(—z)6( —z")D (z —z")+8(z)8(z")D (z z")] o (z",z'—)dz"
SE

3 3

+ g &'T( z) e~e~ f X'r, (z")a (z",z')dz"+ +Xfrj(z}g f Xr (z"} o (z",z')dz"
j=l SE

(3.9)

The explicit expressions for the functions &'r;(z },X&;(z"},%TJ(z), and Xr J(z") occurrin(Lin the separable kernels
are given in Appendix A. One notices that the separable kernels stem from the propagators G TT, G LT, G TT, I TT,
I z~~T, and I z~~T, cf. Fig. 1. The nonseparable part of the KT kernel originates in the direct propagators only.

The truncated kernels can be obtained directly from Eqs. (3.8) and (3.9) by utilizing that (i) the different terms in the
propagator can be written in a form equivalent to that in Eq. (2.12},and (ii} the selvedge response tensor

SE p SE
XX XZ

~'E — p 'E p (3.10)n'
SE p SE
ZX ZZ

in truncated notation has the two components
SE SE '

~p, SE
SE SEe o

(3.11)

s, SE SE=~+ . (3.12}

By adding the appropriate superscripts p and s to the relevant propagators and to the functions appearing in the separ-
able parts of the kernels (see Appendix A), and by introducing e, —= (0, 1) one gets
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E'(z, z')= —ip Q f [8(—z)8( z—")D' (z —z")+6(z)6(z")D' (z —z")]o' s (z",z')dz"
SE

3

+ g %*r,(z)f X'r,-(z")cr' (z",z')dz"
i=1

K T(z,z')= i—p Q f [6(—z)8( —z")D~ ' '(z —z")+8(z)8(z")DT'T '(z —z")] o ~ (z",z')dz"
SE

3

+ g%(~„(z)ef X'i(z").o i'"(z",z')dz"
j=1

and

(3.13)

(3.14)

Kf(z,z')= ip—Q 8(z) f 8(z")D~ (z —z") P~ (z",z')dz"
SE

r 2
Cp

[8(—z)+B(z)e '(Q)]HeI, ' PI' (z,z')+%/ (z) f Xir'(z") o (z",z')dz"

(3.15)

The integral equations in (2.19)—(2.21) with the kernels written as in Eqs. (3.13)—(3.15) constitute the basis for our cal-
culation of the selvedge 6eld jn the following section.

IV. SCHEMES FOR CALCULATION OF THE SELVEDGE FIELD

A. Brute-force reduction of kernel

To determine the electric field inside the selvedge in the s-polarized case one has to combine Eqs. (2.19) and (3.13).
To solve the resulting integral equation by analytical methods will in general not be possible. However, let us consider
the integral equation obtained by brute-force omission of the nonseparable direct propagator terms, i.e.,

3
8' (z)=e' '(z) ip Q g—&', (z)f f X', (z")a' (z", z)P (z')dz"dz',

i=1
(4.1)

where the solution for the electric field has been denoted by Cr(z). This integral equation can be solved exactly by
means of the ansatz

3

8'z.(z)=eP'(z)+ g age'T;(z), (4.2)

where the a; s are as yet unknown, z-independent constants. Now, by inserting Eq. (4.2) into (4.1), and utilizing the fact
that each of the factors to &'T, (z), i = 1,2, 3, must vanish separately in order that the ansatz solves the integral equa-
tion, one obtains the following set of inhomogenous, linear equations among the unknown constants:

3

g (5;i+a;J )a, = A, , i =1,2, 3
j=l

where

a 1
=ipoQ f f X'r,-(z")cr' (z",z')%'T (z')dz "dz'. ,

sE

and

ipoQ f f—X'T, (z")o" (z",z')eP'(z')dz "dz',
SE

(4.3)

(4 4)

(4.5)

and 5;~. being the Kronecker delta. Inserting the values of a (j= 1,2, 3) obtained via the solution of the equations in
(4.3) in«Eq. (4.2) our approximate solution for the s-polarized part of the field inside the selvedge has been established.

Brute-force neglect of the direct and self-6eld parts of the propagator leads, for the p-polarized case, to the following
coupled integral equations among the divergence-free [Pz (z )] and the rotational-free [CL (z )] parts of the field:

@r(»=eT'(z) ipoQ g —$;fz) f f &$;(z")o" (z",z. ') [C$( )zC+( i~)]zd dz',z
SE
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and

C~&(z)=el '~(z) i'—oQVf~&(z)(8( f f J&(z") ~ "(z",z') [4'~&(z')+Cf(z')]dz"dz' . (4.7)

The coupled integral equations above can be solved exactly, following the same procedure as for the s-polarized case.
Thus, by means of the ansatz

3

4'$ (z ) =eT '~(z ) + g b, %~~, (z ), (4.8)

4'f (z)=e{1'~(z)+bPf~~(z), (4.9)

one obtains after insertion into Eqs. (4.6) and (4.7) a set of four inhomogeneous linear equations among the unknown
b s (i = 1,2, 3,4), namely,

4

g (8,"+P,")b, =8, , i =1,2, 3,4
j=1

where

pj =ipoQ f f X T(z") (r ~' (z",z') &TJ(z')dz"dz',
SE

P,4:i@0—Q f f X$,(z") Pi' (z",z') %~~(z')dz "dz',
SE

((z, ((zz((1=—f Czz (z )zz z "(z",z'( z((zz ((z'('dz "dz',
SE

p~=ipoQ f f X~z(z") o ~ (z",z') %Pz(z')dz "dz',
SE

and

i,j=1,2, 3

i =1,2, 3

j=1,2, 3

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

8;=——ipoQ ~z, z" o ' z",z' . eT'~ z' +el '~ z' dz" z', i=1,2, 3
SE

84—: ipoQ—f f X~~(z") o ~' (z",z') [ef'~(z')+eL 'I'(z'))dz "dz' .
SE

(4.15)

(4.16)

Having calculated the unknown b s (i =1,2, 3,4) from
the system of equations in (4.10) we have achieved our
goal of determining the p-polarized selvedge field in the
approximation where only the contributions from separ-
able propagators are retained. In a forthcoming paper we
shall compare the analytical result obtained for the sel-
vedge field via Eqs. (4.2), (4.8), and (4.9}, with that ob-
tained from an "exact" numerical calculation based on
the complete integral equations, i.e., (2.19)—(2.21} with
(3.13)-(3.15). For simplicity, a simple model will be
adopted for the selvedge response function cr

eT(z)=("'T(z)+ f O'T(z, z')8'T(z')dz',
SE

(4.17}

O''T(z, z') = —
& poQ

X f [e(—z)e( —z")D' (z —z")
SE

+e(z)e(z")D' (z —z")]

where the kernel O''T, associated with the nonseparable
parts of the SCIB propagator, is

B. First-order Born approximation
X(t ' (z",z')dz" . (4.18)

So far, we have avoided any form of perturbative cal-
culation in our analysis of the selvedge field. We have ap-
proached the determination of the field in two steps. In
the first step, the SCIB model was adopted to give a back-
ground solution which contains many of the essential
physical ingredients of nonlocal optics. In the second
step, part of the selvedge response was incorporated into
an "exact" solution based on the separable parts of the
SCIB kernel. To proceed from here, it seems diScult to
avoid a perturbative description. Hence, it is natural to
take 6'T(z), 4'~z (z ), and 4'~L (z) as zeroth-order fields in an
iterative (eventually numerical) calculation of the fields
throughout the selvedge. Thus, in first-order Born ap-
proximation the s-polarized selvedge field is given by

eT(z)=@~/(z)+ f I' (z,z') [g~ (z')+g& {z')]dz',

and

(4.19)

e~(z)=("I(z)+f O'I {z,z') [C$(z')+@~~(z'))dz',

where the kernels 4'~T and + ~L are given by

In truncated notation, one obtains in a first-order Born
approximation the following results for the p-polarized
divergence-free and rotational-free parts of the selvedge
field:
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and

y&(z, z')= —ip 0f [8(—z)8( —z")Di' (z —z")+8(z)8(z")D~' (z —z")] o r' (z",z')dz",
SE

(4.21)

%~ (z,z')= ip—, n e(z)f e(z")D~' (z —z"} o ~' (z",z')dz"
SE

L

2
co

[e(—z)+e(z)~-'(n)]see a~ "(z,z ) (4.22)

C. Long-w avelength approximation
for the divergence-free direct propagators

In the previous subsection the contributions from the
direct propagator terms to the selvedge field were deter-
mined by a first-order Born approximation, i.e., by in-
tegrating products of the exact kernels [4'r(z, z'),
%$(z,z'), VtL (z,z')] and the approximate fields [8'r(z'),
4'$(z'), 4'~L (z')] over the selvedge. An alternative scheme
would be to calculate the divergence-free parts of the
direct propagators (kernels) approximatiuely and then
solve the appearing integral equations exactly.

I.et us consider now such an approach for the s-
polarized selvedge field. Since the propagator
Dz'T) ) (z —z" ), given in explicit form by'

iq~(z —z" )

Dr'T) ) (z —z" ) = f dqi, (4.23)
2n' —~ Nr q

is normally dominated by its contribution from the col-

lective polariton mode, we take

igc~~f z —z"
)

Dr'7) ) (z —z")-= (4.24)

where ~iT=~i(Qi, Q) is determined by the well-known

polariton dispersion relation Nr(Qi, ai, Q}=0. TheT

direct propagator in vacuum, Dr'T("(z —z"), is given by
an expression similar in form to that of Eq. (4.24), namely

iq& fz —z"
]

Df'r('(z —z )=
Ziq',

(4.25)

with qadi
——[(Q/co) —Qi]'~ . Since for optical frequen-

cies qi ~

z —z"
~

&&1 anted vi
~

z —z"
~

&&1 for points z
and z" inside the selvedge, it follows that
Dr'r''=(2iq, )

' and DrT) =(2iai) ' in lowest order
in the long-wavelength limit. In turn, this implies that

'VT(z, z')=- { Ofl 'e( —z) „„,„,„e(z)8( —z")o' (z",z')dz" + 8(z")o' (z",z')dz" (4.26)

which means that the kernel is constant in the inner
(z )0) and outer (z &0) selvedge region, the constants
being in general different in the two regions. It appears
froin Eq. (4.26) that the two terms in WT(z, z') each can
be separated into functions of z and z'. This has the
consequence that ECr(z, z') of Eq. (3.13) is totally separ-
able. The corresponding integral equation in (2.19) can
now be solved exactly by means of the ansatz

3.;(z)=e,""(z)+ y c,a;, (z)

a;4

+i5
=i@ 0f f X', (z")o' (z",z')8( Tz')dz"dz',

SE

i = 1,2, 3 (4.29)

o0
a4; —— f f e( —z")o" (z",z')%'r;(z')dz "dz

2q~ SE

i =1,2, 3 (4.30)

+c,e( —z)+c,e(z), (4.27)

where the c,.'s (i =1—5) are determined by the following
set of inhomogeneous linear equations:

0
a5,. = f f e(z")o" (z",z')JFr;(z')dz "dz',

QK~ SE

i = I,2, 3 (4.31)
5

g (5,i+a,l )ci = A, , i = 1,2, 3,4, 5 .
j=1

(4.28)

The explicit expressions for a, and A; of Eq. (4.28) are
for i,j = 1,2, 3 given by Eqs. (4.4) and (4.5), and as far as
the new elements are concerned given by

+45

Q
, f f e( —z")o' "(z",z')8(+z')dz"dz',

2q~ SE

(4.32)
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+54

+55

0
8( +z")cJ' (z",z')8(z' }dz "dz',

2/c sE

(4.33}

vacuum outer
selvedge

inner

selvedge

bulk

and

PpQ
A4 = — 8( —z")a' (z",z')eT '(z')dz "dz',

2qg

(4.34}

PpQ 8(z")o" (z",z')eP'(z')dz "dz' .
SE

KT(z, z') =8( —z)K T(z —+0—,z')

+e(z)Kyz o+,z ) . (4.36)

Furthermore, also for the background field we neglect the
field variations in the vacuum and metal domains, i.e.,

(4.35)

In Eqs. (4.29), (4.32), and (4.33) the upper and lower ele-
ment on the left-hand side are associated with the minus
and plus sign in the step function, respectively.

Let me emphasize here that the result in Eq. (4.27) is
only partially a long-wavelength result because the in-
direct contributions are treated nonperturbatively. For
many purposes it will be sufficient to calculate also the in-
direct terms in the long-wavelength limit. The result ap-
pearing from such a treatment will of course be a self-
consistent long-wavelength result, cf. Ref. 21.

Let us close this section by deriving an integral equa-
tion for the rotational-free selvedge field alone, based on
the assumption that the divergence-free selvedge field can
be adequately described by its value in the long-
wavelength limit.

Utilizing the explicit expressions for D Q~ ~ and
D~Tz~ ~ given in Ref. 19 and Eqs. (A7), (A9), and (All),
one obtains, taking the long-wavelength limit in the z
dependence of the kernel K$,

0+ +K; K

FIG. 2. Schematic diagram (upper part of the figure) showing
the division of space into four domains: vacuum, outer sel-

vedge, inner selvedge, and bulk. In the lower part of the figure
is shown which of the propagators (K—,K+ ) one has to use
when calculating the field, stemming from the selvedge sources,
in vacuum, inside the selvedge, and in the bulk.

e'7 '~(z ) -=8( —z )e'7'~(z ~0—)+8(z )eg'~(z ~0+ ) .
(4.37)

~(z)=e( —z)g-+e(z)e+, (4.38)

where the outer ( —) and inner (+ ) (see Fig. 2) selvedge
fields e7: and e(r'+ are independent of z. By combining
Eqs. (2.20) and (4.36)—(4.38) one obtains the following
two linear and inhomogeneous equations among the un-
known quantities Q and er'+:

For the following conceptual discussion we do not need
the explicit expressions for K $(z ~0—,z'),
KP(z —+0+,z'), e'T'~(z~0 —), and e'T'~(z —+0+ ). By in-

serting Eqs. (4.36) and (4.37) into Eq. (2.20) it becomes
obvious that the divergence-free selvedge field is of the
form

U —f 8( —z')Kg (z 0—,z')dz' .eI'r' — f 8(z')Kg(z 0—,z')dz' .eI'r'+
SE SE

=e'To'~(z~O —)+f Ky(z~O —,z') eL (z')dz',
SE

and

— f e( —z')Kp(z 0+,z')dz' .Q + U —f 8(z')KQ(z 0+,z')dz' Q+
SE SE

(4.39)

(4.41)

=eT "(z 0+)+f KQ(z~o+, z') d~(z')dz', (4.40)
SE

where U is the unit tensor of dimension 2)& 2. Solving Eqs. (4.39) and (4.40) one gets

= A + f B (z') ep+(z')dz',
SE

Q+= A++ f B+(z'}eI (z')dz', (4.42)
SE

where A, A+, B,and B + are known quantities. The somewhat lengthy explicit expressions for these quantities are
not needed for our purpose. To establish the desired integral equation for the rotational-free part of the selvedge field
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we insert Eq. (4.38} [with Eqs. (4.41}and (4.42)] into Eq. (2.21) and make use of the expression in Eq. (3.15) [with Eq.
(4.22)]. Hereby, one obtains

HL(z ) =e',~(z )+ f 8( —z')K~L(z, z')dz' ~ f B (z') Hq{z')dz'
SE SE

f 8(z')K~L(z, z')dz' ~ f B+(z') &(z')dz'
SE SE

i po—QXPq (z ) f f X~~(z") o ~ (z",z')dz" .Hz(z')dz'+ f 4 ~(z,z'} e~ .(z')dz', (4.43)

where, for brevity, we have introduced

e',z'(z ) =eP'~(z )+ f 8( —z')K~&(z, z')dz' A + f 8(z')K ~z (z, z')dz' A+ .
J

(4.44)

The integral equation in (4.43) is the fundamental one for

the irrotational part of the selvedge field in the case
where a decoupling from the solenoidal field, via a long-

wavelength treatment of the divergence-free selvedge

field, can be justified.
As a starting point for an iterative solution of Eq.

(4.43) one neglects the term containing the nonseparable

kernel %&. The reduced integral equation has the exact

solution

TL

'I

g~~(z) =e',~(z)+ f 8( z')K ~(—z, z')dz' .A

+ f 8(z')K~ (z,z')dz' A++Are~ (z}
SE

(4.45)

LL

where the five z-independent constants A,
A =(A„,A, ), and A+=(A~+, A+) are determined by
the usual procedure. By using Eq. (4.45) as the zeroth-
order solution, one obtains in first-order Born approxima-
tion

A.A AX

I
z —z

A
~
WM.1 +XXX)

r
~((
gLL

0

kAV Aii11 +))
&XXV. AX

Hz (z ) = C~z (z )+f V&z (z,z'). C~z (z')dz' .
SE

(4.46}

V. BACKGROUND FIELD
IN SECOND-HARMONIC GENERATION

The analyses in Secs. II—IV can be applied to studies in

linear and parametrically nonlinear, nonlocal jellium op-
tics provided that the appropriate values of Ql and 0 are
inserted into the conductivity response tensors
cr sc'a(z, z', Q, Q) and Ps (z,z';Q, Q), the propagator

II fo)G(z, z', Qi, Q), and the background field E (z;Q~~, Q).
For linear-field problems we shall take (Qt, Q)={q~) r0),

One should stress at this point that even though part of
the rapid variation of the rotational-free field through the
selvedge has been taken into account in C~z (z), one can-
not expect a first-order Born approximation to be
sufficient for the quantitative determination of eJL(z)

since also the contributions from the direct kernel and
from the self-field kernel vary rapidly across the selvedge
(see also Fig. 3).

FIG. 3. Schematic diagrams showing the contributions to the
screened electromagnetic propagator which are irrotational in

the observation coordinates. For an explanation of the graphic
symbols and the notation used for the various propagator terms
the reader is referred to the text accompanying Fig. 1. In the
calculations of the electromagnetic field inside the selvedge, the
contributions from the diagrams outside the frame shown can
be treated in a nonperturbative way by separation of the respec-
tive kernels. Since the kernels associated with the diagrams in-

side the frame cannot be separated into products of functions
depending on either the source or observation coordinates
alone, the contributions to the selvedge field stemming from
these diagrams have to be treated within the framework of an
iterative approach. Due to the singular structure of the self-

field propagators, denoted by g LL and g L&, the contribution to
the rotational-free kernel in Eq. (3.8) from these has a functional
dependence on z' and z which essentially is given by the linear
and nonlocal conductivity response function of the selvedge.
From a calculational point of view the most difficult field propa-
gation is associated with D &L since this propagator term relates
the conductivity response tensor of the selvedge and the
rotational-free kernel [Eq. {3.8)] nonlocally.
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and for parametric second-harmonic generation investi-
gations, (~ll'0) =(2qll 2')

In linear jellium optics, the background field
E' '(z;qll, co) is identical to the field E (z;qll, co), ob-

tained by means of the well known and extensively stud-
ied semiclassical infinite-barrier model. In parametric,
second-harmonic generation investigations on jellium, the
background field has the following form:

E"'(z 2qll 2') =E', "(z;2qll 2') —2ilMoio f G(z, z';2q„,2') J,"(z 2qll 2')dz' .
SE

(5.1)

The first term on the right-hand side of Eq. (5.1) is closely related to the second-harmonic field obtained within the
framework of a consistent SCIB model. To realize this, we write it in the form

z;2qll, 2~}=—2 p~ f "G(z,z';2qll, 2~}J,"&'(z', 2ql, , 2~}dz (5.2)
0

where the driven (d ), nonlinear, current density Jd $ is given by

Jd g (z', 2qll, 2') = f"f "X ' (z', z",z"',
qll 2qll, co 2'):E(z'";qll, co)E(z",qll, a))dz"'dz",

0 0
(5.3)

X being the nonlinear conductivity response tensor in the SCIB model. The driven, nonlinear, current density in
Eq. (5.3) deviates from that of the pure SCIB model due to the fact that it is the self-consistently determined linear elec-
tric field E obtained on the basis of the complete model including selvedge effects which occurs under the integral sign
of the equation. The asterisk (e ) added as subscript to the field and current density in the equations above indicates
that in order to obtain the zeroth-order field in parametric, second-harmonic generation, in principle, one needs the full
solution, i.e., a solution incorporating selvedge response effects consistently, to the 1inear-field problem. Now, the rela-
tion between Jd~P and the consistent driven current density Jd ' in the SCIB model is obtained by writing the funda-
mental field in the form

E(z;qll, io)=E '
(z;qll, co)+BE(z;qll, co),

where AE gives the deviation of the field from that, E, obtained within the framework of the SCIB model. By in-
serting Eq. (5.4) into (5.3), and this equation in turn into (5.2), we get

where

+~E( '2qll'2' (5.5)

E '
(z;2qll, 2') = 2i poli f—G(z, z';2qll', 2') Jdc' (z';2qll, 2')dz'

0

is the genuine sharp-boundary, nonlinear field with the expression

d
' (z', qll, co)=f f X ' (z', z",z"',

qll qll, rd N): ' (z"',qll, co)E ' (z";qll, co) z'" z"
0 0

for the true driven, nonlinear current density in the SCIB model. The contribution 5E is given by

5E(z;2qll, 2'}= 2ipoco f— G(z, z';2qll, 2') b Jd ' (z', 2qll, 2a)}dz',
0

with

EJd ' (z';2qll, 2')= f f X ' (z', z",z'";qll 2qll, a)~2'):[bE(z"';qll, co)E ' (z";qll, co)
0 0

+E' ' (z"',qll, o~)b E(z";q„,oi)+DE(z"', qll, o~)EE(z";qll, oi)]dz"'dz" .

(5.6)

(5.7)

(5.8)

(5.9)

The second term on the right-hand side of Eq. (5.1) involves the so-called nonlinear, driven selvedge current density
given by

(5.11)

The contribution to the background field from the second term on the right-hand side of Eq. (5.1), in principle, also re-
quires a self-consistent solution of the complete linear-field problem.

According to the discussion in Secs. II—IV, it is convenient for the analysis of the field inside the selvedge to write the
background field in terms of its s- and p-polarized components using the adequate truncated notation. Thus, by insert-
ing the appropriate expressions for the propagator, taken from Eqs. (3.1)—(3.5), into Eqs. (5.1) and (5.2), one obtains (see

Jd (z';2qll, 2')= f f X (z', z",z"';qll 2qll co 2co}.E(z'";qll co}E(z";qll,co)dz"'dz", (5.10)
SE

where X is the nonlinear conductivity response tensor of the selvedge. The tensor X is obtained as the difference
between the "exact" nonlinear response tensor X, calculated eventually by the RPA method, and the semiclassica1
infinite-barrier model response tensor, i.e.,

sE
2qll co 2') =X(z'z 'z 'qll 2qll'co 2') —X z'z 'z qll 2qll'co 2') .scgB
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also Ref. 36) for the s-polarized divergence-free ( T) field

ep'(z;2) =e g T'(z;2) —2i poC0 f I8( —z')8( —z)[DT'f(-z —z';2)+I&T (z+z';2)]
SE

+8(—z )8(z)G' (z, z';2)+8(z')8( —z)G' (z, z', 2)

+6(z')8(z)[D* ' (z —z', 2)+I' (z,z', 2)] jJ '(z';2)dz'

with

e g
' '(z;2) = 2—i@ co f "I8(—z)G' (z, z', 2)+8(z )[D' (z z', 2—)+I' (z,z', 2)] jJ„g~'(z',2)dz

(5.12)

(5.13)

In agreement with the notation of the previous sections, we have added superscript s and subscript T to the appropriate
quantities. For brevity, and to stress that the field, the current density, and the propagator parts are those belonging to
the second-harmonic frequency, the number 2 has been added to the various arguments. For the p-polarized case the
explicit truncated expression for the divergence-free part of the field takes the form

e T'~(z;2)=eq'r'~(z;2) 2i—p el f t8( —z )8( —z)[D~'T (z —z';2)+I ~T (z+z';2)]
SE

+8( —z')6(z)G~z'z. (z,z';2)+8(z')8( —z)[G TT (z,z', 2)+G z'T (z,z', 2)]

+8(z')8(z)[D~' (z —z';2)+I~' (z, z', 2)+Il' (z, z', 2)] j J '~(z', 2)dz',

(5.14)

where

eg'r' (z;2)= 2ip—oa) [8(—z)[G T'r ~(z,z';2)+GLz~ '(z, z', 2)]
7 0

+6(z)[D ' '(z —z', 2)+E~' '(z, z';2)+I~' (z,z', 2)]j Jd P' (z';2)dz' (5.15)

jn usual notation. Finally, one obtains for the rotational-free part of the p-polarized background field the result

eL
' (z;2)=eg'I l'(z;2}~ [8(—z)+e '(2')8(z)]eJ,'el, '

Jsd l'(z;2)1

1 EGO

—2lil, Ci) f I8( —z )8(z)G~' (z,z', 2)+8(z')8(z)[D~' (z —z', 2)+I ' (z, z', 2)
SE

+I~L'q~ (z,z', 2}]j Jd ' (z', 2)dz'

with

(5.16)

1 QQ

eg '~(z;2)= e ec J g ' (z;2) 2ip A@8(z) [D—l' (z —z', 2)+I ' (z, z', 2)
2l eae(2co)co LL I TL

+I LL (z,z', 2)] Jd~g' (z', 2)dz' . (5.17)

In parametric, second-harmonic generation studies the s- and p-polarized selvedge fields can be analyzed indepen-
dently of each other once the driven, nonlinear current densities J& $ ',Jd ',Jd + 'l'=(Jdp~„'l', Jd $,'~), and

Jd ' ——(Jd „',J&,' ), are known. Thus, in a sense the nonlinear s- and p-polarized selvedge fields are uncoupled. Howev-
er, due to the general form of the nonlinear response tensors X ' and X (see Refs. 38 and 39), the fields are indirect
ly coupled via the fundamental field if this consists of a superposition of s-and p-polarized components.

It was pointed out in Sec. IV C that a long-wavelength approximation for the divergence-free part of the selvedge
field often can be adopted, provided that the field variation of the background field across the inner and outer selvedge
is negligible. It appears from Eqs. (5.12)—(5.15) that the criterion for this is tantamount to the requirement that the
parts of the propagator which are divergence-free in the unmarked coordinates (x,z ), cf. Eqs. (2.7) and (2.8), vary slow-
ly across the selvedge. A slow variation in the divergence-free field in the selvedge region also allows us to take the ET-
field components of Eq. (5.10) outside the integral sign, thus simplifying the calculation of the driven nonlinear sel-
vedge current density. As an example, if the fundamental field is s polarized, one obtains by writting the fundamental
field in the form

er(z; I ) =eT 6( —z)+e 6r(+z), (5.18)

where ez' and eT'+ are the outer ( —) and inner (+ ) selvedge fields, respectively, the following expression for the p-
polarized selvedge current density:
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s —z 0 0 sEJd '~(z';2)= (er' ) X (z', z",z'";1~2)dz'"dz"
10 10

+ez' er + [X (z', z",z'";1~2)+X (z', z'",z";1~2)]dz"'dz"
0 lo

I,. l,-

+ (ez:+ ) f f X (z', z",z'"; 1~2)dz"'dz":e e (5.19)
0 0

The form of X implies that the nonlinear current density has only x and z components in the present case. The lim-
its of the integrals in Eq. (5.19) are those illustrated in Fig. 2. Note that the nonlinear response function e+ectiuely is a
sum of local response functions in this example.

VI. ELECTRIC FIELD EXTERIOR TO THE SELVEDGE

Once the field inside the selvedge has been determined via self-consistent solutions to the appropriate integral equations,
the field exterior to the selvedge can be obtained directly from the knowledge of the relevant propagator parts. Let us
denote the divergence-free and rotational-free fields inside the selvedge by Ez(z) and EL(z), respectively. Thus, the
field in vacuum, Er(z ), which will be divergence-free, is given by

E+&(z)=E+&'o'(z)+ f K &(z,z'} [E r(z') +E L(z')]dz', z (10 (6.1)
SE

where Er' '(z) is the background field in vacuum. The appropriate kernel K t in this case has the explicit form (cf.
Fig. 2)

K (z,z )= —Lp n f I e( —z")[D (z —z")+I (z+z" )]+e(z")[G (z,z")+G (z,z" )]I o. (z",z')dz"
SE

(6.2)

as one readily verifies. Inside the metal surface in the bulk the electric field has both a divergence-free Er(z), and a
rotational-free, EL (z), component. The two components are determined by the equations

Ez(z)=Er' '(z)+ f K r+(z, z') [Ef(z')+EL (z')]dz', z ) 1, (6.3)
SE

and

Et (z)=EL' '(z)+ f KL+(z, z') [Er(z')+Ef(z')]dz', z) 1;
SE

where the kernels, cf. Fig. 2, are given by

(6 4)

K+(z, z )= i1,n f— [e(—z")G "(z,z")+e(z")[D"(z—z")+I (z,z")+I (z,z")]I o (z",z')dz",
SE

(6.5)

and

K I+(z,z')= i@ 0f Ie( ——z")G rL (z,z")+e(z")[Dtt (z z")+I rL (z,z—")+Itt (z,z")]] o (z",z')dz" .
SE

(6.6)

The background fields in the bulk, i.e., Ez' ' and EL' ', and in vacuum are for linear-field problems determined by the
SCIB model. For nonlinear-field problems these fields can be obtained by combining Eqs. (3.1)—(3.5), (5.1), and (5.2).
Hence,

Ez.' '(z;2)= 2iItoa) [—G gr (z,z', 2)+G Lr (z,z';2}] Jd g (z';2)dz'
0 t

—2lp co f Ie( —z')[D (z —z', 2)+I (z+z', 2)]+e(z')[G (z,z';2)+G (z,z', 2)]].J (z';2)dz',
SE

(6.7)

Ez.' '(z;2) = —2i goto f [D &))r(z —z';2)+I r))r(z, z', 2)+I t))r(z, z', 2)] Jdg, (z';2)dz'
0

2ip cof I—e( —z')G (z,z', 2)+e(z')[D (z —z', 2)+I (z,z';2)+I (z,z', 2)]I Jd (z', 2)dz
SE

(6.8)
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and

EL' '(z;2)= . e,e, Jd P(z;2) 2—ipocof [DL~L~(z —z', 2)+I z~L~(z, z';2)+II~I~(z, z', 2)] Jd P(z', 2)dz'
i doe 0

—2ip cof I8( —z')G (z,z';2)+8(z')[D (z —z', 2)+I (z,z', 2)+I (z,z', 2)]).J„(z',2)dz' .
SE

VII. COMPARISON TO PREVIOUS
PROPAGATOR THEORIES

%ithin the context of nonlocal, second-harmonic genera-
tion, the basic framework for an electromagnetic propa-
gator description incorporating nonlocal screening effects
was established some years ago by the present author,
and recently some preliminary steps mere taken in the
study of the nonlinear, selvedge field. To my
knowledge, the only other propagator formalism dealing
with nonlocal phenomena in second-harmonic generation
is that presented recently by Guyot-Sionnest, Chen, and
Shen. The work of Guyot-Sionnest et al., which em-
phasizes an analysis of interface nonlinearities stemming
from both structural asymmetries and field discontinui-
ties, deviates from the present work in many ways as I
shall demonstrate below. A minor difference is due to the
fact that Guyot-Sionnest et al. consider an interface be-
tween two media having complex dielectric constants of
the bulk which are local whereas I consider a metal-
vacuum surface and incorporate nonlocal effects in the
bulk response of the metal. A more important difference,
however, stems from the fact that Guyot-Sionnest et al.
use a local Green's function formalism whereas the
present work is based on a nonlocal formalism. This, for
instance, means that the background solution of the
present theory can incorporate effects stemming from
single-particle excitations and from the rotational-free
collective response of the medium which usually has a
very short penetration depth. In both nonlinear optics of
metals and semiconductors, these effects can be of ex-
treme importance. Of course also for a self-consistent
treatment of the nonlinear radiation from the selvedge re-
gion it is essential to incorporate screening effects associ-
ated with these mechanisms. Guyot-Sionnest et al. do
not try to make progress in the study of the solution to
the basic integral equation [see for instance Eq. (2.4)].
Being interested only in the field generated by nonlinear
wave mixing in the bulk of the two media, they claim that
the effect arising from the external selvedge current den-
sity is of no importance. This is hard to believe from (i)
what is known from studies of linear, nonlocal optics,
especially with p-polarized incident light and from (ii} the
fact that electron-hole pairs and plasmons are excited in
the surface region also in nonlinear optics. For a descrip-
tion of the nonlinear field inside the selvedge, a considera-
tion of the background solution alone is, of course, in-
correct.

Let us now compare the background solution from the
work of Sionnest et al. with that presented in Sec. V of
the present paper. The quite simple result for the back-
ground field given by Sionnest et al. is obtained, essen-

tially, by utilizing the continuity properties of the
Green's function across the plane z'=0. The derivation
(see Ref. 18) of the nonlocal Green's function used in the
present work was based on the following continuity equa-
tions:

G~~(z, z'~0 —) =6~~(z,z'~0+ ), (7.1)

aG„(zz O —)

az'
RGB(z,z'~0+ )

az'
(7.2)

and

G„„(z,z' —+0—) =G„„(z,z'~0+ ), (7.3)

G (z,z'~0 —) =G,„(z,z'~0+ }, (7.4)

BG„„(z,z' 0—)

+ig~~ G„,(z,z'~0 }-
az'

BG„„(z,z'~0+ )
+iQ„G„,( , z'~z0+ ), (7.5)

Bz

BG,„(z,z'~0 —)
+ig,

~

G„(z,z' 0 )—
az'

aG (zz O+)
+iQ„G„(z,z' 0+ ), (7.6)az'

oo

lim G(z,z") e ' (z",z')dz" e,z*~o—

lim f G(z,z" ) e ' (z",z')dz" e, ,z'~o+

(7.7)

as demonstrated in Appendix B. The appropriate linear
and nonlocal, dielectric tensor of the SCIB model is given

where those of Eqs. (7.1) and (7.2) are appropriate for s-
polarized propagation and the remaining ones for p-
polarized propagation. To facilitate the comparison with
the results of Sionnest et al., we use the fact that the
continuity conditions in Eqs. (7.5) and (7.6) can be re-
placed by the equivalent, vectorial relation
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by

e ' (z",z')=Biz" —z')U+ o ' (z" z')
@0'

(7.8)
lim

6„",'(z, z')

0
6 loc(

e sc"(z",z') -e'-(z')gz" —z )U, (7.9)

the continuity condition in Eq. (7.7) is reduced to

where 6 and U are the Dirac delta function and the unit
tensor, respectively. As in previous sections, we have
omitted the superfluous quantities Ql and 0 from the no-

tation. If the dielectric response is local (loc) and isotro-

pic) 1.e.)

6,' (z,z')

0 e"'(z '), (7.10)

6loc(z zr )

which is precisely the form given by Sionnest et al. To
stress that there is a local propagator associated with the
local dielectric response, we have added the superscript
loc to the Green's function in Eq. (7.10). By writing the
background field in Eq. (5.1) in the form

E' '(z;2q~~, 2') = —2ituoco G(z, z', 2q, 2') T(z', 2q, 2')dz',0 SE+B
) )

il

where

(7.11)

+(z'2qi~»2~) = f f ~(z' z" z"'qadi 2qi~ ~~2'):E(z"'qadi ~)E(z"'ql»~o)dz"'dz" (7.12)
SE+B

in a notation where SE + B means that the integrations extend over the selvedge (SE) plus bulk (B), it is readily realized
that the contribution to the ith component of the background field from the selvedge region in the local regime for the
dielectric response is given by

—2ip0~ G z, z';2qt~, 2' T z';2q~~, 2~ dz'
SE l

2igo—to g 6j"(z,z'=0;2q, 2ai)T (2q,,
~, 2io)+ lim [6 (z,z';2q, 2to)e'"(z', 2')]Y,(2q~, 2'), (7.13)

j =x,y
z'~0

where we have defined the surface (S) current density T via

X f f f ~jkl(z, z, z )El(z 'qll'to)+k(z 'qadi al)dz "z "z j=" y
k, l

y f f f [e"(z',2~)] ski(z', z",z'")El(z"', qli, ~)Ek(z";q~i, ~)dz"'dz "dz', j=z .
k, l SE

To obtain the result in Eq. (7.13) with (7.14), which is

precisely equivalent to that of Sionnest et al. , it has been
assumed that 6 "(j=x,y ) and 6 e"' assume, in the en-

tire selvedge region, essentially their values at z'=0. By
insertion of G ' ' into Eq. (7.11) it readily follows that also
the bulk (8) contribution to the background field in Eq.
(7.11) is identical to that given by Sionnest et al. The
nonlinear surface susceptibility introduced by Sionnest et
al. in Eqs. (10) and (11) of their paper is readily ob-
tained from Eq. (7.14) utilizing that for the fundamental
field E, Ey) and e'"E, is almost constant across the sel-

vedge region. With this remark the contact to the propa-
gator work of Sionnest, Chen, and Shen has been estab-
lished. For a discussion of the relation of the theory of
Sionnest et al. to those derived by other authors the
reader is referred to Ref. 20.

A perturbative Green's-function approach was
developed some years ago by Bagchi, Barrera, and Ra-

jagopal ' to investigate in linear optics the electric field

near a metal surface with a smooth electron-density
profile. This propagator formalism of Bagchi et al. ,
which among other things led to new and potentially use-
ful expressions for the changes in the reAection
coefficients for s- and p-polarized light from the standard
Fresnel coefficients, can easily be obtained from the
present propagator theory if one makes a number of addi-
tional approximations. Thus, Bagchi et al. ' use a local
Green's-function formalism taking the classical Fresnel
problem for an isotropic metal as the background prob-
lern and assume that the bulk response is local. Further-
more, they make the long-wavelength approximation
q~~~0 in the dielectric response tensor. In this long-
wavelength limit the conductivity response tensor

o(z, z'; , 0)t=ocr""""(z;co)U6(z—z')+cr (z,z', O, ro)

(7.15)
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is diagonal. Since the Fresnel (Fresn) response tensor is

proportional to the unit tensor, 0. is also diagonal.
Now, by assuming that the expression in Eq. (7.10), with

is constant throughout the selvedge region, the truncated
kernels in Eqs. (2.16}and (2.17) are given by

KT(z, z', O, co)= —ippcoG'"(z, z'=0) f cr (z",z'}dz"
SE

e (z;cp)=1+ 0' (z;co),
E'0CO

(7.16)
and

(7.17)

G„"„'(z,z'=0) f cr„„(z",z')dz"

K tr(z, z';0, cp)= —type II I tlG,„"(z,z'=0) cr„„(z",z')dz"
SE

lim [e"'(z")G„",'(z, z" )]z" 0

e" z" o„z",z' z"
SE

lim [e"'(z")G,' (z,z")]
z"~0

)& f [e'"(z")] 'cr„(z",z')dz"
SE

(7.18)

leaving out the parameters Q~~~O and cp from the terms on the right-hand side of the equations. Since only the self-

field part of the rotational-free propagator survives in the local limit, it follows immediately that

K~ (z,z', O, cp)= [8(—z)+e (co)8(z)]we vcr, E(z,z )
~o

(7.19)

for the Fresnel-background problem. Furthermore, as it is known' ' ' that the Fresnel-background field is divergence-
free so that et '~(z) of Eq. (2.21) is zero, the calculations of Bagchi et al. ' are described within the framework of Eqs.
(2.19)—(2.21) setting et '~(z ) =0 and utilizing Eqs. (7.17)—(7.19). By assuming that eT(z') is constant across the selvedge
one obtains by combining Eqs. (2.19) and (7.17)

eT(z)=eP '(z) ippcoer(z =—0)G'"(z,z'=0) cr (z",z')dz "dz',
sE yy

with

(7.20}

e,"'(z =0)
eT(z =0)=

1+ippcpGrr"(z=O, z'=0) f f crrr(z", z')dz"dz'
(7.21)

i.e., precisely the result of Bagchi et al. ' To determine
the p-polarized field eT(z), following Bagchi et al. , ' one
introduces the inverse, dielectric response function e,,
via

ic vacuum propagator in all space. In the notation of this
work, the vacuum propagator has the following tensor-
product ( ) structure

E,(z) =f e,, '(z, z', O, co)D, (z')dz' (7.22)

iq~ /z —z'/

D PT(z —z') = [ere +8(z —z')e;se;
2lg I

and assumes that the normal component of the D field,
i.e., D, (z), and the tangential component of the electric
field, are constant across the selvedge. This procedure,
after adding Eqs. (2.20) and (2.21), reproduces itnmediate-
ly the results of Bagchi et al. ' which we desist from writ-
ing down here.

A Green's function formalism has also been used by
Sipe to study the coupling between the bulk and the sel-
vedge in linear, nonlocal optics. Sipe's approach deviates
basically from the present one due to his use of the dyad-

+8(z' —z )e„e„], (7.23)

D PT(z —z') =G p(z —z')+G p (z —z'),

where

(7.24)

where e;=cp(qy 0 q[[)/cp and e„=cp(—qJ 0 q[[)/cp

cf. Appendix A. Sipe divides the vacuum propagator
into two pieces, i.e.,
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G (z —z') =—D (z —z', c )

2

I

—'I
e 'i [e„c81e„—e,e, +i[8(z—z') —8(z' —z)](e„@e,+e,@e„)I, (7.25)

is the form of the vacuum propagator in the nonretarded
(NR) limit, that is for co~ ~. Since qi =iqii in this limit,
it is easy to demonstrate that Go (z —z')exp[iqii(x
—x')] and its transpose is rotational-free in the r and r'
coordinates, respectively. One should note that
Go "(z z')—exp[iqii(x —x')] is also divergence-free, be-
cause D rr(z —z')exp[iqii(x —x')] is. The e~xlicit ex-

pression for G Or is obtained by subtracting G 0
" from

D ~z-. We have added a superscript T to Gp to indicate
that Go(z —z')exp[iqii(x —x')] and its transposition are
divergence-free in r and r', respectively. Inside the sel-
vedge Sipe uses the long-wavelength limit expressions for

Go and Go", i.e., he sets exp(iqz i
z —z'

i
)

=exp( —
qadi ~

z —z'
~

) = 1. In this approximation G o,
given by

APPENDIX A: THE FUNCTIONS APPEARING
IN THE SEPARABLE KERNELS

—i 'z&',(z )=8( —z )e (A 1)

On the basis of the explicit expressions for the SCIB-
propagator terms given in Ref. 19, the unknown func-
tions in Eqs. (3.13)—(3.15) can be obtained. Since
the functions always appear as products, i.e.,
Jfz; (z)X'r (z ) &~&.j(z)X( J(z"), and %~& (z)
X~I (z"), z and z" independent factors of course can be
attached to either the first or the second function in a
given product, depending on what one chooses. With
this freedom of choice in mind, the calculated functions
are

Cp
Q p p cy(3)cy+

'2lq y
2 co

2

—(

qadi

+ iq i )e„e„

+ qi(
—l

p Cz(3Cz
qi

(7.26)

X'z, ,(z" ) = 0 8( —z" )e
2sqo,

lqgz

+(1—r') f dqi,
2m. — Nr q

8(z) „ I+L(Qii, Q)qi
%'rz(z)= e ' dq~,

4n —~ Nr(q )

0

X'& z(z" ) = (1—r')8( —z" )e

(A2)

(A3)

(A4)

becomes independent of z and z', and in on-diagonal
form. In the long-wavelength limit Gp is still a func-
tion of z —z', via the Heaviside step functions [see Eq.
(7.25)]. Utilizing also the vacuum self-field contribution
g LL (z —z') =(co/co) 5(z —z')e, e, to the propagator,
the results of Sipe are easily established starting from
Eqs. (2.1)—(2.3) assuming the bulk response to be isotro-
pic and local. and

p8(z) f ~ ql qx iq, id2n— Nr. (q )

II

(rz3" ) =i (1 r') — dqi,, 8(z") ~ e
2n —~ Nr(q)

(A5)

(A6)

—i 0z
&~r, (z)=8( —z)e ' e„, (A7)

X~r, (z")=
II

r~ 0 ii 0 8 iqiz

0

dqi, (A8)

(A9)

0

Xz 2(z")=
0 (1+r )8( —z")e ' e, ,

~oqi
(A 10)

Cpq

0
qNr(q )

o

T iqiz
eg (Qii, q )e dq (A 1 1)

X~r 3(z" ) =
'2 lI

n 1+r 8(z")
c '0 2~ — N(q) "' ' N(q) ' '

q
(A12)
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and

e(z)JPL(z)= eR(QII, qi. )
N

e '
dq

2TI qNL q
(A13}

Jf (z"}=
Cp

iqiz"
Q 1+r~ '&0 —ie,z" e(z") QII L qi T8( —z"}e ' e;+ el(QII q|)-

N I QII ql

(A14)

ln the equations above we have introduced the abbreviations qi ——[(Q/co)' —Q']'" and q =(QII +qi)'" and th«»-
lowing unit vectors in truncated notation e;=co(qi, —QII)/Q, e„=co(—qi, —QII)/Q eI ( qi —

QII }/q
eI=(QII, —qi)/q, e„=(qi,—QII)/q, and eR ——(QII, qi)/q. Furthermore, r'=r'(QII, Q) and r =r (QII, Q) denote the
amplitude refiection coefficients (from the vacuum side) for s- and p-polarized light, respectively. The functions
NT =Nr(q, Q) and NL NI (q——, Q) describing collective and single-particle excitations associated with the divergence-
free ( T) and the rotational-free (L ) parts of the electromagnetic field are well known from previous studies in the field.
The explicit expressions for r', rr, Nr, NL, and the functions L =L(QII, Q) and M =M(QII, Q) can be found in Ref. 19,
but are not needed here. A detailed discussion of the physical interpretation of the structure of the separable propaga-
tor terms forming the basis for the equations of this Appendix is also presented in Ref. 19. One should note that an
unimportant (for the present work) factor exp( iqi—O+ ) has been omitted from some of the equations in this Appendix,
cf. Ref. 19.

APPENDIX B: NEW FORMULATION OF THE BOUNDARY CONDITIONS FOR THE NONLOCAL PROPAGATOR

To reformulate the boundary conditions in Eqs. (7.5}and (7.6) in a physically transparent manner, we take as a starting
point the integrodiff'erential equation for the propagator G" (z', z;@II,Q) of Ref. 18, i.e.,

U
Cp

a2—
QII +QII „ „—'QII e„e, +e,e„), +(U —e,e, ) 2

"G" (z', z}x x II x z z x a z z

+i@ Q f o ' (z', z"} G" (z",z)dz"=5(z' —z)U .

Among the nine equations of (B1) the following two are of relevance for our purpose:

(Bl)

aG;„'d(z,z)
+Q

az
'2

G" (z' z)+i Q f [o ' (z', z")6„'„'(z",z)+o ' (z', z")6;„'(z",z)]dz", (B2)

and

iQII, +QIIG""(z',z ) = —5(z' —z )+ 6;,' (z', z )
az Cp

+ipoQ f [o,„'(z', z")G„(z",z)+o„'(z', z")G"d(z",z)]dz" . (B3)

By introducing the nonlocal, dielectric response tensor e (z', z";@II,Q) given in Eq. (7.8), Eqs. (B2}and (B3}can be
written in the form

aG„(z',z )iQII, iQII 6;„'(z—', z)az' Cp
f [e ' (z', z") G""(z",z)],„dz", (B4)

and

aG;,"(z,z)
iQII —

iQII 6„(z,z )az'

2

J [e ' (z', z") G" (z",z)]„dz"—5(z' —z) .
Cp —00

(B5)
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Now, since we know, cf. Ref. 18, that the left-hand sides of Eqs. (B4) and (B5) are continuous at z'=(), the contlnulty of
the expressions

I [e ' (z', z") G" (z",z)] dz"

and

f [~&SCIB( i ii
) G old( ii

) ] d ii

at z'=0 («r z&0) follows readily. The propagator G(z, z', Q~~, Q) of the present work is related to G "d via'9

G(z, z")=
g old(

—g""(z-,z)

g'"(z" z)

g old(

0

g old(

(B6)

To rewrite the continuity conditions above in terms of
G(z, z") one makes use of the explicit expression for
P ' (z', z") given by'

[P""(z',z")],, =e(z )e(z")[~,", (z —z")

and

tr,",(z) = —o„",( —z),

t,r", (z)=cr,",( —z) .

(B9)

(B10)

+gjo;J (z'+z")], By combining Eqs. (7.8) and (B7)—(B10)one can show
(B7)

where o. " is the conductivity tensor of a homogeneous
and infinitely extended jellium. The quantity (J is given

by pl=i for j=x or y and g = —1 for j=z. Since
P "(z) is symmetric, i.e.,

and

SCIB( i i i
) SCIB(

xz ~ zx

SCIB( i ii
) SCIB(

zz ~ zz

(Bl 1)

(B12)

o„",(z) =cr,"„(z),
and the diagonal and off-diagonal elements of o "(z ) are
even and uneven functions of z, respectively, one has

Finally, by inserting Eqs. (B6), (Bl1), and (B12) into the
continuity conditions written between Eqs. (B5) and (B6),
one readily establishes the vectorial relation in Eq. (7.7).

'N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).
~N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).
R. Kubo, Phys. Soc. Jpn. 12, 570 (1957).

4P. J. Feibelman, Phys. Rev. B 12, 1319 (1975).
5P. J. Feibelman, Phys. Rev. Lett. 34, 1092 (1975).
P. J. Feibelman, Phys. Rev. B 12, 4282 (1975).

7P. J. Feibelman, Phys. Rev. B 14, 762 (1976).
P. J. Feibelman, Frog. Surf. Sci. 12, 287 (1982).
A. Bagchi, Phys. Rev. B 15, 3060 (1976).
R. G. Barrera and A. Bagchi, Phys. Rev. B 20, 3186 (1979).
T. Maniv and H. Metiu, Phys. Rev. B 22, 4731 (1980).
K. L. Kliewer and R. Fuchs, Phys. Rev. 153, 498 (1967).

' K. L. Klieyer and R. Fuchs, Phys. Rev. 172, 607 (1968).
' R. Fuchs and K. L. Kliewer, Phys. Rev. 185, 905 (1969).
' K. L. Kliewer and R. Fuchs, Phys. Rev. B 2, 2923 (1970).
' R. R. Gerhardts, Phys. Scr. 28, 235 (1983).

F. Forstmann and R. R. Gerhardts, Metal Optics Near the
Plasma Frequency, Vol. 109 of Springer Tracts in Modern

Physics, edited by G. Hohler (Springer, Berlin, 1986).
O. Keller, Phys. Rev. B 34, 3883 (1986).
O. Keller, Phys. Rev. B 37, 10588 (1988).
P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B
33, 8254 (1986).

~~A. Bagchi, R. G. Barrera, and A. K. Rajagopal, Phys. Rev. B
20, 4824 (1979).
J. E. Sipe, Phys. Rev. B 22, 1589 (1980).

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, Phys.
Rev. Lett. 46, 1010 (1981).

24T. A. Driscoll and D. Guidotti, Phys. Rev. B 28, 1171 (1983).
C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 51,
900 (1983).
H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett.
5i, 1983 (1983).
H. W. K. Tom, C. M. Mate, X. D. Zhu, J. E. Crowell, T. F.
Heinz, G. A. Somorjai, and Y. R. Shen, Phys. Rev. Lett. 52,
348 (1984).

8T. F. Heinz, M. M. T. Loy, and W. A. Thompson, Phys. Rev.
Lett. 54, 63 (1985).
J. A. Litwin, J. E. Sipe, and H. M. van Driel, Phys. Rev. B 31,
5543 (1985).
H. W. K. Tom and G. D. Aumiller, Phys. Rev. B 33, 8818
(1986).
J. E. Sipe, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35,
1129 (1987).

D. L. Mills and K. R. Subbaswamy, in Progress in Optics XIX,
edited by E. Wolf (North-Holland, Amsterdam, 1981),p. 47.

33Surface Polaritons, Vol. 1, Pt. III of Modern Problems in Con

densed Matter Sciences edited by V. M. Agranovich and D. L.
Mills (North-Holland, Amsterdam, 1982).

340. Keller, Phys. Rev. B 29, 4659 (1984).
3sElectromagnetic Surface Excitations, Vol. 3, Part II of

Springer Series on 8'aUe Phenomena, edited by R. F. challis



8060 OLE KELLER 38

and G. I. Stegeman (Springer, Berlin, 1986).
O. Keller, Opt. Acta 33, 673 (1986).
O. Keller, in Coherence and Quantum Optics V, edited by L.
Mandel and E. Wolf (Plenum, New York, 1984), p. 1147.
O. Keller, Phys. Rev. B 31, 5028 (1985).

O. Keller, Phys. Rev. B 33, 990 (1986).
~O. Keller, Institute of Physics Report, University of Aalborg,

1987 (unpublished).
4'J. E. Sipe, J. Opt. Soc. Am. B 4, 481 (1987).
4 O. Keller and K. Pedersen, J. Phys. C 19, 3631 (1986).


