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We report a self-consistent calculation of the optical nonlinear response of the electrons of a small

metal spherical particle. We use the jellium model to describe the metal sphere and work within the
random-phase approximation. This calculation allows us to obtain general expressions of the linear
polarizability and of the third-order nonlinear source polarization, in a form very similar to those
calculated in the local approximation. This model has been applied numerically to the case of a
homogeneous response of the electrons and it is shown that screening effects may be important in

the nonlinear response of spheres with radii in the range of a few nanometers.

I. INTRODUCTION

In the last decade, much attention has been paid to the
study of optical properties of small metallic particles. '

The mechanisms of the surface plasma resonance ' and
of the broadening of the absorption band ' in small
spherical particles have been investigated in a large num-
ber of papers. The ca1culations were first performed as-
suming independent electrons in the local approxima-
tion' ' and improvements were then brought by intro-
ducing the nonloca1 character of the response of elec-
trons. " A more general situation, including exchange
and correlation effects in the quantum treatment of the
dynamical polarizability has also been proposed by
Ekardt

More recently, Ricard et al. ' ' have studied non-
linear optical phenomena in such particles by means of
optical phase conjugation in gold and silver colloids. The
surface plasma resonance occurs for this nonlinear pro-
cess' in the same way as for linear properties. Indeed, a
first approach using an effective dielectric constant mod-
el, shows that the resonant local field factor f, , defined

by the ratio between the field inside and outside the
sphere, enters to the fourth power in the third-order Kerr
nonlinear source polarization PNLs(co). In this treat-
ment, ' ' a separation occurs between the electronic
response of the metal characterized by the nonlinear
third-order susceptibility X' '(co„co2,co3) and the local-
field factor f, (co):

PNLs(~) =3p
I f 1

(~)
I
'f i (~ »'m'(~ —~ ~)

X
i
Eo(co)

~

'Eo(co),

where p is the volume fraction occupied by the metal par-
ticles and Eo(co) is the external field.

A calculation of the Kerr-type polarizability 7' ' for
small metal spheres, using the quantum-mechanical

description of a gas of free electrons in a three-
dirnensional spherical well is described in Ref. I4. The
first model accounts for the observed anisotropy of this
polarizability and provides an estimate of its magnitude.
Nevertheless, the nonlinear source polarization given in
Eq. (I) is obtained from a local response theory of the
metal for which the dielectric constant e(co) is assumed to
be homogeneous overall in the sphere.

Our purpose in this paper is to perform a calculation of
a general self-consistent form for PNLs(co), for the same
system, i.e., small metallic spheres embedded in a dielec-
tric medium. In this approach, the charge-density sus-
ceptibility formalism is applied within the random-phase
approximation (RPA). A jellium model with infinite bar-
rier ' ' is used to describe the electronic properties of
the metal. It is well understood that this approximation
can be crude, but it seems to us a necessary condition to
perform tractable analytical calculations, more specially
in the expression of the boundary condition at the sphere
surface.

In Sec. II, the main aspects of the linear response of a
spherical particle are recovered within the framework of
Newns's method. ' The same formalism is used to deter-
mine the third-order nonlinear source polarization in Sec.
III. It is shown that a local-field factor still occurs and
enters again to the fourth power as in Refs. 13 and 14. In
Sec. V the values of the factor f, evaluated for a com-
plete local treatment are compared with those issued
from a nonlocal one based on the hydrodynamical mod-
el.'

II. LINEAR RESPONSE

We first calculate, in a self-consistent way, the linear
response of the electrons confined in a metallic sphere of
radius a, embedded in a dielectric medium with real
dielectric constant e2(co). The sphere is submitted to an
external electric field E given by [cf. Fig. (I)]
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the wave numbers k are chosen so that'

E (&)
and

dj 1 (X

dx x =ka
=0 (6)

ip lect r i c
Q eclium

&k=j i(«) jo(—ku)j 2(k~) .

2

aka'

where Vis the volume of the sphere.

The inverse transform is given by
' 1/2

g(k)= f drj, (kr)Y, (8,&)g(r),
v

(6')

A. Potential inside the sphere

FIG. 1. Geometry of a spherical metal particle embedded in

a dielectric medium. m "(co) at the center of the sphere
represents the equivalent nonlinear dipole moment induced in
the metal [Eq. (33)].

To derive a self-consistent expression of the linear po-
larizability of the metallic sphere, we first have to calcu-
late the electric potential inside the particle. In the
framework of the RPA, we can write the induced elec-
tronic charge density 5p(r, co) as

5p(r, co)= f dr'Xs(r, r', co)P, (r', co), (&)
v

where Xz represents the linear density-density response
function' and P, (r', co) is the potential inside the metal.
The transformation of Eq. (8) in the (k, co) representation
leads to

K=[ED(co)e' '+c.c.]U, , (2)
5p(k, co)= QXs(k, k', co)P, (k', co),

k'
(9)

where U, is a unit vector parallel to the Oz axis. The
wavelength A, of this field is assumed to be very large with
respect to the sphere radius a, so that retardation effects
can be neglected. As a consequence, the external field ap-
pears as the gradient of the electric potential $0(r)
defined by

with

Xs(k, k', co) = 2

u'( ~„~„.)'"
X f fdr drj', (kr)j, (k'r') Y, {8,&)

x Y', (8', f')X, (r, r', ~) . (10)
$0(r) = Eo(co)r cos8—,

where 8=(U„r).
Since in this paper all the functions g(r) describing a

physical quantity inside the sphere (
~

r { &a } are separ-
able like

The self-consistency of the problem is obtained after writ-
ing the Poisson equation,

bP((r, co) = —4n5p(r, co),

which becomes in the (k, co) representation

g(r)= g(r, 8$)= g 2

Wka'

' 1/2

j,(kr)Y, (8,$)g(k),

g (r }=g(r ) Y', (8,g),
we can expand them in a similar way as in Ref. 16:

(4)
' 1/2

fdrj, (kr)Y, (8,$)b,,g&(r, co)
aka'

= —4m. g Xs{k,k', co}P,(k', co) . (12)
k, k'

where j, is the spherical Bessel function of first order and
We now apply the second Green identity on the left-hand
side to solve Eq. (12}:

f drj, (kr)Y, (8,&)t,p, (r, co)= f dr&, (r, )b,,c[oj, (kr)Y, {8,&)]+f a dQ{j,(kr)Y, (8,&)n.V,&,(r, co)
S

—P, (r, co)n V,[j,(kr) Y, (8,P)]], (13)
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20

Ak
ge(k, k', cp)P, (k', cp) =

where indicates an integration over the surface of
S

the sphere, d 0 represents the elementary solid angle, and
n is the normal unit vector (cf. Fig. 1). Equation (13), cal-
culated by introducing the condition (6), reduces to

1/2

P', (a, cp)j, (ka), (14)

6(k, k', cp)=k ok „4m—.Xs(k, k', cp) . (16)

and, as in the theory of Newns, ' we introduce the follow-
ing notation:

where

BP)(r, cp)
P, (a, cp) =

Br
(15)

Note that the function k 6(k, k', cp) is the RPA dielec-
tric constant appropriate to this problem. ' All the phys-
ical information about the metal particle is contained in

this quantity. Returning now to the (r, cp) representation
leads to

j,(kr)j,(k'a )

P&(r, co)= —P&(a, cp) Y, (8,$) g '(k, k', cp) .
k, k' ( Ak Ak')

(17)

This latter relation connects the potential at any point of the metal with its normal derivative at the surface of the metal
particle.

B. Potential outside the sphere

The electric potential in the dielectric medium is written as

y, (r, co)=yp(r, cp)+ y~„(r, rd ), (18)

where Pp(r, cp) is given by Eq. (3). $2„(r,cp) represents the response potential to Pp(r, co) and obeys the Laplace equation
in the dielectric

b,f„(r,cp)=0,
~

r
~

&a .

In the present problem, we look for solutions of the form

A (cp) Y, (8,g)
$2„(r,cp) =

p
2

(19)

(20)

where A(cp) is a quantity to be determined. The boundary conditions at r =a for the electric potentials [Eqs. (17) and
(18)] lead to the following system of equations:

P~(a, )c+pe2(cp) = —e ( 2)Ecpp( )&cp4n'/3,
2A (co)

a

P', (a, cp) V(a, co) — = Ep(cp)a &4m l3—,
A (cp)

a

where

j,(kr)j, (k'a )
V(r„cp) =—g '(k, k', co) .

k, k' ( Ak A k')

(21)

(22)

The substitution of Eq. (9) after integration leads to
1/2

/c
j, (ka )P(cp) = &4m. l3a

k k' a ~k

As an example, the induced electric dipole moment in the
sphere can be obtained from these potentials. We have

P(cp)=P, (cp)= f dr r cos85p(r) . (25)
V

These equations allow us to express the coefficients
A (co) and P'(a, co) in terms of the dynamical properties of
the electrons in the sphere. The electric potentials in
each region of space are then given by

XXs(k, k', co)P, (k', cp) .

Now, by rewriting Eq. (14) as

g Xs(k, k', co)P, (k', cp)
k'

(26)

3e,(~)a
P, (r, co) = Ep(co) cos8 — V(r, co),

a +2@2(cp)V(a, cp)
(23)

' 1/2

k P, (k, co) — P', (a, cp)j, (ka )
4m

a —e2(co)V(a, cp)
$2(r, co) =Ep(co) cos8

r a+2ez cp V(a, co)
(24)

and by using the following identity

(27)
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j,(kr)j, (ka)

A, k'

we obtain finally

(28)
After expressing Eq. (34) in the (k, co) representation and
using the notation of Sec. II, we can write

g6(k, k', co)P, (k', co)
k'

P(co)=a e2(co)
' Eo(co) .

a —V(a, co)

a+2e2 co 7 a, co
(29) 2a

Ak

' 1/2

p ', (a, co)j, (ka)

This expression, which was calculated without any fur-
ther approximation than the RPA, has a similar form to
those obtained in Refs. (17) and (9) (cf. Sec. IV).

4m+
3

1/2 1/2
2

km NL(o3)
a Ak

(36)

III. NONLINEAR RESPONSE

X $~(r~, co)pf(rz, co)

X p, (r„cu)dr, drzdr3 (30)

where 1'7~+~+1' represents the third-order nonlinear sus-
ceptibility of the metal sphere in absence of perturba-
tion

%'e now examine the nonlinear behavior of the elec-
trons inside the metal particle. Due to the spherical sym-
metry of the problem, the nonlinear second-order contri-
butions vanish. Moreover, among all the possible third-
order effects, we will study the case of the degenerate
four-wave mixing, with terms oscillating at the frequency
e only. In the framework of the charge-density suscepti-
bility formalism, ' ' the internal electric potential
P~(r, co) induces a nonlinear variation of the electronic
charge density defined by

5p' '(r, co)= f f f&Xc'+c'+&(r, r„r2, r„co, co, co)—

with

ay,
P ', (a, co) = (r, co)

r=a
(36')

where the additional source term is defined by

k'j)(kr)
JV(r, co) = '(k, k', co) .

a I, k (AkAk)'
(37')

B. The nonlinear source polarization

The nonlinear dipole moment m "(co) generates an ex-
tra potential $2 (r, c0), outside the sphere, having the fol-

lowing form:

The effective potential P, (r, co) inside the sphere is ob-
tained from the same algebra developed in Sec. II:

y/(r, a3) =[/ I(a, co)P(r, co)

+(4n /3)' m (co)JV(r, co)]Y, (8,P), (37)

A. The eft'ective electric potential
inside the sphere

( )
1 m N"(c0) cosg

(38)

The extra contribution 5p' I modifies the initial poten-
tial P, (r, co) calculated in the previous section. One there-
fore defines an effective potential P&(r, co) by (39)

The factor B(co) can be determined by applying again
the boundary conditions. We have then

m (co)JV(a, co) a
Pz~(r, co)= '

3
cos& .

y, (r, ~)=y, (r, ~)+5y(r, ~) (31)

m (co)= f 5p' '(r, co)rdr .
v

Thus, the Poisson equation becomes

(33)

6,$,(r, c0)= 4n5p(r, co)+—4n.m. (co) V,5(r), (34)

where it may be noted that now the linear induced charge
density is defined by

5p(r, co) = f Xs(r, r', cu)P, (r', co)dr' . (35)
v

which must verify the Poisson equation with a nonlinear
source term:

A,P, (r, co) = —4~5p(r, co) —4n.5p' '(r, co) .

The introduction of Eq. (30) in Eq. (32) would lead to an
untractable problem. So we replace 5 ' '(r, co) by an
equivalent nonlinear dipole moment m (co) placed at
the center of the sphere and directed along the z axis (cf.
Fig. 1).

Since the potential generated by a dipole moment
mN s(co) seen by an observer lying outside the sphere,
may be defined by the equation'

1 m (co) cos8
(r, co) =

e3 N T
(40)

then from Eqs. (39) and (40), the source dipole moment is
given by

a'JV(a, co)e2(co)
m NLs(co) =m NL(co)

a +2@2(co)9'(a,co)
(41)

PN~L~s(co) =Nm (co) (42)

or, from Eqs. (23), (30), (33), and (41),

Now, in order to obtain the expression of the nonlinear
source polarization of a composite medium containing X
spheres per unit volume, one writes
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PNLS(~)(3)
27NJV(a, co)ei(co)a

~

a+2e2(co)P(a, co)
~

[a+2m&(co)9'(a, co)]

y f f f&X&+&+i'(r, r„r~, r„co, —co, pi)V(r„co}9*('r2,co)V(ri, co)

X 1 COSH COSOi COS02 COS83dr dr, dr2dri
~
Ep(pi }

~
Ep(pi } (43)

XT4V,5(r)V, 5(r, )V, 5(r2)V, 5(r~) . (44)

where they symbol T4 indicates the contraction of two
fourth-rank tensors and X' ' represents the third-order lo-

cal dipolar susceptibility of the metal particle. A model
calculation of this quantity was performed in Ref. 14.

The substitution of Eq. (44) in Eq. (43) leads to

PNLs(~}=31 I Ji(~) I f i()X'm'(~ —~ ~)

X
i
Ep(co)

i
Ep(co),

where X' '=X' '„„and the factor j,(cu) is defined by

JV(a, co)e2(co)
f, (pi) =a

a+2e2(pi)9'(a, co)

(45)

(46)

Equation (45) has a similar form to that obtained from
the local treatment [cf. Eq. (1)]. Thus Ji (co) appears as a
new local field factor which, for the non linear process
studied here, takes into accout the spatial dispersion
effect in the sphere. Moreover, by applying the following
identity

Up to now, the only approximations done are the RPA,
the infinite barrier and, in the case of the nonlinear
response, the replacement of the actual 5p' ' by a dipole
located at the center of the sphere. So, Eq. (43) is very
general and is the central result of this paper. But, as it
stands, it is of limited practical use unless one knows an
expression for ~X~+~+~.

One possible way would be to calculate this nonlinear
susceptibility applying the density-functional formalism
proposed by Senatore and Subbaswamy' to study the
nonlinear response of closed-shell atoms. Given that the
direct transposition of this nonlocal treatment to a metal
sphere is not presently possible, we limit the numerical
study to a simplified model which uses the dipolar ap-
proximation for the evaluation of l'Xl'+1'+1"

i'X~+i'+~(r, ri, rz, r&, co, —co, co)

=3VX' '(co, —co, co)

We remark also that the factor f, (co) occurs four times in
the nonlinear source polarization given by the Eq. (45) in
a similar way as for the local treatment. ' However, our
present calculation, based on the RPA response functions
of the electrons, is more rigorous since it does not intro-
duce any effective dielectric constant. Such an approach
allows us to understand the physical origin of the fourth
power of the factor f, (co). Three factors are due to the
third-order nonlinear process in the sphere and the
fourth occurs when one examines, outside the sphere, the
field generated by this nonlinear polarization.

The calculation of X' ' reported in Ref. (14) assumes an
electric field uniform over the metal sphere, which is the
case in the local approximation. One may then wonder
whether the mean field (Ei(co) ) inside the sphere is not a
more physically relevant quantity than the field at the
center of the sphere. These considerations, leading to
another local field factor fi(ro), are detailed in the Ap-
pendix. The two quantities differ because of the nonuni-
formity of the electric field inside the sphere when nonlo-
cality is taken into account. However, even in this case,
the field is uniform over the major part of the sphere and
starts decreasing 5-6 A from the surface where it almost
vanishes. At present, it is not clear which of these two
quantities (mean field or field at center) is the most
relevant. We recall anyway that the correct result is Eq.
(43).

IV. CONNECTION WITH OTHER APPROACHES

8(k, k', co)=k 5k k,e(co), (49)

where e(co) is the local dielectric constant of the metal
sphere. In this case, we have very simple relations for 9'

and JV:

If we neglect the nonlocal behavior of the response of
the electrons, the linear susceptibility Xs(r, r', co) becomes
independent of the position r and r' in the metal. Then,
Eq. (16) reads

3 i}V(r,p~)
JV a, co)= (47) V(r, co)=r le{pi), JV(a, co}=3/[a e(pi)] (50}

r=0

E, (r =O, co) =f, (co)Ep(co) .

it is possible to establish that

{48)

and known results of electrostatics' are recovered after
introducing these relations in Eqs. (29) and (46). The
linear polarization P(ar) and the local field factor fi(pi)
are simplified as

The factor f, thus connects the electric field at the center
of the sphere to the applied one. This simple expression
[Eq. (48)] is a consequence of the dipolar approximation
used to determine the nonlinear response of the electrons. and

e2(co )[e(co ) —1]
P(co) =a' &p(p~)

e(co ) +2e2( pi)
(51)



OPTICAL NONLINEAR RESPONSE OF SMALL METAL. . . 7995

3e,(~)
f, (co)=

e(cd)+2e2(co)
(52)

Another interesting approximation is the specular
reflection model (SRM) for electrons at the bounding sur-
face. ' In this case, the response of the free electrons in
the sphere is assumed to be homogeneous. We have then,
between the function A(k, k', cd) and the Lindhard bulk
dielectric constant ' e(k, co), the following relation:

8(k, k', co)=k 5„„e(k,co) . (53)

Moreover, when we replace the discrete sum on the wave
number k in Eq. (22) by an integral, ' we obtain

P(r, co)=3a F(r, co),

where, we define, as Dasgupta and Fuchs,

+„jt(kr)j, (ka)
F(r, co)=- dk .

p e(k, co)

(54)

(55)

Within this approximation, the linear polarization P(co)
becomes

1 3aF(a,—co)
P(co ) =a e2(cd ) Ep(cd)1+6a ez co F a, co

which is in agreement with the result of Ref. 9.

where 5 =3/5vF. This equation allows us to evaluate the
factor V(a, co ) [Eq. (54)] analytically. ' We have then

2
COP

V( r, co =r
~2/2~2

30 co
I3/p(rtr )K3/2(rta ), (60)

cpa'q'& ar

' 1/2
co /ep —co —t cd /1'P

2
(61)

The above relations (57) to (61) are used to draw the
factors f, , f, and f, defined by Eqs. (52), (46), and (A3),
respectively as a function of the radius for a gold sphere.
We have chosen two typical frequencies co, and ~2 and a
surrounding dielectric of index equal to 1.5 (glass).

For the frequency co, =3.55X10' s ', we are very
close to the surface plasma resonance [when Re(e)
= —2e2] and ep= 10.3+i l. 87.

For the second value co2 ——3.37X10' s ', we have
eo ——9.93+i1.33.

Figures 2(a) and 2(b) present the real and the imaginary

where I3/2 and K3/2 are modified Bessel functions of
half-integer order and

r

V. NUMERICAL RESULTS

Equation (45) can be used to estimate the nonlinear po-
larization PNLs(cd). In this equation two quantities must
be calculated: the dipolar susceptibility X' '(co, —co, co) of
the sphere and the local-field factor f, (co). A calculation
of g' '(co, —co, co) is performed in Ref. 14 from standard
perturbation theory applied to independent electrons in
an infinite spherical potential well. To evaluate numeri-
cally the factor ft, we consider the Eqs. (52), (46), and
(A3).

Within the local approximation [i.e., Eq. (52)], a Drude
dielectric function is used:

il-Re(f )J
-Im(f ]

1

2-

I0.

2
COP

e(co) =ep(co)—
co( co + t 7' )

(57) -Re(r, )

(F, &

20 30 a(nm)

2-
where the complex constant ep(co) is calculated from the
data of Ref. 22 and

pm(r))

y = 1/r+ vF /a . (58)
2-

e(k, co) =ep(cd)—

vF labels the Fermi velocity and ~ is a phenomenological
relaxation time. It will be chosen about 10 ' s for a gold
sphere.

The nonlocal calculation [Eqs. (46) and (A3) are per-
formed in the framework of the specular reAection theory
(cf. Eqs. (53)—(56)]. In fact, within this approximation,
we neglect the nondiagonal terms in the matrix
A'(k, k', cd). ' The improved numerical study is left for
a forthcoming paper. Moreover, to describe the spatial
dispersion efFect, we use the hydrodynamic model to ex-
press the dielectric constant e(k, co) of the metal:

2
COP

co(co+iy) —5 k

(b)

0-

)0 20 30 I,p a (nm)

FIG. 2. (a) Real and imaginary parts of the local-field factor
calculated for the frequency co, =3.55)&10" s '. The dot-
dashed line corresponds to the local calculations [Eq. (52)], the
solid and dotted lines correspond to the nonlocal calculation
performed from Eqs. (46) and (A3), respectively. (b) same as (a)
for co2

——3.37&10' s
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part of the local field factors f, , f, , and f, calculated for

~, and co2, respectively. We can observe that the non lo-
cal character of the response of the metal tends to modify
the magnitude of both real and imaginary parts of the lo-
cal field factors. We remark that the modifications of the
real part of f, become more important when we are close
to the surface plasma resonance [Fig. 2(a)]. This effect
corresponds to the blue shift already discussed in hydro-
dynamical calculations. ' Moreover, the nonlocal
corrections in factor f, increase for spheres of small size.
Thus, the modifications introduced by the screening
effects may become important in the magnitude of the in-
tensity of the conjugate signal measured in experiments. '

Indeed the factor f, appears to the eighth power in the
expression of this quantity.

and comprehensive formulation of the nonlinear process-
es in the metal colloids. Furthermore, the numerical es-
timations may be improved by taking into account the
nonhomogeneous character of the electronic response
contained in the formalism of Secs. II and III.
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APPENDIX

VI. CONCLUSION

A general self-consistent treatment of the optical non-
linear response of the electrons confined in a small metal-
lic sphere has been presented here. The screening effect
in these metal particles has been introduced within the
framework of the RPA theory and the nonlinear response
calculation has been performed by using the charge-
density susceptibility formalism. Thus, we have ex-

pressed the linear polarizability and the third-order non-
linear source polarization PNLs of the sphere with similar

equations to that obtained in recent local calculations.
More precisely, we have verified from a microscopic
point of view, the validity of the effective dielectric con-
stant model (EDC) introduced recently to calculate PNLs.
Moreover, we show as in the EDC approach that the
local-field factor fi occurs again to the fourth power.
The numerical estimates of f, have been performed by

neglecting the nondiagonal contributions in the general-
ized dielectric constant k 6(k, k', co) (SRM approxima-
tion). They show that the dispersion spatial effect may
become important for spheres of radii lower than 10 nm.
We believe that the present approach, under the above
restrictive hypothesis, provides a good basis for a simple

We present in this Appendix an alternative method to
define the local-field factor. We first calculate the mean
field induced inside the sphere by the external field
Eo(co):

(E,( )) = ——J Vy, (, )d
1

V v
(A 1)

3e,(co)V(a, co)f i(co)=
a+2@2(co)9'(a, co)

(A3)

Note that a slightly different definition of the mean field
has been proposed in a similar problem by Wiser. In
our case, it may be easily verified that, for very small ra-
dii a of the sphere, the nonlocal expressions (46) and (A3)
become identical:

f i (co) =f i (co) when a ~0 . (A4)

The substitution of Eq. (23) into Eq. (Al), after integra-
tion, leads to

3ez(co)9'(a, co)

a+2E2 Co a, co

which corresponds to a local-field factor equal to
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