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We study the bulk contribution to surface second-harmonic generation. It is shown that the for-
malism in the earlier literature neglected an important term in the bulk contribution which makes
the separation of surface and bulk contributions impossible in experiments that allow no
modification of the sample. Isotropic and cubic systems media are discussed in some detail for illus-
tration. We also present a model for the bulk nonlinearity of molecular systems.

INTRODUCTION

Surface second-harmonic generation (SHG) is gaining
popularity as a surface probe.! In applying the technique
to real problems, the question one often encounters is
how much the bulk contributes to the signal relative to
the surface. For a medium with inversion symmetry,
SHG is electric-dipole forbidden in the bulk, but the
electric-quadrupole and magnetic-dipole contributions
from the bulk could still be quite significant in compar-
ison with the electric-dipole contribution from the sur-
face. It is therefore important that we know how to as-
sess the relative magnitudes of the two contributions. It
would even be better if the two contributions can be sepa-
rately determined.

In an important paper by Bloembergen et al.,> SHG in
reflection from an isotropic medium was considered, and
the bulk and surface contributions to SHG were explicit-
ly derived. Subsequent publications, following their for-
malism, helped in improving the understanding of surface
nonlinearities’~7 and extended the theory to crystalline
media.®~!! It was shown that with proper combinations
of input and output polarizations, or from the output
dependence on the angle of incidence, the surface contri-
bution can be partly separated from the bulk contribu-
tion. In a recent publication,'? however, we briefly men-
tioned than there is an omission in the expression of non-
linear polarization in Ref. 2, which to our knowledge,
had been carried by all the subsequent publications on
the subject. The corrected result suggests that SHG al-
ways has a mixed contribution from both the surface and
the bulk. Thus, in actual experiments the surface infor-
mation should be obtained by modifying the surface rela-
tive to the bulk and observing the SH signal change. If
this is not possible, then one has to resort to theoretical
models for assessing the relative contribution of surface
versus bulk.

In this paper we show in detail the derivation of the
correct expression for the second-order nonlinear polar-
ization. We then discuss how it affects surface SHG from
isotropic and cubic media. Finally, we consider two sim-
ple models that allow us to have an estimate of the bulk
contribution.

Let us consider the nonlinear polarization at 2w in-
duced by the optical field E(w) in a medium. As is well
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known, the effective nonlinear polarization P2(2w) gen-
erally should consist of a series of multipole terms,'?

P2(20)=P?(2)—V-Q ¥ (20)

+ - VxMP20)+ - -, (1)
2w
where P, 6, and M denote electric-dipole polarization,
electric-quadrupole polarization, and magnetization, re-
spectively. This expansion is valid when volume elements
whose dimensions are small compared to the field varia-
tion length (in the bulk, it is the wavelength or the field-
penetration depth) are used in averaging to obtain such
macroscopic quantities. It may then be that, at the sur-
face, terminating the expansion at a certain order is not
justified. This will be discussed later and we will show
that it is not a restriction in our case.
The terms in Eq. (1) are quadratic functions of the field
and/or of their derivatives. Up to the first derivatives in
P2 we can write

P?(20)=X ?:E(0)E(0)+ X E(w)VE(0) , (2a)
Q?(20)=X%E(0)E(0) , (2b)
M?(20)=X".E(0)E(w) . (2¢)

Such expressions can be related immediately to the mi-
croscopic expressions of the nonlinear susceptibility
given, for example, by Adler.!* In a centrosymmetric
medium, the first term in Eq. (2a), which is a pure
electric-dipole term, vanishes identically in the bulk.
Also, if there is inversion symmetry in both space and
time, X M is proportional to the unit antisymmetric tensor
of the third rank,13 and as far as SHG is concerned,
M(2w) vanishes. The bulk nonlinear polarization then
takes the form

P2(20)=X PE(0)VE(0)—V-[X 2E(0)E(w] .  (3)

In previous works,' ~!! the divergence in the second
term of Eq. (3) was applied only to the field, thus omitting
an effective surface contribution arising from an abrupt
variation of X € at a surface or interface, and it is this om-
ission that we will reinstate with detailed reasoning in
this paper.

In a previous publication,” we showed that we can
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define an effective surface polarization for an interface
when the interface layer thickness is much smaller than
the wavelength:

73(312)(260):fls,-(z,Za))P(e%{i(z,Zw)dz . 4)
Here,
5;(z,2w)= I fori=xy,

D,(z,2w)/E,(z,20w) fori=z,

D is the displacement current, and [ is the interface layer
over which the material constants can vary. Although
this expression is phenomenological since the variation of
s(z,2w) is certainly complicated near the surface, it has
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the bulk region and the interface I is then conveniently
written in terms of Green’s functions as

E(20)=G,P?(20)+ fBEBPL%f)(Zw)dz , (5)

where both Green’s functions 65 and 53 are uniquely
determined by the bulk parameters and B denotes the
bulk.” The second term of Eq. (5) has already been treat-
ed in previous works.>®7% ! We will consider here only
the first term of Eq. (5). From Egs. (3) and (4), we have

PP20)= [ 5(2,20)[P?(z,20) - V- ?(z,20)]dz .

. S . . (6)
the merit of bringing out the importance of the linear
dielectric effects at the interface. The field radiated by Partial integration gives
|
7%,.”(2@):[1 s,.(z,2w)P;2)(z,2w)+Qz‘,2’(z,2w)%s,.<z,2w> dz—[si(z,zw)Q;,2’<z,zw)]gf, 7

where 0" and 0~ define the boundaries of the interface layer I. In this expression the terms under the integral are
clearly surface dependent. In general, P/ consists of two contributions, one from a surface dipole layer® and the other

from an electromagnetic field gradient through X*.2 The Q;

term also contributes only if there is a field gradient at the

surface. On the other hand, the term in large parentheses is surface independent since we have

20~ 20)

0,7(0%,20)

—[5:(2,20)QP(2,20)10" = -
[€(0™,20)] "

[€(0*,20)]
XS E/(07,20)E(07,20) X2k (0T)E,(07,20)E,(0T,20)

[€(0™,20)]

which is uniquely determined by the bulk material pa-
rameters. As a consequence, although this term appears
in the calculation of the effective surface susceptibility, it
is actually insensitive to any surface treatment and
should therefore be called a bulk contribution.

We stated earlier that terminating the expansion of P g
at the first derivatives would not affect our findings. This
is true for the following reason: any higher-order deriva-
tive term in the expansion would have the form

P2 ~3%ad'b with k+1>2 and k>0,1>0, 9)

where a and b are functions of the field and of some ma-

terial constants. Again, for P(j{ ; to give a significant con-

tribution in the integral over I, one of the derivatives
must be along z so that we can write

P =03 dlb .
Equation (4) can then be integrated by parts to give
PPw)= [ 252,200 8 'b dz
~[5,(z,20)8'a 3 ~'p 10", (10

and since / +k > 2 the term in square brackets is smaller

. : (8)
[€(0*,20)]

f

than the lowest-order contribution by a factor
(d /A)' %~V if not identically zero, where d is the inter-
face thickness and A is the wavelength (or the field-
penetration depth).

ISOTROPIC AND CUBIC SYSTEMS

In the following we will examine the particular cases of
the isotropic and cubic centrosymmetric systems.

For an isotropic system the tensor elements of Eq. (2a)
have some symmetry relations, such that with

P’gz)(zw)z)(f;,kEj(a))%Ek(w) , (11a)
we have

PP P _ P P __ P P __ yP

Xiig =X1, Xijy=X5 Xijij=X3 X=X, (110

XP=x5+x5+x% . (e

In this expression the magnetic-dipole contribution
would appear only in X% and X! with equal magnitude
and opposite signs. For X¢ in Eq. (2b) we similarly define

0.72w)=X% E|(0)E; (o) , (12a)

with the following symmetry relations:
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X%=x8 x§,=x9, x%;=x$, x;=x¢, (12b)
Xe=x8+x¢+x¢ . (12¢)

The effective polarization is

—PP(20)— - P 20) . (13)

Pe«,(Zw a]

With the substitutions

§=2x"—2x¢, (14a)
B=2X{—(x$+x9) , (14b)
2y =2x—-2x¢, (14c)
§—B—2y =2XF—(x2+x9) , (14d)
we obtain
9
P (20)=(8—B—2y)E;(w )5 Ej(@)
+BE,~(w)—é—Ej(w)+7’%[Ej(w)Ej(w)]
9 x¢ (15)
—_ _87Xﬁ"‘ E](G))Ek(a))-

In the homogeneous bulk where the derivatives of the
material parameter X vanish, Eq. (15) is identical to the
expression usually given for the bulk nonlinearity of an
isotropic system.2 However, as discussed earlier, in the
presence of a surface the last term in Eq. (15) should also
contribute.

As shown in previous works,*”*!! the total SHG at a
vacuum-substrate interface can be characterized by an
effective surface susceptibility containing both bulk and
“surface” terms. Defining’ P}(20)=X; F;(®)F; (@)
with

siji

D,00,w) ,
F.=E, (0,0),
F,=E,(0,0)

F(0)=

(here the F fields are continuous across the interface and
thus uniquely defined from the bulk parameters, leading
to an unambiguous definition for X;),” we find the non-
vanishing effective surface susceptlblllty elements as

Xzz =X Z ———_‘K——— ’ (16a)
2 2o)e(w)?

Xayy =szx=Xm~—€72%5 (16b)

XYZ,V:szx =Xxzx > (16¢)

where the y terms comes from the bulk contribution.
From Eq. (8) we know that the “surface” terms X, con-
tain in effect also a bulk contribution. We can separate
bulk and surface contributions by using Egs. (4), (8), and
(15), and we obtain

X,0e =Xgs — (¥ +X2) /€(20)e(w)* (17a)
Xy =Xoex =Xy — (v +X9)/€Q20) (17b)
Xy =Xzx =Xy —XE /(@) , (17¢)

where X is the true surface susceptibility independent of
the bulk nonlinearity. It is seen from the above expres-
sions that all the effective surface susceptibility tensor
components now contain some bulk contribution. This
fact was not realized in the earlier publications that had
held Eq. (16) as true. In particular, it was believed from
Eq. (16¢) that measuring the s-polarized output in a
mixed-polarization input geometry would give a pure sur-
face contribution. Equation (17c) now clearly indicates
that such a geometry would still contain some electric-
quadrupole contribution from the bulk.

A similar analysis also applies to a cubic medium with
an inversion symmetry (e.g., Si,Ge,Cu,. . .). For a cubic
system, we have the same tensor elements as in the isotro-
pic case. Only Egs. (11c) and (12c) are no longer true.
Defining two additional parameters £¥ and £€ to account
for the anisotropy, we now have

=XP+xP4xE, X¢ =X2+XP+XZ (18a)
P=xt—xt, ¢2=x—x¢, (18b)
c=2¢cP-2¢2, (18¢)

where the axes are now fixed along the crystal axes. The
effective nonlinear polarization is then the sum of the iso-
tropic part (15) and the anisotropic part,

e

— | E(0)E/(w) . (19)
ai

anis __ _a_ _
eﬁ',i—gEi(w) i E(w)

As in the isotropic case, away from the surface the
second term of Eq. (19) vanishes and one is left with the
usual expression for the bulk nonlinearity in a cubic
medium.>%!" However, in the presence of a surface, its
contribution may become nonvanishing. For a (100) face,
this term does not contribute, but for a (111) face we find
that £ gives an additional contribution to the anisotropic
and isotropic components of the effective surface suscep-
tibility. More explicitly, taking §||[2 11] and |[011] as
the axes in the plane of the surface, the anisotropic com-
ponents of the surface susceptibility are®® 3

Xseee= —Xsnen= —Xsyme » (20)

which contains an additional term (1/3V2)(€ arising
from the 3£2/di term in Eq. (19). Similarly, for the iso-
tropic components in Eq. (17) there is also an additional
term, 1£2, coming from the 92/di term in Eq. (19).

In previous works,® !> when SHG from a (111) face of a
cubic medium was considered, the anisotropy was given
as a combination of a surface term and a bulk anisotropy
term as

Xseeetab 21

where a is a function of the incidence angle, wavelength,
and linear dielectric constants. Instead, we now have the
expression
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here only the first term is surface specific.

In the above two examples, isotropic and cubic, we
have shown that for SHG with any polarization combina-
tions it is not possible to separate the bulk and surface
contributions if the surface has the same symmetry as the
bulk. This modifies the views previously held that SHG
from isotropic systems with the output s polarized results
from a pure surface contribution. Similarly, for a cubic
crystal, it was believed that probing different crystal faces
would allow us to separate the surface and bulk contribu-
tions® of the anisotropic term in the nonlinearity. It was
also thought that the dependence of the coefficient a in
Eq. (21) with the angle of incidence could be utilized for
the separation.® None of these methods would actually
serve their purpose, as seen from Eq. (22).

These findings have different significance depending on
the system studied. For clean surfaces of metals or semi-
conductors, it has been repeatedly shown that oxidation
or disordering of the surface could easily decrease the
SHG signals by 1 order of magnitude.'>~'® This indi-
cates that the surface contribution is dominant, and that
the additional bulk contribution that we introduce in this
paper is of little importance. When insulator surfaces are
considered, or when the surfaces of metals or semicon-
ductors are oxidized, it is likely that the surface and bulk
contributions may have comparable magnitudes. In
those cases our result is important. It shows that SHG
cannot straightforwardly separate surface and bulk con-
tributions. Only a careful modification of the surface
could perhaps allow us to do so. An improved
knowledge of the bulk nonlinearity in a centrosymmetric
system would be helpful. In the next section we present
two models for the bulk contribution. The second one,
which we call the molecular model, has been successfully
applied to the study of the surface polar ordering of a
liquid crystal."®
J

E, (r,20)= 2——

G,i(r,0) ,Jk(rl)EU(r,,
€Q "0 r EVy(ry)
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MODELS FOR THE BULK NONLINEARITY

It is possible to relate a few tensor elements of X< and
X? using simplified models. The first model we shall dis-
cuss is based on the low-frequency approximation.? This
approximation has been proposed for isotropic nonmag-
netic systems. The nonlinearity is assumed to come from
bound electrons, with electric-dipole and electric-
quadrupole transition moments only. In this approxima-
tion one has?

8=0, B=—2y=34n,e) ' XV(w)]*, (23)

where n,, is the density of valence electrons and X'! is the
linear susceptibility. In addition to Egs. (11), (12), and
(14), we find also the following relations:

xXP=x¢, xF=x¢, x{=x{=x¢=x¢. (24)

Although all the parameters can be expected to vary as
| X' (w) | */n,, we were not able to find an expression
further reducing the number of independent parameters.

The other model is the molecular model, which is
based on the following approximation. We consider a
system composed of individual moleculelike units such
that each unit has a relatively strong intrinsic second-
order polarizability @ ‘?. The electric-quadrupole or
magnetic-dipole contribution to @ ¥’ is assumed negligi-
ble. In a medium with a centrosymmetric distribution of
such individual units, their orientational average will
then give rise to an effective electric-quadrupole non-
linearity. The field detected at point r is the sum of the
radiative contributions of the individual dipoles in a
volume (), so that we can write

E,(1,20)= 3 G,(r,0)a3)(r)E,;(r;,0)E;(r,0) .

neqQ

(25)

Now the orientational average can be performed in a
volume ¥, with dimensions much smaller than the wave-
length. We have

©)E 5 (1,0) . (26)

We now assume that G,,;, E;, and E,; are smooth functions of the positions r,. (This is equivalent to neglecting the
local-field effects; the latter could be incorporated into the values of a'?).) With this approximation, we can expand the
functions G,,;, E;, and E,; around r, and stop at the first derivatives. We obtain

E, (r,20)= 2—

HE€Q "0 r EVyiry

+G (o, )R (1)) (ry —rg;) |Ey(10,0)

d
+“—Gmi(ro,r)a£-}k)(r,)(r”—rOI )Elj(r()’w

dp

G (10, )R (1))E | (£6,0)E (10, )

3E
1O (1, 0) + —o

al 811 (ro,&))Ezk(ro,C&))

JE, (rg,0) | . (27)

The first term vanishes because of the inversion symmetry and the third term can be integrated by parts over the whole

volume so that it becomes

2 2 Gmi(ro,r)

HEQr € Vol(rg)

d
31’[(15‘,212(1'1 Nryy—ro)E (o, 0)E (15,0)]
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on the assumption that V}/3 <<A. We can define X* and
X4,

1

Xoe=Xfp=7- 3 [@2r)jklln—ro)1],

0 £ EV,iry)
(28)

where i, j, k, [, are unit vectors, and Eq. (27) becomes

6(r,20)= [ G:X"EVE+V-X%EE) . (29
For an isotropic system, this gives the relation

xP—x¢, x5=x9=x%, x{=x{=x¢, (30)
and, consequently, the following identities,

6=B=y=0. (31

From Egq. (17), the effective surface susceptibility then
takes the simple form

Xpre =X 52 _'XIQ/E( 20)e(w)? ’ (32a)
szx :Xs’zxx —XZQ/G( 2w) ’ (32b)
Xox =Xxzx _X4Q/e(w) . (32¢)

In many cases the surface nonlinearity is dominated by
the electric-dipole response of the surface layer, while the
bulk nonlinearity is dominated by the electric-quadrupole
contribution. The dipole response can be expressed in
terms of the one-body distribution function, f,(r,0), and
the quadrupole response in terms of the pair distribution
function, f,(r,,0,,1,,0,). Here we use the usual notation
in the physics of liquids, with r describing the position of
the unit and 6 its orientation. Note that f,(r,0) may
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vary in moving from the bulk to the surface. X, and X2

can then be written as

Xo = J f1(r,0)0i-dPr,0)jk]dr d6 , (33a)
Xfe(ry)= ffz(rpl'z,opoz)[i-'&’m(rz,ez).j.k]
X1-(ry—r1,)]d6,d6, . (33b)

CONCLUSIONS

In this paper we have considered the bulk contribution
to surface SHG from centrosymmetric substrates. We
have found the omission of a bulk term in the literature
on the subject. The presence of this term makes the sepa-
ration of bulk and surface contributions by measurements
on one sample impossible, contrary to the view previous-
ly held. This is particularly important when the two con-
tributions are comparable. In studying the origin of the
bulk nonlinearity in a centrosymmetric system, we have
proposed a new model which applies to molecular solids
and fluids with strong molecular nonlinear polarizability.
This model relates the bulk nonlinearity to the pair-
correlation functions of the molecules. It should be use-
ful in the applications of SHG to the study of interfaces
with molecular liquid or solid systems.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of En-
ergy Research, Office of Basic Energy Sciences, Materials
Sciences Division of the U.S. Department of Energy un-
der Contract No. DE-ACO03-76SF00098. One of us
(P.G.-S.) acknowledges support from the Delegation
Generale de I’Armement, France.

ISee, for example, Y. R. Shen, Annu. Rev. Mater. Sci. 16, 69
(1986); K. Kemitz, K. Bhattacharyya, J. M. Hicks, G. R. Pin-
to, K. B. Eisenthal, and T. F. Heinz, Chem. Phys. Lett. 131,
285 (1986); D. Heskett, K. J. Song, A. Burns, E. W. Plummer,
and H. L. Dai, J. Chem. Phys. 85, 7490 (1986); T. L. Mazely,
and W. M. Hetherington 111, ibid. 86, 3640 (1987).

2N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys.
Rev. 174, 813 (1968).

3C. C. Wang and W. W. Duminski, Phys. Rev. Lett. 20, 668
(1968).

4C. C. Wang, Phys. Rev. 178, 1457 (1969).

5J. M. Chen, J. R. Bower, C. S. Wang, and C. H. Lee, Opt.
Commun. 9, 132 (1973).

6T. F. Heinz, Ph.D. thesis, University of California, Berkeley,
1982.

7P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33,
8254 (1986).

8H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett.
51, 1983 (1983).

9H. W. K. Tom, Ph.D. thesis, University of California, Berke-
ley, 1984.

10D, Guidotti, T. A. Driscoll, and H. J. Gerritsen, Solid State
Commun. 46, 337 (1983).

13, E. Sipe, D. J. Moss, and H. M. Van Driel, Phys. Rev. B 35,
1129 (1983).

12P, Guyot-Sionnest and Y. R. Shen, Phys. Rev. B 35, 4420
(1987).

3P, S. Pershan, Phys. Rev. 130, 919 (1963).

14E. Adler, Phys. Rev. 134, A728 (1964).

ISH. W. K. Tom and G. D. Aumiller, Phys. Rev. B 33, 8818
(1986).

16H. W. K. Tom, C. M. Mate, X. D. Zhu, J. E. Crowell, T. F.
Heinz, G. A. Somorjai, and Y. R. Shen, Phys. Rev. Lett. 52,
348 (1984).

I7H. W. K. Tom, X. D. Zhu, Y. R. Shen, and G. A. Smorojai,
Surf. Sci. 167, 167 (1986).

I8T. F. Heinz, M. M. T. Loy, and W. A. Thompson, Phys. Rev.
Lett. 54, 63 (1985).



