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Electronic and structural properties of elemental copper:
A pseudopotential —local-orbital calculation

James R. Chelikowsky
Department of Chemical Engineering and Materials Science, University ofMinnesota, Minneapolis, Minnesota 55455

M. Y. Chou
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801

(Received 9 February 1988; revised manuscript received 25 April 1988)

We have examined the electronic and structural properties of elemental copper using pseudopo-
tentials and a local-orbital basis consisting of Gaussians. We find we can use a much weaker ionic
pseudopotential to describe accurately the measured band structure, cohesive energy, lattice con-
stant, and compressibility of copper than previous pseudopotential work. Our potential should be
more amenable than existing ones to momentum-space evaluations of the total crystalline energy.
In addition, we have examined the equation of state for copper in both the fcc and bcc structures.
Unlike a recent pseudopotential-mixed-basis calculation, we find that the energy-versus-volume
curve for copper in the bcc structure does not exhibit a double minimum.

I. INTRODUCTION

One of the most challenging applications for pseudopo-
tential descriptions of solids involves elements which
have "loosely bound" core shells. For example, the noble
metals (Cu,Ag, Au} have a filled outer d shell which can
strongly inAuence the chemical and structural properties
of these metals, yet owing to its filled-shell character does
not participate directly in the formation of chemical
bonds. ' Another example involves the element zinc.
If one computes the structural properties of zinc-blende
semiconductors, e.g. , ZnSe, without including the effects
of the Zn 3d shell, the lattice constant can be typically
10—20% too small.

The pseudopotential method can, of course, handle
such situations by considering the d shell as part of the
valence shell and not part of what is usually treated as
the "chemically inert" ion core. However, if this pro-
cedure is followed, some of the advantages of the pseudo-
potential method are lost. For example, the effective
valence (z} of a noble metal such as copper becomes
z=11, not z=1. The concurrent ionic pseudopotential is
much stronger as it now must bind eleven electrons in-
stead of a single electron. Consequently, the basis must
not only be capable of replicating the loosely bound Cu 4s
state, but the highly localized Cu 3d states. One ap-
proach to this problem is to employ a mixed basis which
combines plane waves with localized functions. ' How-
ever, one of the most efficient methods for evaluating the
total electronic energy of a solid is to use a momentum-
space formalism. This formalism usually expresses the
total energy in terms of Fourier transforms of the poten-
tial and a plane-wave basis. If the potential of interest is
very strong, then a large number of Fourier coefficients
and plane waves must be used to describe the total ener-
gy-

In this paper we wish to demonstrate that local orbitals
alone, i.e., Gaussians, can be used as an effective basis for

Cu and that one can construct a much weaker ionic pseu-
dopotential than has been used in the past without
sacrificing any significant accuracy. Also, we have exam-
ined the structural properties of copper in both the fcc
and bcc structures. A recent pseudopotential calculation
for copper in the bcc structure yielded an intriguing sug-
gestion that the total-energy —versus —volume curve con-
tained a double minimum. ' Since calculations for other
metals do not exhibit this behavior, we felt another cal-
culation using a somewhat different approach would be in
order.

II. CONSTRUCTION OF THE COPPER
IONIC PSEUDOPOTENTIAL

Within the local-density method for handling ex-
change and correlation one can construct an ionic pseu-
dopotential from an atomic-structure calculation. Typi-
cally, one solves an all-electron calculation for an isolated
atom. This calculation generates energy levels and wave
functions for both core and valence electrons. By taking
the valence energy levels from such a calculation and by
suitably modifying the valence wave functions, one can
then invert Schrodinger's equation and obtain an ionic
pseudopotential which will, by construction, accurately
reproduce only the valence energy levels and modified
valence wave functions. Normally, one modifies the
atomic valence wave functions by altering their behavior
in the core region. For example, within a specified dis-
tance of the core, one might smoothly continue the wave
function to the nucleus and by so doing remove the nodal
structure.

For copper we used the procedure as outlined above
following the method proposed by Kerker. The result-
ing ionic copper pseudopotential binds only the 4s and 3d
states. The Cu 4s states present no particular problem;
however, the Cu 3d states are very localized with the
radial —wave-function maximum occurring at 0.6 a.u. (1
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FIG. 1. Ab initio ionic pseudopotential for copper.

a.u. =0.529 A) from the nucleus. ln constructing the
copper potential we noted that the Wigner-Seitz-cell ra-
dius is about 2.67 a.u. for elemental fcc copper. Thus, we
felt it was not necessary to preserve the shape of the d-
wave function within a radius several times that of the
radial-wave-function maximum. In the spirit of the
pseudopotential approach, we only demand an accurate
valence wave function in the bonding region. We chose
the following core sizes for the s, p, and d states: 1.7 (s),
2.0 (p), and 1.8 (d) a.u. The corresponding
radial-wave-function maxima for the all-electron case
are at 2 3 (s), 3 5 (p), and 0 6 (d). The atomic
configuration used to construct the ionic pseudopotential
was s p 'd' . The results are very insensitive to the de-
tails of the atomic configuration. '

Although the d-potential component of our ionic pseu-
dopotential is not expected to do well within the core re-
gion, the radial-wave-function maximum is only off by
-20% and outside a distance of —1.4 a.u. the all-
electron and pseudopotential 3d wave functions are
essentially identical. Thus, we would expect our copper
pseudopotential to reproduce accurately all those proper-
ties which are dependent on the wave functions outside
the core, e.g., cohesive energy, lattice constant, structural
parameters, etc. The ionic pseudopotential is illustrated
in Fig. 1.

TABLE I. Band energies at high-symmetry points for fcc
copper. The energy (in eV) is relative to the Fermi level, i.e.,
EF—E(k). Theoretical calculations are using the Korringa-
Kohn-Rostoker (KKR) method (Ref. 11), the linearized
augmented-plane-wave (LAPW) method (Ref. 12), a mixed-
basis-pseudopotential (MB) method (Ref. 1), and a Gaussian-
orbital-pseudopotential (GO) method (present work). Also list-
ed are experimental values from angle-resolved photoemission.
The band-structure calculations are done at the experimental
lattice constant of copper.

Symmetry
point KKR' LAP W' MB' GO Expt. d

riz
rzs
11

X5
X2
X3
X,

2.41
3.24
9.42

1.62
1.82
4.68
5.27

2.40
3.20
9.47

1.64

5.07

2.45
3.27
9.88

1.70
1.89
4.69
5.18

2.46
3.35

10.26

1.74
1.91
4.76
5.23

2.85
3.65

2.05

4.50
5.20

five d-symmetry polynomial-Gaussian orbitals. Typical-
ly, for a transition metal three or four decay constants are
used for a total basis of 30 or 40 orbital functions per
atom. ' However, for copper we found this set to be
inadequate. Specifically, we found the bulk modulus to
be quite sensitive to the number and values of the decay
constants.

In order to optimize the basis, we systematically varied
the largest and smallest decay constants and allowed the
intermediate decays to be determined by demanding the
distribution correspond to even-tempered Gaussians. '

By even tempered we mean the decay constants A, s are
such that A, ; =(A, ;+&A,; t)' (see Ref. 10). We then calcu-
lated the total energy by increasing the number of decays.
With six decays, the total energy was converged to -0.5
eV. We further optimized the basis by adjusting each de-
cay individually, i.e., relaxing the constraint of being even
tempered. The energy was converged to within -0.1 eV.
The final set of exponential decay constants was 0.25, 0.6,
1.0, 1.6, 4.0, and 10.0 a.u.

The total energy of the system was evaluated using a
momentum-space formation. This procedure involves
sums over k points in the Brillouin zone and over
reciprocal-lattice vectors. The number of k points was
taken to be 44 k points for the bcc structure and 60 k
points for the fcc structure. This is probably the
minimum number of k points for obtaining an accurate

III. COMPUTATIONAL DETAILS

The most difficult aspect of the calculation, after the
ionic pseudopotential is constructed, is determining an
accurate basis. The form of the basis and details of this
issue have been presented elsewhere. ' Here we will give
a brief outline of our procedure. Our basis consists of a
polynomial times a Gaussian with the polynomial having
s, p, and d character. For grouping purposes we consider
sets of basis functions characterized by an exponential de-
cay constant. Each set consisted of two s-, three p-, and

L~
L3
L)
Ll

r„—r,',
Xq —Xl
L3 —Ll

'Reference 11.
Reference 12.

'Reference 1 ~

Reference 14.

1.14
1.78
3.29
5.25

0.83
3.65
3.47

1.80

5.23

0.80
3.43
3.43

0.98
1.86
3.32
5.41

0.82
3.48
3.55

0.81
1.90
3.39
5.46

0.89
3.49
3.56

0.90
2.25
3.65

0.80
3.15



7968 JAMES R. CHELIKOWSKY AND M. Y. CHOU 38

structural energy difference between the total energies of
the fcc and bcc structures. We also tested grids ranging
with as few as eight k points and found, as expected, that
these grids are too coarse to distinguish between the total
energies of the fcc and bcc structures.

One of the most difficult issues is that involved with the
summations over reciprocal-lattice space. We used a
final cutoff of 16 a.u. ', i.e., the largest reciprocal-lattice
vector, Gm», had a kinetic energy of 128 hartrees associ-
ated with it. This corresponds to about 5500 waves.
With this cutoff the total energy was converged to within
-0.05 eV. We tested cutoffs as large as 6,„=20a.u. ',
which corresponded to approximately 11000plane waves
in the summations required. Using a much stronger
copper potential, Kang et al. ' used a cutoff which re-
quired about 12000 reciprocal-lattice vectors.

With respect to other parameters, the required overlap
integrals and three-center integrals were neglected for site
distances which exceeded 10 a.u. For example, at the
known equilibrium distance for fcc copper, 58 neighbors
were included. When the volumes of the bcc and fcc
structures were changed, we rescaled this cutoff along
with the reciprocal-space cutoff. This procedure ensures
that we will be treating different volume states with the
same "effective" cutoff.

-10

z r
Wave Vector

FIG. 3. Band structure for bcc copper at a lattice constant of
a=5.42 a.u. Energies are in eV measured relative to the Fermi
level.

IV. BAND STRUCTURE OF fcc AND bcc COPPER

To compare the accuracy of our work with previous
calculations of fcc copper, ""we present in Table I a
comparison of the energy bands at high-symmetry points.
In Fig. 2 we also present the energy bands along high-
symmetry directions. These results were obtained at the
experimental lattice constant of fcc copper (ao ——6.82
a.u.). ' Given the differences in bases, potentials, and

2 fCC C4
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FIG. 2. Band structure for fcc copper at the experimental

lattice constant. Energies are in eV measured relative to the

Fermi level.

various other approximations, it is very gratifying that
the energy levels agree so well. The largest discrepancy is
bandwidth, i.e., EBw =EF E(I', ), wh—ich the pseudopo-
tential calculations obtain as 9.88—10.26 eV, whereas the
Korringa-Kohn-Rostoker" (KKR) and linearized
augmented-plane-wave' (LAPW) methods yield a nar-
rower width of 9.42 and 9.47 eV, respectively. We specu-
late that this may arise from the pseudopotential approxi-
mation given that our Gaussian-orbital —pseudopotential
and the mixed-basis-pseudopotential calculations yield
similar results.

Another issue is how accurate one might expect the
local-density approximation to be. As noted in the previ-
ous work, ' the local-density band structures are slightly
more dispersive than indicated by angle-resolved photo-
emission measurements. ' Typically, the discrepancy is
on the order of -0.2-0.3 eV. It would be an interesting
exercise to include the effects of dynamical screening and
local fields on the placement of the energy bands. ' ' '

In Fig. 3 we present results for the energy bands of
copper in the bcc structure. The lattice constant of the
bcc structure was taken to be such that the atomic
volume of the bcc and fcc structures is identical. As with
the case of fcc copper, our band structure is nearly identi-
cal to the mixed-basis —pseudopotential work of Kang
et al. ' Given that we have a considerably weaker pseu-
dopotential than the mixed-basis calculation, it is reassur-
ing that the results agree so well for the both structures.

V. GROUND-STATE PROPERTIES
OF fcc AND bcc COPPER

In Fig. 4 we present the total energy of copper as a
function of the atomic volume. The energy zero was tak-
en to be that of an isolated copper atom. Using the same
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Cu
—3.60—

TABLE III. Ground-state properties for bcc copper as calcu-
lated using Gaussian orbitals with ah initio pseudopotentials.

E0

)I —3.70—
Ch

C
LLI

bcc

Property

Cohesive energy (eV)
0

Lattice constant (A)
Bulk modulus (Mbar)

Theor.

3.81
2.87
1.85

—3.80— fcc

65
I I I

75 85
Atomic Volume (a.u.}

I

95

FIG. 4. Calculated total energy of bcc and fcc copper as a
function of atomic volume. The solid line represents a Mur-
naghan equation-of-state (Ref. 26) fit to the calculated energy-
vs-volume point.

ionic pseudopotential as for bulk copper, which was fitted
by Gaussians, we find the total energy of an isolated Cu
"pseudoatom" to be —1272.55 eV. This value includes
an estimated spin-polarization correction of 0.23 eV. '

The energy per atom for our calculated equilibrium fcc
structure is —1276.38 eV, leading to a cohesive energy of
about 3.83 eV.

For both the bcc and fcc structures we calculated five
energy-versus-volume points and fitted an equation-of-
state curve to the calculated points. Also, in Tables II
and III we present the resulting cohesive energies, lattice
constants, and bulk moduli. In Table II we compare our
work to experiment' ' and other calculations"" for
fcc copper. We find the best agreement for the lattice
constant with all calculations within 0.02 A of experi-
ment. This is a typical local-density-approximation
(LDA) result, i.e., the lattice constant is the most accu-
rate property obtained. The LDA cohesive energies tend
to overestimate the experimental values. This appears to
be a general result, as evidenced by a number of LDA cal-
culations. ' '" As a guideline we feel an underestimate of
the cohesive energy could be indictive of an inadequate
basis. We found the bulk modulus to be the most difficult
property to reproduce. With 40 orbitals per atom we
found a bulk modulus of -2.6 Mbar. By increasing the
basis to 60 orbitals per atom, we found that the bulk
modulus was reduced by -30%. We feel most of the

remaining discrepancy in Table II with respect to bulk
modulus would be removed by assuming a larger basis.
[Also, the cohesive energy might be increased to the
values given by the KKR and augmented-spherical-wave
(ASW) methods. ]

In Table IV we compare our results to other all-
electron calculations and to experiment ' for the equa-
tion of state of fcc copper. We have not included zero-
point pressure corrections and the experiment is not at
zero temperature. Nonetheless, the agreement is satisfac-
tory. Our pseudopotential result predicts a slightly
higher pressure as a function of volume owing to the
larger bulk modulus we find as compared to experiment.
Again, we feel this is a result of our basis and not an in-
trinsic problem with the pseudopotential.

With respect to bcc copper, we find very similar prop-
erties. Within our computational accuracy, about the
only difference we find is a small upward shift of the
energy-versus-volume curve. Given results for other met-
als, e.g. , Mo and W, in which the fcc and bcc curves have
similar properties, perhaps our results are not too surpris-
ing. We may also compare to other theoretical esti-
mates for the fcc-versus-bcc energy difference. A linear
combination of muffin-tin orbitals (LMTO) calculation by
Skriver gave the energy difference between fcc and bcc
copper, at the known equilibrium volume for fcc copper,
to be about 15 meV, which is in good accord with our
work, which yields a value of about 20 meV. Other esti-
mates are higher, e.g., the Kang et al. ' value of 75 meV
and a generalized pseudopotential calculation by Moriar-
ty, which estimated a value of 49 meV.

With respect to a possible fcc~bcc transition under
pressure, from Fig. 4 we estimate that the volume for
such a transition would have to be less than -65 a.u. ,
which corresponds (Table IV) to a pressure greater than
-500 kbar. Experimentally, there is no evidence for a

TABLE II. Comparison of ground-state properties of fcc copper with other theoretical calculations
and experiment. ASW corresponds to augmented-spherical-wave method. See Table I for other nota-
tions.

Property

Cohesive energy (eV/atom)
0

Lattice constant (A)
Bulk modulus (Mbar)

'Reference 11.
Reference 19.

'Reference 1.
References 13 and 18.

KKRa

4.09
3.58
1.55

ASWb

4.05
3.60
1.29

fcc copper
MB'

3.35
3.62
1.50

GO

3.83
3.62
1.88

Expt.

3.50
3.60
1.42
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TABLE IV. Comparison with other theoretical calculations
(notation as in Table II) for the equation of state of fcc copper.
The volume is normalized to the experimental equilibrium
volume of copper of 79.2 a.u. , and the pressures are in in Mbar.

differences between fcc and bcc copper should prove very
interesting.

APW' LMTO' GO Expt. '
VI. CONCLUSIONS

1.0
1.1
1.2
1.3
1.4
1.5

—0.04
0.13
0.37
0.67
1.06
1.54

—0.08
0.09
0.32
0.63
1.01
1.49

0.00
0.20
0.46
0.77
1.14
1.55

0.00
0.16
0.39
0.69
1.07
1.56

'From Ref. 20.
From Ref. 21.

fcc~bcc transition up to 770 kbar, which is consistent
with our calculation.

In contrast to our work is the mixed-
basis —pseudopotential calculation of Kang et al. ' These
workers find a bcc copper phase which is unusually stable
at 6% volume contraction compared to a fcc phase, al-
though still above the fcc phase in energy. They also
found another metastable phase at a 7'flo expansion. This
double minimum is not reproduced in our calculation.
At present, we are unable to account for this discrepancy.
However, we are not convinced that the energy difference
can be accounted for by charge-density arguments given
by Kang et al. ' While it is clear that "symmetry" break-
ing of the d charge density can occur, it is not clear as to
why this should have a "sudden onset" at a particular
volume which would produce the double minimum they
observe. Additional, independent calculations on the

We have examined the ground-state properties of
copper using ab initio pseudopotentials ' constructed
within a local-density approximation and a basis of lo-
calized orbitals, i.e., Gaussians. We find that by using a
core site which includes the Cu 3d radial wave function,
we can still obtain accurate results, i.e., our 3d wave
function is only valid in a region far outside the
radial-wave-function maximum. This procedure is con-
sistent with the pseudopotential philosophy that only the
wave function in the bonding region is important, but it
is different than the procedure normally followed. Usual-
ly, one demands the wave function be accurate outside a
point between the outermost node and the radial —wave-
function maximum. ' However, copper is special in that
the Cu 3d —state radial —wave-function maximum is so far
removed from the Wigner-Seitz radius. By using a pro-
cedure which allows a larger core size than normally al-
lowed, we were able to construct a weaker pseudopoten-
tial than normally used. Such a potential allows a plane-
wave formalism to determine the total energy to be more
readily implemented without loss of accuracy.

A second point to be made, in summary, is that we do
not reproduce the double minimum in the energy-versus-
volume curve of bcc copper obtained elsewhere. ' Our re-
sults yield a bcc copper energy-versus-volume curve
which is very similar to the fcc curve, i.e., contains only a
single minimum.
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