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Third-order elastic constants from molecular dynamics: Theory and an example calculation
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In earlier work, fluctuation formulas have been derived which allow the calculation of the
second-order elastic constants of solids with use of molecular-dynamics computer simulations; ex-
plicit calculations have shown that these fluctuation formulas furnish an efficient method of obtain-
ing the second-order elastic constants of crystalline and amorphous solids. In this paper, we present
the statistical fluctuation formulas containing the isothermal and adiabatic third-order elastic con-
stants. As we show, these formulas also enable one to efficiently calculate the third-order elastic
constants of solids, using molecular-dynamics computer simulation. We illustrate the usefulness of
these new fluctuation formulas by an explicit calculation of the adiabatic second- and third-order
elastic constants of argon at 20.5 K. We also give the pressure derivatives of second-order elastic
constants at T =20.5 K.

I. INTRODUCTION

Higher-order elastic constants, especially third-order
elastic (TOE) constants, play an important role in solid-
state physics. The knowledge of higher-order elastic con-
stants can be used in determining the pressure depen-
dence of second-order elastic (SOE) constants, the equa-
tion of state, and thermal properties of a solid. Also, they
can be used to assess the importance of the anharmonic
contributions to the given elastic properties.

The statistical fluctuation formulas relating the SOE
constants to the fluctuations of the microscopic stress
tensor have been found to furnish an efficient and accu-
rate way to obtain SOE constants from computer simula-
tions. ' In Ref. 1 the Monte Carlo method was em-
ployed to determine the SOE constants, whereas in Refs.
2-6 the molecular-dynamics method was employed. The
molecular-dynamics and Monte Carlo methods have an
advantage over harmonic lattice dynamics, in obtaining
elastic constants, since these methods represent an exact
(classical) calculation of elastic constants which contains
the full anharmonic contribution.

Motivated by the efficiency of the method and accurate
results obtained for the SOE constants of different sys-
tems in Refs. 2 —6, we have derived the statistical fluctua-
tion formulas containing adiabatic and isothermal TOE
constants to be used in molecular dynamics. One may
use these formulas to calculate the elastic constants in or-
der to compare with experimentally observed values,
thereby checking the validity of potential employed to
model the system, or, instead of performing experiments,
that is, for conditions where experiments have not been
performed or cannot easily be performed. In the latter
case we assume that an accurate interaction potential is
known for the system.

The paper is organized as follows. In the next section
we introduce the microcanonical, EhN, and canonical,
ThN, forms of molecular dynamics and establish our no-
tation. In Sec. III we present the fluctuation formulas for
the adiabatic and isothermal TOE constants. In Sec. IV

we present a sample molecular-dynamics calculation of
TOE constants of a model of argon by using a nearest-
neighbor Lennard-Jones potential to model the interac-
tions between argon atoms. Finally, in Sec. V we discuss
the implications and results of the calculation.

II. FINITE ELASTICITY
AND FORMS OF MOLECULAR DYNAMICS

The molecular-dynamics method developed by Par-
rinello and Rahman ' is extensively used for studying
structural phase transformations in solids. However, this
method can also be used to calculate the equilibrium
properties of a system; the trajectories of this form of
molecular dynamics generate an ensemble with constant
enthalpy H, constant thermodynamic tension t, of finite
elasticity theory, and constant particle number N, or, in
short, the HtN ensemble. More details of this ensemble
were given by Ray and Rahman, where they have shown
how the theory can be made consistent with the theory of
finite elasticity. '

It was shown by Parrinello and Rahman, "and later by
Ray' that the adiabatic elastic constants can be obtained
from the strain fluctuations in HtN molecular dynamics
through the equation

ijkl ) VO( ~ eijekl ) ( Eij ~ ( Ekl ~ ) jkB ~ (2.1)

where c; is the strain tensor, and Vo is the reference
volume of the N particle system. In Ref. 12, Ray gave
the statistical fluctuation formula for adiabatic TOE con-
stants in terms of strain fluctuations. However, it has
been found by Sprik et al. ' and by others' that from the
point of convergence to statistically significant results Eq.
(2.1) does not furnish a satisfactory method of calculating
elastic constants because of the slow convergence of the
strain fluctuations.

In Ref. 9, Ray and Rahman discussed not only the HtN
form of molecular dynamics, but also EhN molecular dy-
namics; the latter is a generalization of the familiar EVN
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or microcanonical ensemble. In the EhN form of molecu-
lar dynamics the 3 X 3 matrix, h, which has as its columns
the elements of the vectors a, b, and c that span the
molecular dynamics cell, h = ( a, b, c ), is kept constant;
this keeps not only the volume [=det(h)] constant, but
also holds fixed the shape of periodically repeating
molecular-dynamics cell containing the N particles. The
difference between the EVN and EhN ensembles is
significant since it is just this introduction of h into the
theory that allows one to give a full description of the
elastic properties of the system. After formulating the
EhN ensemble, Ray and Rahman9 presented the EhN en-
semble fluctuation formula for the adiabatic SOE con-
stants, which were later employed in Refs. 2-6. In a
later paper, Ray and Rahman' combined these ideas
with Nose's isothermal molecular dynamics' ' and dis-
cussed the ThN form of molecular dynamics.

Next, we shall briefly discuss the EhN and ThN forms
of molecular dynamics, introduce our notation, and give
the thermodynamic definitions of the isothermal and adi-
abatic elastic constants.

Consider a system described by the Hamiltonian &,

PatPaj 1 8U
Xabi abj

a ma a &b rab rab
(2.8)

To establish the connection with the theory of finite elas-
ticity, we start from the thermodynamic law

T dS =dE+ VoTr(t dE) . (2.9)

de= —,'h o 'dG ho ' .

When we use Eq. (2.10) in Eq. (2.9), we obtain

TdS =dE+ —,
' VoTr(ho 'th o 'dG),

(2.10)

(2.11)

where Vo =det(ho }. From the last equation we can write

=-21 Vo(ho-1th 0-1)l
Glj s

(2.12)

Note that we have used the Parrinello-Rahman choice for
the sign of the thermodynamic tension; t; is positive for
compressive loading. From Eq. (2.7) we can connect the
change in strain to the change in metric,

N p2
~(x,p)= g + g U(r,b},

a=1 a a&b

We first carry out the canonical transforrnations

ai ' ij aj

~„=h;p,

(2.2)

(2.3)

(2.4)

The adiabatic theorem in the EhN ensemble has the form

az aa
aG.. .= aG,,

(2.13)

where % is given by Eq. (2.5). Combining these last two
equations, we can relate the derivative of the Harniltoni-
an to the thermodynamic tension tensor

where h;. are the elements of the h tensor introduced
above. The metric tensor 6 is defined by 6 =hh, where
the tilde indicates matrix transposition. With these new
canonical variables s„,a„.,the Harniltonian has the form

(
8 = ——,

'
V(1(h(1 'th

11
')," .

il

Calculating B&/BG;, from Eq. (2.5) yields

(2.14)

—1

&(s, rr, h)= g ' ' + g U(r, b) .
a a a &b

(2.5)
—1 —1

Mk( —— ————,
' g era(ma(G;kG ((Irna

kl

The distances r,b are related to the scaled coordinate
differences s,b; by

BU+ 2 g r g SabkSabl
a &b ab ab

2 =rab —Sabi Gij Sabj (2.6)
= —

—,'(h ' VPh ');, , (2.15)

e= —,'(h o 'Gho ' —1) . (2.7)

The strain tensor c., in terms of the metric 6, and ho, the
reference value of h, is given by

where P, is the microsc"opic stress tensor, Eq. (2.8), and

Mki is a tensor which appears later in the statistical fluc-
tuation formulas for the elastic constants. We define
another tensor of fourth rank, Nkl „,as

Although the reference value of h, ho, is arbitrary in
the theory, we shall usually take it to be the value of h
when the system is in a strain-free Rate. The microscopic
stress tensor P; is defined as

klmn gG gG

where the explicit form of Nkl
„

is given as follows:

(2.16)

4Nk( „——g na, 2ra)[(6 ';m6 „k+6;„6mk)G (j+6 ik(6 im6 «(+6 l«G mi)]l

32U 1 BU
3 g abk abl abm abn

a & b rab ()rab rab ab

(2.17)
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The second- and third-order elastic constants can be
determined from the tension-versus-strain relations as fol-
lows:

partition function to the Helmholtz free energy:

F = —kBTlnZ . (3.2)

and

Btij
ij kl

~kl
(2.18)

From the thermodynamic law,

dF = —S dT —VpTr(t dc),
we obtain the statistical expression for the tension,

(3.3)

aC,,„,
ij klmn

uKmn

c}t-
~eki ~ema

(2.19)

If these derivatives are calculated at constant tempera-
ture, we obtain the isothermal elastic constants, whereas
if they are calculated at constant entropy we obtain the
adiabatic elastic constants.

1 BF
Vp Be;J.

2hpkhpji 1 Q~ Jf/k

v, z aG„'
2hp)khpJI

Mki &

0
(3.4)

III. THIRD-ORDER ELASTIC CONSTANTS

A. Isothermal third-order elastic constants

The partition function in the canonical ensemble has
the form

—%/kq Tz= f—e
C

(3.1)

where C is a constant and dv the differential volume ele-
ment in 6N-dimensional phase space. The fundamental
connection between thermodynamics and statistical
mechanics is obtained through the equation relating the

I

Using the definition of elastic constants given by Eq.
(2.18} and Eq. (2.17), we obtain the fluctuation formula
for the isothermal SOE constants C

„

Vp(hp )))k)(hp )&„(hp )k&(hp )I)t Ckk)„tkq

4
5(M; M„,),

B
(3.5)

where the tensor M and its relation to the microscopic
stress tensor is given by Eq. (2.15), and the explicit form
of (N, jk& & is given by

4(Ni)kl) =2Nkk T(G;kG kk+G SG ks)+ X s s
—

s Sk S k)kkkk, g) .
—1 —1 —1 —1

a (b ab ab ab ab
(3.6)

The first terms in Eq. (3.6) are called the kinetic-energy terms, while the second terms that are linear in the potential are
called the Born terms. These terms, when added to the fluctuation terms in Eq. (3.5), give the elastic constants. By tak-
ing a further strain derivative of Eq. (3.5), we obtain the following formula for the isothermal TOE constants Cz „,„,

3

V (h )oS(boo )s, (ho )k. (ho )k)ho ) tho ) . ass.* ~ =8(
ij kl mn

8
[)5(N)jklM~„)+5(N)J~„Mkl)+5(NkI~„M&)]

B

5(M;.MkiM „),8

(kB T)
(3.7)

5(AB)=(AB&—(A &(B&,

5( ABC) = ( ABC &
—

& AB & (C &
—( AC & (B &

—&BC&(A &+2(A &&B&&C& .

(3.8)

(3.9)

We will give the explicit form of the first term on the
right-hand side of Eq. (3.7) in the next subsection.

B. Adiabatic third-order elastic constants

In deriving the adiabatic elastic-constant —fluctuation
formulas, one can use either the adiabatic differentiation

where 5(NJI, &M „)and 5(MJMk&M „)are fluctuation
terms, which are defined as follows:

method' or the Laplace-transform method. ' ' These
two methods are equivalent in the thermodynamic,
large-X limit. ' ' ' We refer the readers to the references
for the details of the calculational methods and give the
results for the adiabatic TOE constants.

The statistical fluctuation formulas containing the adi-
abatic SOE constants have exactly the same form as Eq.
(3.5}, except the averages are EhN averages instead of
ThX averages. As we shall see later, this same type of
correspondence does not hold for the higher-order elastic
constants. If we use Eq. (3.5) to calculate the adiabatic
elastic constants, we refer to this as the adiabatic option.
The adiabatic TOE constants are given through the fol-
lowing equation:
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V0(h0 '
), (h 0

'
) (h0 ' )k„(h0 ' )„(hl)'

) „(h0' )„„C„,„„

BVf 8
~ Nijkl~mn + Nijmnlkl +~ Nklmn~ij

ij Gkl mn 8

+ 35(MjMklM „)+ ~ 5(MjMkl ) .8 8 BT
(kll T)' ' "

ks T' (3.10)

The first term on the right-hand side of Eq. (3.10) is the linear term in & which contains the kinetic- and potential-
energy (Born terms) contributions to the TOE constants. This term has the following explicit form:

83''
8 = 3Nka T Aijklmn+ pSab&Sabj SabkSablSabm Sabn

G; GkiBG
„ a gb

where A;~kl „

is given by

(3.11)

(3.12)

and X is

1 BU 3 BU 3 BU
4 ~2+ S Brrab urab rab ~ ab rab ab

(3.13)

In Eq. (3.11) we have assumed that the potential U is a pairwise-additive central potential, but the extension of the
theory to more general potentials is trivial. Note that, in contrast to the fluctuation formulas for the SOE constants,
the fluctuation formulas for the TOE constants do not have the same form in the EhN and ThN ensembles, as can be
seen by comparing Eqs. (3.7) and (3.10}. Equations (3.7) and (3.10) are very general expressions for the TOE constants
in the sense that they are applicable to systems with any or no symmetry, including amorphous systems as well as sys-
tems under strain. We obtain the formulas for zero strain by taking h =ho, i.e., replacing 6 by Go. For example, Eq.
(3.10) becomes, in this limit,

ijklmn Dij klmn + g ~ abiXabj XabkXablXabm Xabn + [5(~ijkl mn }+5( ijmn kl ) +5( Ikmn ij )]

Vo Vo aT
5(P;jPklP „)+ 5(P; Pkl ) . (3.14)

We shall call the first terms on the right-hand side of Eq. (3.14) the kinetic-energy terms (D), the second term the Born
term (linear in U), and the last three terms fluctuation terms, which we denote F, [5(RP)], F2 [5(PPP)], and F3
[5(PP)], respectively. The explicit forms of D, kl „andR,jki "are given as follows:

and

ijklmn ( 5i m 5ln5j k +5i m 5kn 5j l +5in 5km 5j I +5i n 5lm 5j k +5ik 51m 5j n +5i k 5ln5j m +5i I 5km 5j n +5il 5kn 5jm ) (3.15)

1 1 8 U
VO ij kl X (Paj Pak 5il +Paj Pal 5ik +PaiPal 5jk +Pai pak 5j l }+

a a a &b Tab Grab

1 BU

rab
+abi +abj Xabk +abl (3.16)

aT, 2vo

T Be;j s
' 3N(kil T)
2$ 5(KP; ),

where j' is the kinetic energy of the system.

(3.17)

IV. THIRD-ORDER ELASTIC CONSTANTS
OF ARGON FROM MOLECULAR DYNAMICS

In order to test the applicability and efficiency of the
statistical fiuctuation formula (3.10) for the third-order

The temperature derivative in the last term in Eq. (3.14}
can be calculated by using the EhN statistical fluctuation
formula,

elastic constants, we have calculated the adiabatic TOE
constants of a model argon. The system of 500 argon
atoms interact through a nearest-neighbor (12,6)
Lennard-Jones potential:

' 12
CX aU(r) =4e
r r

(4.1)

where c, =2.35 X 10 ' erg, c/k& ——170.2 K, and
o.=3.3035 A. Presently, no experimental values for the
higher-order elastic constants are reported for the rare-
gas solids. However, Mock and Rose have calculated
third- and fourth-order elastic constants of all inert-gas
solids at 0 K using harmonic lattice dynamics. In con-
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Fluctuation
Born term
Kinetic energy
Total (Theor. )

Experimental

Av. (Expt. )

—2.28
43.70
0.61

42.03

46.8, ' 51 9
42.0 ' 39 1

44.9

—0.85
21.74
0

20.89

12.2, ' 13.6
18 0 ' 19 4

15.8

—2.04
21.74
0.30

20.00

12.2, ' 15.6
15 3 c 19 0d

15.5

'Reference 24.
Reference 25.

'Reference 26.
References 27 and 28.

TABLE I. Symmetry-averaged adiabatic SOE constants of
argon at T=20.5 K. The density of the system is p=1.794
g/cm'. The calculations are over 80 000 time steps with

At=0.0004~, where ~ is 1.24056 ps. All entries are in 10

dyn/cm .

C12

111 222 333

C112 C113 C122 C133 C223 C233

C

C144 ——C2ss
——C

C1ss =C166 ——C244
——C266

——C344
——C3ss ~

C4s6

(4.2)

Using Eq. (3.14) we have calculated these 20 elastic con-
stants independently. Also, for a check of the calculation
we calculated C114 which should be, and was, to the ac-
curacy of calculation, zero. Calculating these 21 elastic
constants independently allowed us to follow the conver-
gence of the calculation. At the end of the calculation we
used these independently determined values to calculate
the symmetry-averaged TOE constants.

B. Results

trast to lattice dynamics, molecular-dynamics calcula-
tions using Eqs. (3.7) or (3.10) take all interactions into
account exactly (within the assumption of a given force
law and classical mechanics); thus, it includes anharmon-
ic and finite-temperature effects in an exact manner.

A. Method of calculation

We calculated the TOE constants at T=20.5 K (0.12 in
reduced units) for a system of 500 argon atoms arranged
in a fcc lattice, with each particle interacting with its 12
first-nearest neighbors only.

To determine ho, we performed a simulation with

variable-size and -shape (HtN) molecular dynamics with

the tension (or stress) equal to zero. At the end of this
run (24 000 time steps, each being 0.0004', where
r= 1.240 56 ps) the average value of h, i.e., ho, was ob-

tained, which yields the zero-pressure density of 1.794
g/cm [the experimental value for the density at T= 20 K
is 1.7641 g/cm (from Peterson, Batchelder, and Sim-

mons )].
Due to the symmetry of the fcc crystal, only six of the

20 nonzero TOE constants are independent. In Voigt no-
tation they are

We present the result of our calculation of adiabatic
SOE constants at T=20.5 K in Table I. These results
were calculated using Eq. (3.5) and the adiabatic option.
In the table the kinetic-energy terms, fluctuation terms,
and potential-energy (Born) terms are tabulated separate-
ly. These quantities are calculated with a molecular-
dynamics run of 80000 time steps (39.70 ps). In the same
table we also give the experimental values taken from
Moeller and Squire, Gsanger et a/. , Keeler and
Batchelder, and Mejxner et gl. ' As seen from these,
the experimental values for the SOE constants exhibit a
wide variation from experiment to experiment.

In Ref. 2, Ray, Moody, and Rahman have calculated
the adiabatic SOE constant of argon at T'=0.298 (di-
mensionless). They give the results in terms of Nk&T/V.
Converting the calculated SOE constants in Ref. 2 to the
Lennard-Jones parameters used here gives C» ——33.16
kbar, C,2

——17.15 kbar, and C44=15.00 kbar for a tem-
perature of T=50.7 K and a density of p=1.687 g/cm .
Comparison of our calculation at T=20.5 K with these
results obtained at T=50.7 K shows the correct softening
behavior for elastic constants as the temperature is
elevated.

In Table II we present the results of our calculation of
the adiabatic TOE constants for argon, which are calcu-

TABLE II. Symmetry-averaged adiabatic TOE constants of argon at T=20.5 K, p=1.794 g/cm'.
The calculation is performed at zero pressure. The 0 K lattice dynamics results are from Ref. 22. All
entries are in 10 dyn/cm .

Fl

F3
Kinetic energy
Born term
Total (Theor. )

0 K (static)
0 K

lattice dynamics

57.03
10.52
6.83

—3.66
—531.06
—460.34
—447
—479

C112

25.68
2.97
2.53
0

—261.05
—229.87
—223
—236

C123

3.61
15.11
2.53
0

—1.84
16.88
0
1.18

Ci &4

—5.66
—14.13

6.10
0

—1.84
—15.53

0
—13.0

CISS

43.46
—15.71

6.10
—0.46

—261.05
—227.66
—223
—231

C4s6

—5.34
—8.61

0
—0.46
—1.84

—15.80
0
0
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TABLE III. Time evaluation of some of the symmetry-averaged Born terms for second- and third-

order elastic constants. All entries are in molecular-dynamics units, i.e., c/o .

Steps

500
1000
1500
2000

10000
20000
30000
40000
50000
60000
70000
80000

67.12
67.07
67.07
67.06
67.04
67.03
67.03
67.04
67.04
67.04
67.04
67.04

Cia

33.39
33.37
33.36
33.36
33.34
33.34
33.34
33.35
33.35
33.35
33.35
33.35

—815.54
—814.94
—814.98
—814.98
—814.78
—814.72
—814.70
—814.70
—814.71
—814.70
—814.71
—814.70

CI12

—400.77
—400.44
—400.66
—400.65
—400.45
—400.47
—400.45
—400.45
—400.49
—400.50
—400.45
—400.44

C12

—2.89
—2.85
—2.82
—2.81
—2.83
—2.84
—2.83
—2.83
—2.83
—2.83
—2.82
—2.82

lated in the same run as the results in Table I. In Table II
we tabulate contributions from each term appearing in
Eq. (3.14) separately, along with the static calculation re-
sults at 0 K obtained by using only the Born terms evalu-
ated with the particles at their ideal lattice positions.
Also given are the lattice dynamics results from Ref. 22.
By inspecting Table II for the temperature variation of
the Born terms, we see a substantial change with temper-
ature; this change is about 20% of the 0-K values for
C»&, C»z, and C»5. In addition, the overall contribu-
tion of fluctuation terms, the sum of F„F2,and F3, is
considerable, about 20%%uo for C& & &

and 15% for C& &2.

C. Calculational ef5ciency

The Born terms for the TOE constants converges as
fast as the Born terms of the SOE-constant calculation,
which can be seen from Table III, where we tabulated the
time evolution of a few of the symmetry-averaged Born
terms for both second- and third-order elastic constants.
Even though we have continued calculating and averag-
ing the Born terms for the TOE constants throughout the
calculation, we could have averaged them only for the
first 1000 time steps, and obtained the same values. This
is important because the Born terms are calculated
within the force loop for each interaction and take con-
siderable time. Thus, removing the calculation of the
Born terms for the TOE constants after 1000 steps in-
creases the efticiency. Note that one must still calculate
the second derivatives of the potential in the force loop
because of the fluctuation term F, .

The length of the calculation is determined by the con-
vergence of the fluctuation terms, which has been found
earlier for the SOE-constant calculations. ' The fluctua-
tion term F, containing the tensors R,-jkl and P „has
converged as fast as the fluctuation term of the SOE con-
stants, i.e., 5(P,J,PkI ), that is, within 30000 steps. Thus,
after sufBcient accuracy for this term is obtained, remov-
ing these terms will reduce the simulation to a standard
molecular-dynamics calculation, with only the first
derivatives of the potential being calculated in the force
loop. As one might guess, the slowest convergence has
been observed in the triple-fluctuation term F2 containing

the microscopic stress tensor, i.e., 5(P;JPk&P „),which is
also the least accurate term in the calculation and deter-
mines the estimated errors in the values.

D. Pressure dependence of elastic constants

Using the zero-pressure second- and third-order elastic
constants, we can calculate the pressure derivatives of the
SOE constants of our model of argon at 20.5 K.

Birch and later Ghate, ' ' extending Murnaghan's
treatment of finite deformation of isotropic solids, ob-
tained the expressions for the SOE constants of cubic
crystals under finite hydrostatic pressure in terms of
zero-pressure second- and higher-order elastic constants.
In these expressions, the ratio of the pressure P and the
zero-pressure bulk modulus 8 is used as the expansion
parameter. If we define the expansion parameter g as

ri = P /3B = P—/( C i i +2C—i2 ), (4.3)

dC»
dp

2C»+2C, q+ C»)+2C»g
C»+2C

dC )2
—C) )

—C)2+2C) )2+2C)23
dp C»+2Ciz

dC44 C»+2Ci2+ C44+ C&w+2Ci55
dP C»+2C, 2

(4.5)

Using the calculated values for the zero-pressure second-

then the effective SOE constants of a cubic crystal under
the hydrostatic pressure P are given by

CI) ——C()+g(2C))+2C)q+Ct))+2C))2),

C|2——C)2+q( —C) (
—C)t+2C))2+2C)23), (4 4)

C44 ——C44+ rI(C,
&
+2C,2+ C44+ Ci44+2C, s5 ),

to the first order in g. The primed quantities represent
the effective SOE constants, whereas the unprimed quan-
tities represent zero-pressure elastic constants.

Thus the pressure derivatives of the SOE constants
could be obtained from Eq. (4.4),
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and third-order elastic constants of argon in Eq. (4.5), we
have obtained the pressure derivatives of the SOE con-
stants. They are

dC'„dC',2 dC44=9.41, =6.03, =4.01 .
dP

(4.6)

V. CONCLUDING REMARKS

We have given statistical Auctuation formulas for the
adiabatic and isothermal TOE constants and written
these equations out explicitly for a pairwise-additive cen-
tral potential. The extension to more general potentials is
straightforward. In order to test whether these formulas
furnish a practical method for calculating higher-order
elastic constants, we performed a simulation using a
nearest-neighbor Lennard-Jones model of argon. The re-

suits show that the method gives an efficient way of cal-
culating higher-order elastic properties of solids. The
length of the calculation is determined by the time re-
quired for the convergence of triple fluctuations of the
microscopic stress tensor.

The extension of these results to higher than third-
order elastic constants is also straightforward, although
perhaps not of much practical interest at the present
time.
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