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Magnetic susceptibility of expanded fluid alkali metals
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From a phenomenological treatment of a correlation-induced metal-insulator transition at ele-
vated temperatures, an interpretation of the behavior of the magnetic susceptibility of expanded
Quid alkali metals is proposed. Renormalization of the Fermi temperature due to correlation is
sho~n to play an essential role. An important conclusion is that the momentum distribution at
the Fermi surface is quantitatively very di8'erent from that in jellium at the same density.
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FIG. 1. Volume magnetic susceptibility (SI units) of expand-
ed liquid cesium along the liquid-vapor coexistence curve (Ref.
6). Full curve a is based on the experimental data of Freyland
(Ref. 2), and dashed curve h indicates the Curie limit for free
spins. The critical density is 0.379 gcm (Ref. 7).

There has been much interest, both theoretical and ex-
perimental, in the magnetic properties of highly correlated
systems. In particular, expanded alkali metals provide ex-
cellent subjects for the investigation of the influence of
electron correlation on electrical and magnetic properties,
and its role in the metal-insulator transition, which, for
these materials, is believed to occur near to the liquid-
vapor critical region. ' The experiments of Freyland and
co-workers2 4 on the magnetic susceptibilities of alkali
metals along the liquid-vapor coexistence curve have
stimulated much interest, and it is on these that this note
is focused. Warren5'6 extracted the paramagnetic contri-
bution to the total susceptibility due to the conduction
electrons, and pointed out that the behavior in the low-
density liquid region is consistent with a correlation-
enhanced Pauli paramagnetism, limited by the free-spin
Curie value. This is illustrated in Fig. 1, which incorpo-
rates the recent determination of the liquid-vapor coex-
istence curve for cesium by Jungst, Knuth, and Hensel.
In what follows, we consider the behavior of the magnetic
susceptibility in the vicinity of the metal-insulator transi-
tion, initially by means of a phenomenological description,
and then by utilizing a microscopic theory developed for
heavy-electron systems.

F(m, q, T) Ep+a(T)m + . +b(T)q

+c(T)q + +e(T)qrn 2+ (3)

Here, of course, the interpretation of q in terms of the
average number of doubly occupied sites (given explicitly
in the Brinkman-Rice model) is more appropriate, since
the discontinuity in the single-particle occupation number
will not be such a well-defined quantity. Furthermore, as
T ee, we expect a reversion to Curie-like behavior in
the susceptibility, as the degeneracy temperature of the

The starting point of the present description is the phe-
nomenological treatment of a correlation-induced metal-
insulator transition at absolute zero T 0, due to March,
Suzuki, and Parrinello. s Following Suzuki, these authors
wrote the ground-state energy per atom of a half-filled
band near to the metal-insulator transition (in the metal-
lic phase) as an expansion in the magnetization per atom
m and the quasiparticle renormalization factor q. The
latter is the discontinuity in the single-particle occupation
number at the Fermi surface, which decreases continuous-

ly to zero at the transition. Thus

E(m, q) =Ep+arn +
+bq+cq2+ +eqm +

The volume magnetic susceptibility Z is then

nppppP (2)
2(a+eq)

where n p is the number density. Hence if a is zero, or van-
ishes at least as fast as q on approaching the transition,
the susceptibility is enhanced, as in the Brinkman-Rice
model'p for such a system. For that particular case, we

may readily identify the coefficients in the expansion (1),
and find a 0, b (U, —U)/8, c U/32, and e =[I
+ 2 eN(eF)l/2N(eF), giving X-q ' as the authors origi-
nally noted. Here U is the Hubbard onsite interaction,
N(eF) is the electronic density of states per atom at the
Fermi energy, U, is the value of U at the metal-insulator
transition, and e is the band energy in absence of correla-
tion.

Let us consider next the situation for Te0. A natural
extension of Eq. (2) writes the free energy per atom at
temperature T as
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Fermi fluid is exceeded. This is achieved if the coefficient
a in Eq. (3) is proportional to T, with the coefficient e
much less strongly dependent on T, and remaining finite
as T 0. Thus if a aT, then as T~ ~, X~
npppp)/2aT, and for lower temperatures X is always less
than this limiting value, for all densities. If a —, ke, this
is simply the Curie law for the electrons. As T 0 we
have X nppppg/2eq, and require 1/2e N(eF) in the
limit of high density (q 1), if we are to regain the Pauli

I

susceptibility. Thus we expect a gradual transition be-
tween these limiting behaviors, when a = eq, i.e.,
2eq = ka T.

To proceed further, we draw upon the work of Rice,
Ueda, Ott, and Rudigier, " who extended the original
Brinkman-Rice model to finite temperatures, in order to
describe the normal-state properties of heavy-electron sys-
tems. For a half-filled band, they wrote the free energy
per atom as

F gq eknl, +Ud+klrT+wlr[nor 1nnlr +(1—ni, )ln(1 —np )1,
ko kcr

(4)

where nk~ [1+exp[q(& —p)/wl, kIrTll ', wi, is a re-
normalization factor in k space, introduced to account for
the nonorthogonality of the quasiparticle states ni, , and d
is the average number of doubly occupied sites. Although
clearly the details of wi, are not known, the constraints

w gwi, [( 2
—d)ln( —,

' —d)+dln2j/ln2, (s)

w )-gwi, '-2,
k

w 1 as k kf ,

hold for the situation considered here. With

(6)

(7)

1

nopouk
2

1

4(1 —2d) '
r

+kgT gir wg ng (1 nir )

Now as T 0, the second term becomes q/N(ef), and
writing e gq ei,nq in this limit, then

n pppp)N(ef)x
q 4(1 —2d)'

1+ eNef 1—

(10)
regaining the Brinkman-Rice result. ' For krrT»qef,
then nlr = —,', so that

nopopk (11)
kgT

using the value for w —
~ from Eq. (6). Hence there is a

crossover between enhanced Pauli paramagnetism and
Curie behavior, for klrT=qef, and the structure of the
theory is as suggested earlier in the phenomenological
description. We may also note that for the low-

temperature, high-density region of Fig. 1, Eq. (10) pro-
vides a mechanism for the observed enhancement of the
susceptibility over the Pauli value and thus the upturn in
the curve. Here, we may assume that the reduction of d
from its uncorrelated value of —,

' is small. Writing
d = —,

' —b, where 8 is small and positive, we find from Eq.
(8) that q =1 to 0(b), and on expanding the bracket in

q [[d(nt —d)l' +[d(nl —d)J' } /ntnl, (8)

the magnetic susceptibility may be obtained by expanding
the free energy to 0(m ):

Eq. (10) similarly, we obtain

nopopjjN(eF)

1+16eN(e+)a
(12)

Since e (0,X shows a Stoner-like enhancement, the effect
of which will tend to diminish as the density falls, while at
the same time the 1/q factor becomes more important.

Referring to Fig. 1, then at the maximum in the suscep-
tibility curve, as Warren pointed out, the enhanced Pauli
susceptibility appears to be restricted by the Curie limit.
At this point, p=0.8 g cm and T= 1780 K, giving

q =0.18 (i.e., d =0.02). Thus the renormalization of the
electron degeneracy temperature due to the effects of
correlation is strongly marked. More generally, we will

expect a crossover region in the behavior of the suscepti-
bility to the high-density side of the metal-insulator tran-
sition, as indicated schematically in Fig. 2. The experi-
mental data for rubidium and sodium, 3 which do not
show a maximum like those for cesium, 2 do not extend to
low enough densities for this to be seen, although we
should expect them to before the metal-insulator transi-
tion is reached. We note, of course, that near to the
liquid-vapor critical region, the susceptibility is likely to
be subject to diamagnetic corrections, arising from the
presence of aggregate species.

In summary, it is shown that the magnetic-
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FIG. 2. Schematic representation of the relationship between
the metal-insulator transition (q 0, labeled a), the crossover in
the behavior of the magnetic susceptibility (qsF ksT, labeled
b), and the liquid-vapor coexistence curve (labeled c).
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susceptibility data on expanded fluid cesium can be inter-

preted by means of a phenomenological treatment,
develo ed from that given by March, Suzuki, and Par-
rinello for T 0. This is supported, at a microscopic lev-

el, by adapting the work of Rice et al. "on heavy-electron
systems. If the peak in the susceptibility-density plot for
cesium along the coexistence curve is interpreted as the
limitation of enhanced Pauli behavior and consequent
crossover to a Curie-like regime, then q at this point is
=0.18. This figure constitutes an upper bound for the
value of q at the metal-insulator transition, and it is of in-

terest here to note the marked difference in behavior from
the jellium model. There, q =0.53 at the corresponding
density, 'z and the metal-insulator transition occurs at a
much lower density. '3 It is evident that the influence of
electron-ion interaction in the real system is substantial.
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