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The surface structure of Al(210) has been determined by means of a systematic minimization of
the discrepancy between experimental low-energy electron diffraction intensity-energy spectra and

spectra calculated using multiple-scattering theory, as a function of the structural and nonstructural
variables of the calculations. The experimental data base consists of intensity-energy spectra for 14
symmetry-inequivalent diffracted beams, measured at normal incidence and at 135 K in the energy
range 40-340 eV. The surface structure is found to exhibit an oscillatory, multilayer relaxation.
The relaxations b,d; and hr; of the first five interlayer spacings and registries with respect to the cor-
responding bulk values are determined to be hd& ———(16+2)%%uo, hd2 ———(1+3)%%uo, hd3 ——+(9
+3)%, hd4 ———(4+4)%, hd5 ———(1+5)%,and 4rl ——(023)%, hr& ———(3%3)%,hr3 ——+(2+3)%,
4r~ = —(2+4)%, mrs ———(1+5)%. These results are in qualitative agreement with the results of
pseudopotential calculations of the surface structure of Al(210) by Barnett, Landman, and Cleve-
land [Phys. Rev. Lett. 51, 1359 (1983)] in the sense that the signs of the relaxations, where + indi-

cates an expansion and —a contraction, are the same for each of the relaxations. Furthermore, the
present results are in near-quantitative agreement with the relaxations calculated by Jiang, Marcus,
and Jona [Solid State Commun. 59, 275 (1986)j and F. Jona (private communication), using a simple

electrostatic, point-ion-frozen-background model. The present results for Al(210) are discussed in

the context of previous experimental studies of the multilayer relaxation of open metal surfaces,
which are reviewed with a view to the identification of trends in the observed phenomena. In par-
ticular, the relaxation behavior of the first six surfaces of Al and Fe are discussed in the framework
of the point-ion-frozen-background model. It is demonstrated that the relaxation trends can be
predicted by simple considerations of the electrostatic forces on the layers of the unrelaxed surface
structures, thus providing the basis for a simple, intuitive description of multilayer relaxation.

I. INTRODUCTION

Recent studies of the structure of open metal surfaces
have revealed the existence of relaxation phenomena ex-
tending several layers into the solid. The study of this
phenomenon has proved to be a useful testing ground for
the refinement of experimental methods of structure
determination and for the development of quantitative
theories of surface electronic and geometrical structure.
The work described in this article was carried out with a
view to providing further impetus to these developments
and, in particular, to test the recent prediction for the
surface structure of Al(210) resulting from the calcula-
tions of Barnett, Landman, and Cleveland. ' To antici-
pate the conclusions presented in more detail later, the
trends of the relaxation behavior found in the present ex-
perimental low-energy electron diffraction (LEED) study
are in remarkable agreement with the predicted trends,
but the magnitude of the relaxations is generally smaller
than predicted.

Although the present work is limited to the considera-
tion of unreconstructed surface structures of elemental
metals, it should be noted that the occurrence of
significant relaxation effects is not limited to such rela-
tively simple systems. A few, very recent studies of alloy
surfaces, reconstructed metal surfaces, and adsorption
systems suggest that multilayer relaxation phenomena
may be of general importance for open surfaces.

Previous work on the relaxation of unreconstructed
metal surfaces is reviewed in Sec. II. The structure of an
ideal Al(210) surface is described in Sec. III. The experi-
mental and calculational LEED procedures used in the
present work are described in Secs. IV and V, respective-
ly. The r-factor procedures used in the comparison of ex-
perimental and calculated LEED intensity-energy spectra
are discussed in Sec. VI, and their application to the
determination of the surface structure of Al(210) is de-
scribed in Sec. VII. Finally, in Sec. VIII, the present re-
sults are compared with theoretical predictions of the
surface structure of Al(210), and placed in the context of
previous studies of multilayer relaxation. Trends in the
relaxation of Al and Fe surfaces are identified and dis-
cussed in the framework of effective-medium and point-
ion models. It is demonstrated that an intuitive under-
standing of multilayer relaxation can be achieved through
consideration of the electrostatic forces on the ions of the
unrelaxed surface structure.

II. PREVIOUS STUDIES OF THE RELAXATION
OF UNRECONSTRUCTED METAL SURFACES

A. Relaxation of the first interlayer spacing

The first determination of a significant deviation from
the geometry of an ideal, truncated-bulk crystal was
made, for Al(110), in the pioneering LEED study of Jep-
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sen, Marcus, and Jona in 1972. In one of the first quan-
titative applications of LEED to the determination of
surface structure, these authors found a contraction of
the spacing between the first two layers of the Al(110)
surface of hd, = —10% with respect to the bulk value.
In contrast, the Al(111) and (100) surfaces were found to
correspond to almost perfect truncations of a bulk crys-
tal, with b,d, = + 2.5% and 0%, respectively. Subse-
quent LEED studies have indicated that a contraction of
the first interlayer spacing occurs quite generally for open
metal surfaces, whereas the close-packed fcc (111) and
(100), bcc (110), and hcp (0001) surfaces are essentially
unrelaxed. The magnitude of the relaxation increases
generally with surface roughness.

The occurrence of a contraction of the first interlayer
spacing, as opposed to the expansion predicted in earlier
pair-potential calculations, can be understood in terms
of the electrostatic interaction between point ions and a
homogeneous electron charge distribution with a step ter-
mination at the surface.

By considering only the interaction within a single
Wigner-Seitz cell at the surface, Finnis and Heine
showed that the asymmetric charge distribution within
the cell results in an inward-directed force on the ions in
the first layer. Calculations based on this simple model
for Al(111), (100), and (110) led to relaxations of the first
interlayer spacing of b d

~

———1.6%, —4.6%, and —16%,
respectively, in qualitative agreement with the trends
found in the LEED results of Jepsen et al. At about the
same time, a relaxation of the first interlayer spacing of
Li(100) of hd, = —20% was predicted by Alldredge and
Kleinman. In a more detailed study than that of Finnis
and Heine, these authors showed that it was important to
include the interactions between the surface Wigner-Seitz
cells, and to include the effects of the full, three-
dimensional variation of the electron charge density, the
latter being taken from the results of a band-structure
calculation.

Quantitative agreement between experimental and
theoretical surface structures was not achieved, however,
in the decade following the work of Jepsen et al. , except
in the case of essentially unrelaxed surfaces. Various
calculations for Al(110), for example, gave results' scat-
tered in the range hd, = —26% to + 2%, as compared
to the experimental value of —10%.

B. Multilayer relaxation of interlayer spacings

The possibility that the relaxation of metal surfaces
might extend deeper into the solid appears to have been
first examined in the context of experimental determina-
tion of surface structure by Davis and co-workers" ' in
LEED studies of Cu(110) in 1978—1980. The conclusion
of this work (hd, = —10%, b,d2 ——0%), however, was
that only the first interlayer spacing was relaxed. More
recently the improved precision of LEED analyses, re-
sulting in part from the use of r-factor methods and sys-
tematic parameter variation, has led to the observation of
multilayer relaxation for a number of systems, as dis-
cussed below.

The first detailed theoretical investigation of multilayer

relaxation was reported by Landman, Hill, and Mostoll-
er' in 1980 for the (111),(100), and (110) surfaces of Li,
Na, Al, and Cu. Equilibrium surface structures were
determined by iterative adjustment of the relative posi-
tions of planes of ions parallel to the surface to reduce the
net electrostatic forces on the ions to zero. The electro-
static forces due to the mutual interaction of the ions and
their interaction with the valence electrons were calculat-
ed by the planar summation method used by Alldredge
and Kleinman. The infiuence of various ionic pseudopo-
tentials and various one-dimensional variations of the
electron charge density on the equilibrium surface struc-
tures was investigated, but no self-consistent adjustment
of the electron charge density was carried out in the
iterative procedure.

The trends of the relaxations of the first interlayer
spacings calculated by Landman et al. were consistent
with the trends found in experimental studies, referred to
previously, except for the bcc (111)surfaces where expan-
sions of the first interlayer spacing were predicted. A
novel feature of the results was the prediction of substan-
tial relaxations of deeper interlayer spacings for the fcc
(110) and bcc (100) surfaces. The relaxations were found
to oscillate in sign from —to + and to be damped in
magnitude in the direction of the bulk, that is, a contrac-
tion of the first interlayer spacing is followed by a smaller
expansion of the second interlayer spacing, which is fol-
lowed in turn by a smaller contraction of the third inter-
layer spacing, and so on. The magnitude of the relaxa-
tions was found to depend strongly on the particular in-
gredients of the model calculations, but the qualitative
trends were given in all cases by the most simple model
assumptions, involving the interaction of point ions with
a step-terminated, homogeneous electron charge density.

The qualitative trends of the multilayer relaxations
predicted by Landman et al. were subsequently
confirmed by LEED and high-energy ion-scattering
(HEIS) studies carried out in our laboratory for Cu(110)
(Refs. 15—17) and Al(110).' ' However, the magnitude
of the relaxations, as listed together with the predicted
values in Table I, was found to be smaller and more rap-
idly damped into the bulk than predicted. For Cu(110),
the near-quantitative agreement between the results ob-
tained by LEED and HEIS gave some confidence in the
reality of the small relaxation of the second interlayer
spacing. Subsequent LEED (Refs. 19 and 20) and HEIS
(Ref. 21) studies, with results also listed in the table, have
substantiated our original findings.

More recently, the inclusion of self-consistency condi-
tions at various levels of sophistication in calculations of
surface structure has led to quantitative agreement
with the relaxations determined by LEED for Al(110)
(Refs. 10 and 18) and V(100). A comparison of the re-
sults calculated by Barnett, Landman, and Cleveland
and by Ho and Bohnen for Al(110) with the experimen-
tal LEED results is given in Table II.

Following the studies of Cu and Al(110) discussed
above, damped, oscillatory relaxation of the interlayer
spacings has been reported for V (Ref. 25} and Ta(100},
Ni, ' Ag, Pb (Ref. 34) and Pd(110), Ni (Ref. 36)
and Al(311), Fe(211), and Fe(310).3 Both LEED and
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TABLE I. Comparison of experimental and (non-self-consistent) theoretical surface structures for
Cu and Al(110).

Surface

CU(110)
Theory
Experiment

hd)

—26.3
—10
—8.5
—7.9

—10.0
—5.3
—7.5

Relaxations (%)
bd2

+ 15.8'
0b

+ 2.3
+ 2.4
+ 1.9
+ 3.3'
+ 2.5

Method

LEED
LEED
LEED
LEED
HEIS
HEIS

Al(110)
Theory
Experiment

—21.3
—8.6
—8.5

+ 13.3
+ 5.0
+ 5.5

—6.7g

1 6h

+ 2.2
LEED
LEED

'Reference 14. Step density profile.
Reference 12.

'References 15 and 17.
Reference 19.

'References 15 and 16.

Reference 21.
gReference 14. Exponential density profile.
"References 10 and 18.
'Reference 20.

HEIS determinations have been made in the case of Ni
and Ag(110). For all of these surfaces, the signs of the re-
laxations are —+ —.More complex relaxation behavior
has been found for Fe(111) (Ref. 40) and (210) (Ref. 41)
and for Al(331) (Ref. 42) where the signs of the relaxa-
tions are ——+ —.In addition, the magnitude of the re-
laxations of the Fe(210) and Al(331) surfaces are damped
in a nonuniform fashion into the bulk. In both cases, the
expansion of the third interlayer spacing is larger than
the contraction of the second interlayer spacing.

TABLE II. Comparison of experimental and (self-consistent)
theoretical surface structures for Al(110).

Theory

Experiment

'Reference 22.
Reference 24.

'References 10 and 18.
Reference 20.

Ed'
—10
—6.8
—8.6
—8.5

Relaxations (%)
hd2

+4
+ 3.5
+ 5.0
+ 5.5

hd3

—3'
—2.0"
—1.6'
+ 2.2'

C. Multilayer relaxation of interlayer registries

The recent LEED results of Solokov et al. ' ' ' for
Fe(211), (310), and (210) revealed the occurrence of a new
relaxation phenomena, in that relaxation of the interlayer
spacings was found to be accompanied by substantial re-
laxation of the interlayer registries. It can be noted that
for these more open surfaces, the surface space group of
the ideal structure contains a single mirror plane. Rela-

tive displacements of layers parallel to the surface in the
surface mirror-line direction can occur, therefore,
without loss of symmetry.

At about the same time as the work of Solokov et al. ,
Barnett et al. ' reported calculations for the (210) and
(211) surfaces of Al and Na which also showed the oc-
currence of substantial relaxations of both the interlayer
spacings and registries. The model used was essentially
that of Landman et al. ' for calculating the electrostatic
interactions between a lattice of ionic pseudopotentials
and a one-dimensional, Lang-Kohn, electron density
pro61e, and did not include the self-consistent screening
corrections made in the calculations by the same authors
for Al(110).

The experimental LEED results for Fe(211) and (210)
are listed together with the calculated results for Na(211)
and (210) in Table III, from which it can be seen that the
qualitative trends are similar, except for the signs of the
second and third interlayer registries in the case of the
bcc (210) surfaces.

The extent to which the differences in magnitude be-
tween the experimental and calculated relaxations reflect
the differences in the electronic structure of Na and Fe,
or result as in the case of Al(110) from the lack of self-
consistency in the calculations is an open question. A
main purpose of the present work was to make a direct
comparison with the corresponding calculations of Bar-
nett et al. , for Al(210).

Finally, it is noted that experimental reports of sub-
stantial relaxations of interlayer registries are limited to
the Fe(211), (310), and (210) surfaces. A small relaxation
of the first interlayer registry was found for Al(331), but
the other fcc metal surfaces containing a single mirror
plane which have been studied to date, namely Ni and
Al(311), exhibit essentially no relaxation of the interlayer
registries.
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TABLE III. Comparison of experimental (Fe) and calculated {Na) relaxations for bcc (21) and (210)
surfaces.

Relaxation

Ad]
bd~
b,d3
514.

Fe(211)

—10.4
+54
—1.3

Na(211)

—21.1

+ 16.0
—11.1
+ 7.6

Fe(210)

—22.0
—11.1
+ 17.0
—4.8

Na(210)

—41.1

—65.4
+ 88.3
—31.2

hrl '
Ar2

hr3
hr4

+ 29.0
—4.5

+ 32.4
—35.7
+ 16.8
—3.8

+ 7.1

+ 1.4
0.0

+ 4.0

+ 13.3
—2.3

—13.7
+ 7.0

'Ar, is the percentage change of the component lying in the surface mirror line of the shortest vector
connecting atoms in the ith and (i + 1)th layers, with respect to the corresponding bulk value.

III. STRUCTURAL INPUT AND NOMENCLATURE

Sketches of the atomic arrangement in an ideal fcc
(210) surface are shown in Fig. 1. The (210) plane is the
sixth most close-packed plane in the fcc structure, with
unit-cell area 2.58 times larger than that of the most
close-packed (111)plane.

As indicated in Fig. 1(a), the surface structure can be
specified by primitive unit mesh vectors, a& and a2, and

y~~ [Optl

l&o~~ o I

oo I 27-4 ol'~p&oI r;
7 ~ o

FIG. 1. Hard-sphere model of the ideal fcc (210) surface. (a)
Projection on the (210) plane {top view). Atoms in the first layer
are shown by solid circles. Atoms in the second and third layers
are shown by dashed circles. The primitive unit mesh is defined
by the vectors al and a, . The interlayer shift vector s connects
origins in successive planes. The interlayer registry r is the pro-
jection of s on the [120] mirror line. (b) Projection on the (001)
plane (side view). Atoms lying in the same (001) plane are
shown by solid circles. The interlayer spacings d; are indicated.

by an interlayer shift vector s which connects origins in
successive layers. The surface-normal component of s is
referred to as the interlayer spacing d, and the surface-
parallel component of s lying in the [120] mirror-line
direction is referred to as the interlayer registry r.

It is noted that alternative specifications of the inter-
layer shift vector s lead to different specifications of the
interlayer registry r. Thus the description of a possible
relaxation of r as being a contraction or expansion, and
the percentage change hr with respect to the bulk value,
depend upon the choice of s. In discussing the results of
previous studies of the relaxation of interlayer registries
we have, where necessary, recalculated the results in ac-
cordance with the definition of s used here as the shortest
vector connecting atoms in successive layers.

As described in Sec. IV, experimental LEED measure-
ments for Al(210) exhibit the full surface space-group
symmetry of an ideal fcc (210) surface, including the
mirror-plane symmetry. Thus the possible relaxations of
the interlayer shift vector s; connecting origins in the ith
and (i + 1)th layers are restricted to relaxations b,d; and
b, r; lying in the (001) plane [Fig. 1(b)]. The bulk values of
s, d, and r are s =a()/&2=2. 8543 A, d =&5ao/10
=0.9026 A, and r =&5ao/5=1. 8052 A, based on the
value of the lattice constant ao ——4.03657 A at 135 K,
as derived from the value at room temperature of
ao =4.049 60 A using the data of Gibbons.

IV. EXPERIMENTAL PROCEDURE

The experimental measurements were carried out in an
ultrahigh-vacuum system constructed by Vacuum Gen-
erators with a 12-in.-diam p-metal experimental
chamber. The system included Varian four-grid LEED
optics which were used for both LEED and retarding-
field Auger-electron spectroscopy (AES) measurements.

The Al(210) crystal was mounted on a Vacuum Gen-
erators HPT2 manipulator with an x-y-z translation
stage, with facilities for rotation about two orthogonal
axes through the nominal crystal position, and with a tilt
motion of the manipulator shaft about an axis perpendic-
ular to the shaft at the top of the manipulator. The rela-
tive orientation of the LEED optics and manipulator was
such that, with the tilt angle set to zero, the remaining
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two rotations determined separately the incidence and az-
imuthal angles of the incident electron beam with respect
to the crystal.

The Al(210) crystal was spark cut from a single-crystal
rod obtained from Goodfellow Ltd. The orientation of
the surface plane, as measured using an x-ray
diffractometer, was refined to within 0.2 of the nominal
orientation by mechanical and electrolytic polishing. The
crystal, of dimension 7)&5)&1 mm, was clamped under
slight tension within a rectangular frame constructed by
spot welding four 0.5-mm-diam W —25% Re pins. A
W —5% Re/W —26% Re thermocouple was attached to
the rear of the crystal by spot welding the 0.13-mm-diam
thermocouple wires to a small piece of Al foil of thick-
ness 0.05 mm, which was then spot welded to the crystal.
The crystal support frame was mounted on the sample
manipulator, which had facilities for heating the crystal
by electron bombardment from the rear, and for cooling
using liquid nitrogen.

After installation in the vacuum system, the crystal
was cleaned by repeated cycles of Ar+ sputtering
(8)&10 Torr Ar, 3-keV beam energy, 15-pA beam
current) for 20 min, followed by annealing for 5 min at
800 K. After a total of 3 h sputtering, the only surface
impurities detected in AES measurements (2-keV) beam
energy, 50-pA beam current, 10-V peak-to-peak modula-
tion) were small amounts of C and O. The peak-to-peak
amplitudes of the C KL23L23 (270 eV) and 0 KL23LQ3
(510 eV) Auger lines were ~10 and g5X10, respec-
tively, relative to the amplitude of the Al Lz3 VV (68 eV)
line.

When left to stand overnight in a vacuum of 1&(10
Torr after cleaning, carbon and oxygen contamination
levels were found to increase by about a factor of 2, al-
though deliberate exposure to CO or CO2 up to 10
Torr sec produced no measurable increase in the C and 0
AES signals. A single sputter-anneal cycle was suScient
to remove the contamination accumulated overnight be-
fore LEED measurements were performed. After com-
pletion of the cleaning procedure, the Al(210) crystal
gave a sharp (1 && 1) LEED pattern.

LEED intensity-energy spectra were recorded by
means of spot-photometric measurements of the light in-

tensity produced by the diffracted beams at the fluores-
cent screen of the LEED optics. The spot photometer
had an acceptance angle of 0.5', and was positioned to
give a measuring circle on the screen of about 3 mm diam
as compared to the spot size of the diffracted beams of
about 1 mm. In tracking a diffracted beam when chang-
ing the energy of the incident beam, the line of sight of
the spot photometer to the beam spot was continuously
adjusted to give a maximum signal in order to minimize
the error due to the dependence of the light transmission
through the grid system on the line of sight.

The diffraction geometry was set at normal incidence
by means of comparative measurements of intensity-
energy spectra for the 00 beam for a range of nominal
values +0 of the angle of incidence, and by means of
comparative measurements of intensity spectra for pairs
of beams nominally related by the mirror-plane symmetry
of the surface. To within the experimental reproducibili-

ty of the intensity spectra of about +1 eV in peak posi-
tions and 5% in relative peak intensities, the diffracted
beam intensities exhibited the full space-group symmetry
of an ideal fcc (210) surface.

After establishing the condition of normal incidence,
intensity-energy spectra were measured for 14
symmetry-inequivalent diffracted beams in the energy
range 40—340 eV, with the crystal cooled to 135 K. The
spectra were normalized for variations in the incident
beam current and corrected for the measured background
intensity. Plots of the experimental spectra are shown
later in Fig. 4 together with plots of spectra calculated
for the determined surface structure.

V. LEED INTENSITY CALCULATIONS

A. Computational model, input, and variables

Intensity-energy spectra were calculated using the
layer-doubling method in the energy range 30—350
eV (energies are given with respect to the vacuum level
for a nominal inner potential of 10 eV) in steps of 0.3 Ry.
The calculation of layer-scattering matrices, taking ac-
count of all intralayer multiple-scattering processes, was
carried out using 12 phase shifts derived from the
mu5n-tin potential for Al of Moruzzi, Janak, and Willi-
ams. The number of symmetry-inequivalent beams
used in the calculation of interlayer multiple scattering,
taking advantage of the mirror-plane symmetry, was in-
creased with energy from 43 at 30 eV to 80 at 206 eV,
after which the number of beams was held fixed at 80 be-
cause of the length of the calculations. The correspond-
ing numbers of symmetry-inequivalent beams propaga-
ting in the vacuum are 9, 43, and 74 at energies of 30,
206, and 350 eV, respectively. The convergence of the
calculations was established by comparison with similar
calculations made using 14 phase shifts and up to 131
symmetry-inequivalent beams.

The complex electron self-energy X= Vp+iV; was
taken to be independent of energy, and a single Debye
temperature 8D was used. The surface potential barrier
was taken to be a refracting but nonreflecting potential
step of height Vp.

Intensity-energy spectra were calculated for a total of
451 different surface structures in 41 computational runs,
where the surface structure is specified by the values of
the first five interlayer spacings d& to d5 and interlayer
registries r, to r5. Each computational run involved the
calculation of intensity spectra for 11 values of a particu-
lar structural variable d, or r, . These spectra were com-
pared with the experimental spectra to determine the
best-fit values of the structural variables, using the pro-
cedures described in Sec. VI.

In a few preliminary calculations, intensity spectra
were calculated for a range of values of d &, V;, and OD,
after which the latter two variables were held fixed at the
determined local optimum values of V,. =4.0 eV and

OD =600 K.
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FIG. 2. Schematic of the calculation of intermediate scatter-
ing matrices in the calculation of intensity-energy spectra as a
function of the interlayer spacing d, or interlayer registry r, for
an N-layer selvedge. Here, N= 5, j=3, and I=2. See text.

B. Computational algorithm: Reuse of intermediate results

Considerable savings in computational effort were real-
ized by dividing the calculations into three main
stages.

In the first stage, reflection and transmission matrices
R

&
T

~
and R 2, T2 were calculated for the two

symmetry-inequivalent layers of which the crystal is com-
posed, for each of 79 energy values in the energy range of
interest. The matrices were written to disk at each ener-

gy
In the second stage, the bulk reflection matrix R was

calculated by means of the layer-doubling algorithm us-
ing the layer matrices R, , T& and R2, T2 as input. This
step requires approximately (59v —33)b /6 multiplica-
tions at each energy, where b is the number of beams car-
ried in the calculation at a particular energy, and where v
is the number of layer-doubling steps necessary to
achieve convergence of the elements of R . Typically, v
lies between 4 and 6, corresponding to a bulk crystal
thickness of between 16 and 64 layers. At each energy,
the matrices R „T, and R2, T2 were read from disk and
R was written to disk. The total disk storage require-
ment for R, , T„R2, T2, and R at all energies was 15.6
Mbyte. These matrices were subsequently reused in all of
the intensity calculations made for the 451 different sur-
face structures which were considered. Reading the five
b &(b complex matrices from disk at each energy required
less than 1 CPU sec.

In the third and final stage of the algorithm, intensity-
energy spectra were calculated for m different values of a
particular interlayer spacing d; or interlayer registry r, in
each computational run. This stage can be regarded as
the joining of an N-layer selvedge to the bulk of the crys-
tal. As shown schematically in Fig. 2, reflection and
transmission matrices R +,R+ and T++, T. are
calculated for the surface slab consisting of the first j lay-
ers (for j& 1) by means of a layer-addition algorithm, 4s

using the layer matrices R &, T& and R2, T2 as input. This
step requires approximately 59(j—1 }b /6 multiplica-

tions. Next, a modified-bulk (MB} refiection matrix R,
is calculated for the system composed of the 1=N —j
deepest layers of the selvedge and the bulk of the crystal,
using the layer matrices R, , T&,R2, T2, and the bulk
reflection matrix R as input. This step requires approxi-
mately 9(N j—)b /2 multiplications. Finally, the surface
slab is jointed to the modified bulk and the diffracted in-
tensities are calculated. This step requires approximately
4b /3 multiplications. The surface slab matrices R +,
Rj Tg+, and T, hereafter S, and the modified-
bulk reflection matrix R

&
are stored internally at each

energy and reused in the intensity calculations for each of
m values of d or r in a given computational run.
Thus the total number of multiplications for the three
steps of the final stage of the algorithm is s =—

(26N+33j —59+8m)b /6. It follows also that a set of
2N such computational runs in which intensity-energy
spectra are calculated for m values of each of N interlayer
spacings dj and interlayer registries r requires

N

S=—2 g s~ =43N(N——1+8m)b /3
j=l

multiplications at each energy.
The above algorithm was implemented on a Norsk

Data ND530/CX, 32-bit minicomputer with 1.25 Mbyte
internal memory, and with a Whetstone benchmark per-
formance of 0.6 MIPS (million instructions per second)
according to the manufacturer. As noted previously,
intensity-energy spectra were calculated for a total of 451
surface structures in 41 computational runs. The times
for each run ranged from 12.8 CPU hours for m=11
values of d, or r, (j =1,N =1) to 42.4 CPU hours for 11
values of d5 or r~ (j=5, N=5). The observed CPU times
scaled with the multiplication counts given above to
within a maximum deviation of 8% from the mean. The
total cost of the structure determination was 50 CPU
days, including 6 and 35 CPU hours, respectively, for the
initial calculations of the layer scattering matrices and
the bulk reflection matrices in the first and second stages
of the algorithm. In conventional LEED algorithms,
layer and bulk scattering matrices are stored internally at
each energy and are also reused in calculating intensities
for a range of values of a given structural variable. How-
ever, the matrices are overwritten at each subsequent en-
ergy. We estimate that the cost of the present structure
determination with such an algorithm would be 120 CPU
days. The corresponding cost using an algorithm without
any reuse of intermediate results would be 820 CPU days
(2.25 CPU years).

Although the present algorithm is considerably faster
than conventional algorithms (by a factor of 2.4 for the
present surface structure), it falls considerably short of
what we believe could be achieved by a more systematic
integration of the intensity calculations with the process
of parameter optimization by comparison with experi-
ment. Two obvious directions for improvement are dis-
cussed below in the context of the surface structure of in-
terest here.

The first possibility would be to remove the limitation
that the present scheme shares with conventional algo-
rithms, namely that a set of values of a particular
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structural variable must be specified before each compu-
tational run. A more efficient procedure, given a starting
value for the variable in question, would be to put the
choice of subsequent values in the control of a routine to
optimize the fit between experiment and theory. The
convergence to the local optimum value of the given vari-
able would obviously depend upon the chosen starting
value, but it seems likely that convergence would general-
ly be reached in less than the 11 iterations used in the
present work. An efficient implementation of such a
scheme for the present surface structure would require
extra storage of the surface slab matrices S and the
modified-bulk reflection matrix R

&
at all energies. This

would double the total disk storage from 15.6 to 31.2
Mbyte.

A second possibility for improvement would be to ex-
ploit the order in which the variables are considered, by
making a further re-use of the results of intermediate cal-
culations. For the present system, for example, an im-
mediate reduction of computing time by a factor of 2
could be achieved by performing calculations for r after
calculations for d if the appropriate matrices S and

R& were saved at all energies. As noted above, this
would require a total disk storage of 31.2 Mbyte. Further
savings could be achieved by ordering the variables in the
sequence d, , r, ,d„r, , . . . , d~, r~. Thus, for example,
prior to beginning a pass through the variables, the ma-
trices R, for 1= 1 to N —1 could be sequentially calcu-
lated for all energies and stored on disk. This would re-
quire =9(N —1)b l2 multiplications. Subsequently, for
each value of j& 1 the surface slab matrices S could be
calculated for all energies and written to disk, using the
previously calculated matrices S

&
and the local op-

timum values ofd, and r, . Each such step would re-
quire 59b /6 multiplications for a total of 59(N —1)b /6
multiplications for the complete pass. Thus the total
number of multiplications required in the calculation of
the S and R, would be 43(N —1)b /6 at each energyJ

3as compared to the total of 43N(N —1)b l6 required
when Sj and R

&
are not available at all energies, giving

a saving by a factor of X for this part of the calculation.
For the present structure, assuming that m = 11 values of
dj or rj were considered in each run, the total saving
would be a factor of 3.6 with respect to the current algo-
rithm, and the total disk storage requirement would be
37.4 Mbyte.

Finally, we note our opinion that the systematic re-use
of the intermediate results of LEED calculations can
have as important an effect in reducing the cost of
surface-structure determination as did the introduction of
the exploitation of special conditions of symmetry.
In contrast to the latter, the programming changes that
are necessary are straightforward, consisting largely of
the introduction of symmetrical READ and WRITE state-
ments, together with the division of a single main pro-
gram into several main programs to be run in sequence.

VI. 8-FACTOR PROCEDURES

A. Definition of the r factor

The discrepancy between experimental I'"p'(E) and
calculated I""(F)intensity-energy spectra for a particu-
lar hk beam is measured by

R y [w (lexPt & lcalc)]2

where c&I, is a scaling factor given by

(6.1)

c~k= Xl;"" Xl;"" (6.2)
l

The inverse of the weights w, in Eq. (6.1) should prop-
erly be equal to or proportional to the standard devia-
tions o.; of the data points. Although we see no difficulty
in principle in making an empirical determination of the
o.; by simply repeating the measurements a sufficient
number of times, this was not practical with our relative-
1y crude measuring technique, nor have such measure-
ments been made in other LEED studies to the best of
our knowledge. We hope to examine this question in fu-
ture studies using a video-LEED system now under con-
struction.

In the absence of measurements of the o.;, the weights
w; in Eq. (6.1) are taken to be

R2, defined below, which is similar to one of the r fac-
tors used in x-ray crystallography, and which we have
found to be both numerically convenient and robust. The
surface structure of Al(210) is determined by minimizing

R2 as a function of the variables of the intensity calcula-
tions.

In assessing the suitability of R2 or any similar statistic
the question arises of possible bias in the determination of
the optimum values of the variables. We have established
in the present work, as in previous studies, that our pro-
cedures using It& lead to highly accurate (+0.001 A) re-
trieval of the input values of structural parameters when
applied to comparisons of calculated spectra with calcu-
lated spectra. Comparative studies ' of the use of P2
and alternative r factors in the analysis of experimental
spectra have led to agreement in the structural con-
clusions to within estimated uncertainties. Such studies
indicate also that P2 is not significantly less sensitive to
the values of structural variables than r factors specially
designed ' for LEED. A brief comparison of the re-
sults obtained using Pz with those obtained using the r
factor suggested by Pendry is presented in Sec. VIII.

In the remainder of this section, after definition of P2,
the procedures for determination of the optimum values
of the variables and their standard deviations are de-
scribed and discussed. In particular, it is argued that a
potential advantage of R2 is its use in conjunction with
the method of least squares to provide estimates of stan-
dard deviations, which do not depend on assumptions
concerning the nature of the intensity spectra or the
diffraction process. Although it has not been possible to
fully implement the advocated procedure in the present
work, we believe that its discussion here might be useful
in influencing future studies.

The discrepancy between experimental and calculated
intensity-energy spectra is measured using the statistic

( Icxpt )2 (6.3)
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implying equal standard deviations of the data points for
a given beam. For convenience, the summations of Eqs.
(6.1)—(6.3) were carried out after interpolation of the
spectra on to a common energy grid for NI, k data points
with interval 0.5 eV.

The quantity that is minimized in the determination of
the optimum values of the variables is the beam-average r
factor defined by

P2 =R =( I /N) g N~kR2 )

h, k

where

(6.4)

N= QNlk
h, k

(6.5)

B. Determination of the optimum parameter values

Following the method of least squares, the optimum
parameter values x„are found by requiring that g„=0
for all n, where

g„ =M /Bx„ . (6.6)

Determination of the x„ is facilitated by assuming R to
be a quadratic function of the variables in the neighbor-
hood of the global minimum at x with value R . Thus

R(x)=R +—'(x —x ) G(x —x )

where the curvature matrix G has the elements

(6.7)

G„ =8 R /Bx„Bx

The optimum parameter values are then given by

x —x =s[x ]g[x]
where the error matrix c is given by

(6.8)

(6.9)

(6.10)

As in previous studies, ' computed values of R (x ) are
found here to be described to an excellent approximation
by Eq. (6.7). The uncertainty in the optimum values of
the variables resulting from the deviation of R (x ) from
quadratic behavior is typically of order 0.001 A and can
be neglected.

Although the optimum parameter values can in princi-
ple be obtained in a single step via Eq. (6.9), given 6[x ]
and g [x ] for arbitrary x, in practice it cannot be assumed
that 6[x ]=6[x ), since x may lie outside the region of
quadratic behavior. Thus standard algorithms for non-
linear minimization based on Eq. (6.9) generally involve
implicit or explicit construction of G[x ] by an iterative
process.

The expense of accurate calculations of LEED intensi-
ties has so far precluded the use of minimization methods
based on Eq. (6.9), which requires evaluation of all the
elements of the curvature matrix 6, except for a single
application in the determination of the surface structure
of Al(110).' Thus, as in a number of previous studies, a
simple grid-search procedure based on Eq. (6.7) is used
here. In each step of the procedure the local optimum
value of a single structure variable, d; or r;, together with

the corresponding local optimum value of the inner po-
tential Vo is determined by fitting an elliptic paraboloid
to the variation of R with d,- or r,. and Vo, with the
remaining variables held fixed at their previously deter-
mined local optimum values. The procedure is carried
out for each variable in turn and iterated to convergence.

It is evident that the rate of convergence of such an al-
gorithm depends both upon the size of the correlations
between the variables, and upon the relative sensitivity of
the r factor to the diferent variables. It is also evident
that there is a risk of straying into a region of parameter
space containing a spurious local minimum. The risk is
presumably reduced by carrying out the optimization of
the variables in the order of decreasing sensitivity of the r
factor to the variables. In the present case, as described
later, the sensitivity to d; and r; decreases generally, al-
though not completely uniformly, with increasing layer
index i as might be expected. For more complicated
structures, the ordering of the variables with respect to
their relative sensitivity may be much less obvious. We
note, however, that the relative sensitivity of the r factor
to a particular variable depends largely on the gradients
of the calculated intensities with respect to the variables,
which may allow reasonable estimates of the relative sen-
sitivities to be made from the calculated intensities alone.

C. Determination of the estimated standard deviations

Comparison with the results of other experimental
methods (see table I, for example) suggests that the accu-
racy of surface structure determination by LEED in the
case of simple structures may be of the order of a few
hundreds of an angstrom. This notwithstanding, the
analysis of the internal precision of the results is in our
opinion one of the least satisfactory aspects of current
methodology. Estimates of precision are generally based
on either more or less educated guesses, or on various
ad hoc assumptions regarding the information content of
LEED intensity-energy spectra. In addition, the contri-
bution of correlations between the variables to the uncer-
tainty of their optimum values is either ignored or treated
incompletely.

This situation is due in part to the expense of calcula-
tions of LEED intensities. Thus treatment of the correla-
tions between the variables requires evaluation of all the
elements of the curvature matrix G in Eq (6.8}. T. his in
turn requires many more intensity calculations than are
normally carried out in current structure determinations.
For the relatively simple surface structure of Al(110},
where a detailed study of correlations was made, ' it was
found that 30—40% of the estimated standard deviations
of the structural variables could be attributed to correla-
tions. For more complicated structures it seems likely
that ignoring correlations might well lead to underes-
timation of standard deviations by a factor of two or
more. In the present work, because of the expense of the
intensity calculations, only the correlations between a
particular interlayer spacing d; or registry r,- and the
inner potential Vo were taken into account.

The more fundamental problem, however, appears to
be the lack of a generally accepted framework for treat-
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ing the question of precision. This in our opinion is a
consequence of the wide-spread use of unnecessarily com-
plicated r factors. ' We believe that use of the simple
R 2 statistic in conjunction with the method of least
squares, as discussed below, provides in principle a
straightforward means for obtaining objective estimates
of the standard deviations of optimum parameter values.
We confess, however, that our hopefully improved under-
standing of the method postdates the present experimen-
tal measurements, with result that certain necessary con-
ditions are not fulfi11ed by the measurements and that
therefore the standard deviations are determined here
only to within an unknown scale factor.

According to the method of least squares, the standard
deviations cr, of the optimum values x„of the variables

depend on the diagonal elements c„„ofthe error matrix c
via

(6.1 1)

where the number of degrees of freedom NF is given by

NF =ND —v (6.12)

where v is the number of variables, and where ND is the
number of independent observations.

Estimation of ir„by Eq. (6.11) requires then a
n

definition of the number of "independent observations"
ND. Most discussions of this question, including some
previous work from this laboratory, have been based on
the premise that ND is related to the number of peaks in
the intensity-energy spectra, rather than simply equal to
the number of intensity-energy data points (assuming a
discrete energy grid). Since intensity-energy spectra usu-
ally contain overlapping peaks, definition of ND then in-
volves the question of how the number of peaks should be
counted.

The reason for identifying ND with the number of
peaks rather than with the number of data points appears
to be the notion that since the intensities at adjacent ener-
gy values are correlated, they do not constitute indepen-
dent measurements. Such correlations, however, exist be-
tween the intensities at all energies and in all beams.
They follow simply from the nature of the diffraction pro-
cess, and are irrelevant in the context of a discussion of
the precision of structure determination. What is
relevant in this context is the extent of correlations be-
tween the uncertainties in the measured intensities at ad-
jacent energies as introduced by the instrumental
response, in particular by the energy spread of the in-

cadent electron beam.
Thus we believe that there is no fundamental obstacle

to a proper definition of ND in Eq. (6.12). On condition
that the summation of Eq. (6.1) is carried out on the same
discrete energy grid as the experimental measurements,
without any smoothing of the data, and on condition that
the energy interval is large enough (say 0.5 to 1.0 eV) to
avoid the introduction of correlations between the uncer-
tainties of adjacent intensities by the instrumental
response, then ND is simply equal to the number of data
points N in Eq. (6.5).

In the present work the above conditions were not
satisfied, because of the quasicontinuous nature of the
measurements and because of the smoothing resulting
from interpolation of the intensities. Thus, as in previous
structure determinations made in this laboratory, ND is
taken here to be equal to the number of kinematic Bragg
peaks contained within the energy range of the measure-
ments, as calculated for an ideal, truncated-bulk crystal.
This leads undoubtedly to an underestimate of ND and
hence to an overestimate of 0. , which probably more

n

than compensates for the incomplete treatment of corre-
lations between the variables.

Finally, it is convenient to define a dirnensionless mea-
sure of the sensitivity of R z to a given variable x„by

s„=x„p/0. , (6.13)

where for g ~„=0it follows that

s„=[NF(R (x)—R )]' l[(x„—xo) jx„] . (6.14)

VII. ANALYSES OF THE EXPERIMENTAL DATA

A. R-factor minimization

The surface structure of Al (210) was determined by
minimizing Rz as a function of the first five interlayer
spacings d„and registries r„and inner potential Vp

means of the iterative procedure described in Sec. VI.
The course of the optimization of d, to d5 and r, to r5

is summarized in Table IV. Apart from the entries for
iteration 0 in the erst row, which contain the bulk values
dz and r~, each entry is the result of an elementary itera-
tion step in which the r-factor was minimized with
respect to a single structural variable d„or r„ together
with Vp. For compactness, the results are grouped in
rows as iterations 1 —5, each containing the results of
several elementary steps, the sequence being from left to

TABLE IV. Iterative refinement of the surface structure of Al(210).

Iteration
d 1

(A)

0.903
0.752
0.755
0.758
0.761
0.762

f,
0

(A)

1 ~ 805
1.727

1.787
1.802
1.804

2

(A)

0.903
0.926
0.908
0.904
0.898
0.895

f2
0

(A)

1.805
1.745

1.736
1.740
1.748

d3
(A)

0.903
0.957
0.974
0.981
0.983
0.983

f3
0

(A)

1.805
1.847

1.835
1.832
1.835

d4
(A)

0.903
0.878
0.866
0.863
0.862
0.863

f4
0

(A)

1.805
1.790

1.780
1.772
1.769

d5
(A)

0.903

0.894
0.892

f5
0

(A)

1.805

1.796
1.789

Vo

(eV)

45
7.4
7.7
7.6
7.8
7.9

0.4470
0.1346
0.1217
0.1074
0.1056
0.1052
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right along the rows. The running optimum values of Vo
and R2 are listed only at the end of each of the five mas-
ter iterations.

The ranges of parameter variation in each of the itera-
tion steps are given in Table V. Eleven or more values of
a structural variable were considered in each step, with

0
grid spacing decreasing from 0.01 to 0.04 A in iteration 1

to 0.005 A to iteration 5.
Inspection of the results for the individual variables in

the columns of Table IV indicates a fairly uniform pas-
sage to convergence, except for r

&
and d 2 for which rath-

er large changes occurred after the first iteration. After
completion of the work summarized in the table, a final
variation of d

&
was carried out, using intensities calculat-

ed with 14 phase shifts and up to 131 symmetry-
inequivalent beams, iving optimum values of d&

——0.763
A, Vo ——7.9 eV, and =0.1041.

The dependence of R2 on the interlayer spacings and
registries, as calculated in the final iteration of Table IV,
is plotted in Figs. 3(a) and 3(b), respectively. Plots of the

experimental intensity-energy spectra and spectra calcu-
lated for the optimum surface structure are shown in Fig.
4. As can be seen from the plots, the experimental spec-
tra are rich in structure, most of which is reproduced in
the calculated spectra, although rather large discrepan-
cies in the relative intensities occur for some of the
beams.

B. Optimum parameter values

The optimum parameter values and estimated standard
deviations obtained by minimization of P2 are listed in
Table VI. As a check on these results, the intensity cal-
culations made in the final iteration of Table IV were
reused to determine optimum parameter values by
minimization of the r factor of Pendry R, with results
also listed in Table VI. As can be seen, the optimum
values obtained using the two diferent r factors are in
reasonable agreement. It should be emphasized, howev-
er, that a proper comparison with P2 would require a
full, independent minimization of R, which was not car-
ried out.

Also listed in Table VI are the sensitivities s„ofPz and

R~ to the different variables, as calculated using Eq.
(6.14) and normalized by setting sd (P2) =100 to remove

1

the dependence on NF. It can be seen that an overall de-
crease ia sensitivity with layer index occurs for each r
factor, except for the anornalously large sensitivities to d3
and r3. It is noted that the average sensitivity of R to
the structural variables is about 5%%uo greater than that of

The displacements of surface atoms from their bulk po-
sitions, as calculated from the interlayer spacings B.nd re-
gistries given in Table VI, are shown schematically in
Fig. 5.

C. Estimated staadard deviations

The standard deviations of the optimum parameter
values listed in Table VI were estimated using Eqs. (6.11)
and (6.12) with ND ——24, v= 11 and hence NF 13. A——s

discussed in Sec. VI, these estimates are probably very
conservative because of the underestimate of ND made
here.

As a check on the values given in Table VI, the intensi-
ty calculations made in the final iteration of Table IV
were used to determine optimum parameter values by
separate minimization of the r factors for the individual
diS'racted beams. The mean values of the results, and the
standard deviatmns obtained from the dispersions about
the mean values, are listed in Table VII together with the
resuIts, given previously in Table VI, obtained by minimi-
zation of the beam-average r factor.

In comparing the values given in the tables, it must be
emphasized that the results obtained for the individual
beams are of limited significance, in that they cannot be
regarded as truly independent measurements since they
were not obtained by fully independent minimizations of

Such independent minimizations are unfortunately
impractical, partly because they would require a factor of
about b more intensity calculations, where b=14 is the
number of diffracted beams in the present data set, and
partly because the dependence of R2 on the variables is
generally much less well behaved than that of Pz, prob-
ably due to an increase in the correlations between the
variables associated with the smaller amounts of data be-
ing analyzed. The latter diSculty is illustrated by the
fact that only in the cases of d, and 13 were well-defined
minima of R2 obtained for all the di8'racted beams. The
number of beams nb for which well-defined minima were

0
TABLE V. Ranges and increments (A) of parameter variation, for iterations i = 1-5.

d]
P'1

d2
rp

r3

d4
14

ds

0.70—0.90,0.02
1.65—1.86,0.02
0.80—1.00,0.02
1.55- 1.95,0.04
0.85-1.05,0.02
1.70-1.90,0.02
0.81—0.91,0.01
1.72-1.92,0.02

1=2

0.74-0.82,0.01

0.85-0.95,0.01

0.91-1.01,0.01

0.82—0.92,0.01

1=3

0.74—0.79,0.005
1.68—1.81,0.01
0.85—0.95,0.01
1.71—1.81,0.01
0.93—1.03,0.01
1.79-1.89,0.01
0.83—0.89,0.005
1.74—1.84,0.01

i=4

0.74-0.79,0.005
1.74—1.84,0.01
0.875—0.925,0.005
1.705-1.755,0.005
0.96—1.01,0.005
1.805-1 ~ 855,0.005
0.835—0.885,0.OOS

1.75-1.80,0.005
0.82-0.92,0.01
1.75—1.85,0.01

i=5

0.74—0.79,0.005
1.78-1.83,0.00S
0.87—0.92,0.005
1.715-1.765,0.005
0.96-1.01,0.005
1.81-1.86,0.005
0.835—0.885,0.005
1.745-1.795,0.005
0.865—0.915,0.005
1.77- 1.82,0.005
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found for the different variables is listed in Table VII,
The above-mentioned qualifications notwithstanding,

we consider that the relatively small dispersion of the re-
sults for the individual beams is certainly consistent with
the conclusion made above, that the standard deviations
estimated using the beam-average r factor R 2 are conser-
vative.

VIII. DISCUSSIQN

A. Comparison of the present results
~ith theoretical predictions

for the surface structure of Al(210)

0.120—

0.115—
d2.

0.110—

As noted previously, a major purpose of the present
work was to test the prediction for the surface structure
of Al(210) made by Barnett et al. ' After our work was
completed, we were kindly informed by Franco Jona of
the results of calculations of surface structure for a num-
ber of Fe and Al surfaces, including Al(210), carried out
by Jiang, Marcus, and Jona, ' to which comparison is
also made below.

The model used by Jiang et a/. is a modification of the
simplest model considered by Landman et al. ,

' involv-
ing calculation of the electrostatic interactions between
nets of point ions and a uniform, frozen, electron charge

density which terminates in a step at the surface. It does
not include the pseudopotential corrections incorporated
in the calculations of Barnett et al. ' for Al(210). The
modification consists of the inclusion of an empirical fac-
tor n which weights the relative contribution to the sur-
face energy resulting from displacement of nets of ions
from their bulk equilibrium positions at the center of
slabs of neutralizing electron charge density of thickness
equal to the bulk interlayer spacing. Values of n greater
than unity reduce the relaxations that would otherwise be
predicted by the unmodified point-ion model. Jiang
et al. find that a value of a=1.9 leads to remarkable
agreement with most of the relaxations measured for the
six most close-packed surfaces of both Fe and Al.

The relaxations determined in the present work are
listed together with the predictions of Barnett et al. ' and
Jiang et al. in Table VIII, and are plotted in Fig. 6. As
can be seen from these comparisons, the trends of the ex-
perimental results are reproduced by both sets of calcula-
tions. The experimental relaxations are generally smaller
than those predicted by Barnett et al. , but near-
quantitative agreement exists with the calculations of
Jiang et al.

Also listed in Table VIII are calculations of the forces
on the surface layers of the unrelaxed structure made us-

ing the point-ion model, as discussed in Sec. VIIIC,
which also lead to a correct prediction of the trends of
the relaxations.

In addition to the theoretical studies noted above, ca1-
culations of the surface structure of a number of Al sur-
faces have been reported recently by Chen, Voter, and
Srolovitz using the embedded-atom method of Daw and
Baskes. ' No tabulation of the results for Al(210) is given
in the article by Chen et al. , but inspection of their Fig.
1 indicates that the trends in the calculated relaxations of
the interlayer spacings, if not the magnitudes, are in
agreement with the present experimental results.

0.105—
l

d Bulk

1

B. Trends in the multilayer relaxations of Al and Fe surfaces

0.8 0.9
Interlayer Spacing (A)

1.0

0.108-

0.107—

0.105- r Bulk

1.70 1.75 1.80 1.85
Interlayer Registry (A)

FIG. 3. (aj Plots of R~(BR, /8V0 ——0} vs the interlayer spac-
ings d

&

—d5 and {b)vs the interlayer registries r, —r„constructed
from the results of the final iteration of Table IV. The dashed
lines indicate the optimum values of d

&

—d5 and r, —r&. The cor-
responding bulk values are indicated by solid lines. The plotted
curves are least-squares parabolas fitted to the computed P2
values (squares).

With the completion of the present work, experimental
determinations of surface structure are now available for
the six most close-packed surfaces of Al. The possibility
of multilayer relaxation has been examined for four of
these surfaces, the exceptions being the most close-
packed (ill) and (100) surfaces ' ' which appear to
correspond to almost perfect truncations of the bulk crys-
tal structure.

The trends in the relaxation of the four more open
Al(110), ' ' (311), (331), and (210) surfaces can be
seen in Fig. 7, where the relaxations of the interlayer
spacings are plotted as a function of depth. The oscillato-
ry nature of the relaxations is evident from the figure. It
can also be seen that the relaxations are damped to zero
within 4—5 A from the surface. Very similar conclusions
apply to the relaxation of the interlayer spacings of the
open surfaces of Fe, as can be seen from the plot of Fig.
8, constructed from the results of Jona and co-
workers.

A direct comparison of the relaxations of the interlayer
spacings of the six most close-packed surfaces of Al and
Fe is given in Table IX, where the number of missing
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FIG. 4. (a) —(n) Comparison of experimental intensity-energy spectra (solid curves) with spectra (dotted curves) calculated for op-
timum values of the calculational variables (see Table VI). In each plot, the experimental and calculated spectra have been normal-
ized to equal integrated area. Beam indices and computed R~ values for the individual beams are given in the figures. Downward ar-
rows indicate the positions of kinematics Bragg peaks calculated for a truncated-bulk structure.
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TABLE VI. Optimum parameter values and sensitivities.

Xn

d I

d2

d3

d4

d5
(dg ——0.903 A)

x„'
0

(A)

0.763
0.895
0.983
0.863
0.892

R2
~x

n

(A)

0.022
0.027
0.023
0.032
0.041

Sn

100
96

120
76
59

x„'
0

(A)

0.766
0.915
0.993
0.869
0.906

R

Sn

80
86

110
93
78

r)

r3

r4

r5

(rq ——1.805 A)

1.804
1.748
1.835
1.769
1.789

0.062
0.060
0.056
0.072
0.083

83
89
94
77
63

1.793
1.728
1.811
1.765
1.777

92
59

131
80
92

7.9 eV 1.0 eV

nearest neighbors per atom in the surface layers is also
listed for each surface. The similarity in the relaxation
trends for Al and Fe, except for the (100) planes, is evi-
dent from this comparison. It can be seen that the depth
of the relaxations appears to be correlated with the num-
ber of planes containing atoms with less than their full
complement of nearest neighbors. Except for the close-
packed Al(111) and (100) and Fe(110) surfaces, the relaxa-
tions generally extend to and include the first layer of
atoms with a full complement of nearest neighbors. Since
the atoms in such layers have nearest-neighbor atoms in
the first layer, simple geometric considerations suggest
that the inward movement of such "bulk" atoms might
be a response to the inward movement of the atoms of the
first layer (see Figs. 1 and 5). It can also be seen that the
magnitude of the relaxations increases generally with the

FIG. 5. Hard-sphere model of the determined surface struc-
ture as projected on the (001) mirror plane. Solid circles indi-
cate the positions of atoms in the relaxed structure, and open
circles indicate the corresponding positions in the ideal, unre-
laxed structure. The direction of the atomic displacements,
which are all contained within the (001) plane, are indicated by
arrows. The displacements are exaggerated by 5 times in the
figure.

total number of missing nearest neighbors associated with
the unit mesh. With respect to the relaxation sequence, it
can be noted that this changes from —+ —for the sur-
faces having two planes containing atoms with missing
nearest neighbors to ——+ —for the more open surfaces
having three such planes.

Finally, however, it must be noted that the similarity in
the relaxation trends of Al and Fe surfaces does not ex-
tend to the relaxation of the interlayer registries. These
are much larger for Fe than for Al, but there appear oth-
erwise to be no obvious trends in the results.

C. Towards an intuitive description of multilayer relaxation

In this section we examine the possibility that the re-
laxation sequence for a given surface can be predicted
from the properties of the ideal, unrelaxed structure by
simply physical arguments. In view of the complexity of
self-consistent, total-energy calculations of surface struc-
ture, this goal might appear to be naive. Nevertheless,
the apparently weak material dependence of the relaxa-
tion trends, as indicated by the results described in Sec.
VIIIB and in Sec. II, encourages the belief that simple
geometrical factors play an important role, as does the
success of semiempirical models in rationalizing the ex-
perimental results. In the following we consider the
physical insight provided by models of the effective-
medium type, and also by simple electrostatic models.

The appa. ent correlation of the trends in the relaxation
of interlayer spacings with the number of missing
nearest-neighbors in the surface layers suggests models of
the effective-medium or embedded-atom ' type as natu-
ral vehicles for obtaining physical insight. In the
effective-medium theory the atomic binding energy is
given by the embedding energy of the atom in a homo-
geneous electron gas of the appropriate density, together
with correction terms. The embedding energy is known
as a function of density from the results of self-consistent
calculations. In a solid, the density is taken to be that re-
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TABLE VII. Comparison of optimum parameter values and standard deviations obtained by minim-
ization of P2 with values obtained by minimization of R, for the individual diffracted beams.

x„

d 'l

d2

d3
d4
d5

X„'( 2)
(A)

0.763+0.022
0.895+0.027
0.983+0.023
0.863+0.032
0.892+0.041

x„( 2)
(A)

0.766+0.005
0.903+0.007
0.985+0.007
0.871+0.008
0.907+0.008

Pgb

14
13
14
12
12

r2

r3

r4

r5

1.80420.062
1.74820.060
1.835+0.056
1.769+0.072
1.789+0.083

1.824+0.016
1.743+0.016
1.825+0.013
1.769+0.017
1.791+0.017

Vo 7.9 +1.0 eV 7.4 +0. 1 eV

0.2—
0

/X

/

suiting from a superposition of densities setup by neigh-
boring atoms.

In an application of the theory to the surface structures
of Al(111), (100), and (110), Jacobsen, Ne(rskov, and Pus-
ka explain their calculated relaxations in terms of a
competition between the density-dependent embedding-
energy term and an atomic-sphere correction term, both
of which depend on the number and configuration of
nearest neighbors. Thus the contraction of the first inter-
layer spacing of Al(110) is attributed to an inward move-
ment of the atoms in the first layer toward a region of
higher electron density, since the atoms of the first layer
lack five nearest neighbors and therefore sample a less
than optimal density. This inward movement is opposed
by the atomic-sphere correction because the atomic
spheres of first- and second-layer atoms begin to overlap.

The correction term, together with the increased electron
density resulting from the inward movement of the first
layer is responsible for the outward movement of the
second layer. Jacobsen et al. suggest further that similar
arguments can be applied to rationalize the more compli-
cated ——+ relaxation sequences found for more open
surfaces.

Without questioning the plausibility of these sugges-
tions, we note that they invoke the self-consistent adjust-
ment of the relative positions of surface layers, the result
of which depends upon the balance between the
embedding-energy and atomic-sphere terms. Thus
definite prediction of the relaxation sequence for a given
surface has not been made based on intuitive arguments
stone, that is, without carrying out a self-consistent
minimization of the surface energy as a function of the
layer positions.

At present, the simplest description of multilayer relax-
ation is to be found in the point-ion —frozen-backgrounr.
model. As noted previously, Jiang et al. have obtained
remarkable agreement with experimental results for Al
and Fe surfaces, using a simple modification of the mod-

c

00
«g

-0.1—

01

o
/

0

cole Barnett et al, 1983

calc Jtang et al, 1986
I l 0.0

~ 00

"00 1.0
I

20
I

3.0

-0.1—
/

d

-0.2
0.0 1.0 2.0 3.0

Al(230)

I

4.0 5.0

FIG. 6. Comparison of experimental (present work) and cal-
culated relaxations hd; and Ar, of the interlayer spacings and
registries, plotted against the layer midpoint depths l, .

(;()
FICx. 7. Relaxations of the interlayer spacings of Al surfaces

plotted against the layer midpoint depths.
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0.1—
the nth layer is given by the Madelung equation as

4(r„)= g"g e " cos(g, x „+g y „),
4nZ „)—g~z „~

A

(8.1)

-0.1—

(100)

(2~t)

(3~0)

0.0 1.0 20
I, (A}

3.0

—~—Fe (210)
I

40

FIG. 8. Relaxations of the interlayer spacings of Fe surfaces
plotted against the layer midpoint depths.

where r „ is a vector from an origin in the nth net to a
point in the mth net, with components x „,y „,z „
along orthogonal axes, where the xy plane is parallel to
the surface and the z axis is along the outward surface-
normal direction. In Eq. (8.1), A is the area of the primi-
tive unit mesh. The summation is over the reciprocal-net
vectors g. The symbol g" denotes the exclusion of g=0
and, for a given g, the exclusion of —g. The former con-
dition follows from the charge neutrality of the layers,
and the second from the inversion symmetry of the Bra-
vais nets.

The electrostatic force F „on an ion in the mth net
due to the potential of the nth layer is, therefore,

F „=—ZV4(r „) . (8.2)

el. In fact, in response to remarks made previously by
one of the present authors, Jiang et al. conclude that
"the desired insight and predictive power is achieved by
our modified point-ion model. " The present authors,
however, taking a simple view, are frustrated by the fact
that, given the simplicity of the model, it is still necessary
to carry out a self-consistent minimization of the surface
energy to predict, for example, the qualitative trends of
the relaxation of Al(210). In the following, therefore, we
examine the extent to which these trends can be deduced
from the electrostatic forces on the layers of the unre-
laxed surface.

We consider, therefore, the electrostatic forces between
infinite, equivalent, Bravais nets of ions of charge Z, em-
bedded in slabs of neutralizing charge of thickness d
equal to the bulk interlayer spacing. The electrostatic po-
tential in the plane of the mth net due to the charge in

and

y g" e '
"

' cos[(m n)g v]—
8

(8.3)

F „(x)= g" e "~s sin[(m —n)g v]
4mz „gx

A g

with a similar equation for F „(y) obtained by replacing
x by y in the equation for F „(x). In Eq. (8.3), v is the
projection on the xy plane of the vector s connecting ori-
gins in successive nets. It follows simply from Eq. (8.3)
that F „=—F„,and thus the total force F on an ion

Restricting attention to the forces on the ions in the unre-
laxed structure, it follows simply that these have com-
ponents

F „(z)=sgn(n —m)p 4~Z

TABLE VIII. Comparison of experimental and theoretical surface structures for Al(210).

Experiment
Present work

Ax„(%)
Barnett et al.

b x„(%)

Theory
Jiang et al.

Ax„{%)
Present work'

Fn Fn +1
FOO FOO

dI
d2

d3
d4
d5

TI

r3
P'4

—15.5+2.4
—0.8+2.9
+ 8.9+2.6
—4.4+3.6
—1.2+4.6

—0.1+3.4
—3.2+3. 1

+ 1.7+3. 1

—2.0+4.0
—0.9+4.6

—27.7
—10.2
+ 25.9
—12.8
—2.4

—2.5
—10.0
+ 3.8
—1.0
—2.0

—19.3
—2.3
+ 4.8
—1.1
—0.8

+ 0.4
—8.5
+ 3.3
—0.3
—0.2

—15.5
—3.0
+ 1.5
—0.3
+ 0.1

+ 1.9
—3.2
+ 1.9
—0.4

0.0

—12.5
—4.5
+ 1.8
—0.3
+ 0.1

+ 5.1

—5.1

+ 2.3
—0.4

0.0

'The two final columns give the differences between the initial electrostatic forces on layers n and n + 1 of the unrelaxed surface, as
calculated using the point-ion —frozen-background model. The forces F„and F„are multiplied by 67.8A /4~Z, see Sec. VIII C.
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4 Z g-'
where (8.4)

ro e
—mgd —img vy( I gd ——ig v)Jm —e e —e e

A number of simple deductions can be made from Eqs.
(8.3) and (8.4), but their usefulness can only be gauged by
first examining the extent to which the calculated forces
lead to a correct prediction of the trends of multilayer re-
laxation. We have therefore used Eq. (8.4) to calculate
the initial forces on the unrelaxed structures of the six
most close-packed bcc and fcc surfaces. These results
will be described in detail elsewhere, but we note here
that consideration of the initial forces leads in almost all
cases to the prediction of the same relaxation sequences
as those determined by Jiang et al. ' by minimization
of the surface energy. This is illustrated for Al(210) by
the results listed in the last two columns of Table VIII,
where the differences F„F„+,an—d F„—F„+, (see
below) are compared to the relaxations hd„and Ar„of
the interlayer spacings and registries. For the sake of this
comparison we assume that the relaxations are linearly
proportional to the initial forces in the limit of small re-
laxations. In Table VIII the forces F„and F„have been
arbitrarily multiplied by 67.8(A /4nZ ) to give numeri-
cal agreement between the experimental value of b,d

&
and

the value of F, (z) —Fz (z). It can be seen from the results
given in Table VIII that consideration of the initial forces
leads to the same qualitative relaxation sequence as given
by the calculations of Jiang et al. , for the first four inter-
layer spacings and registries.

in the mth net is obtained as the (geometric) sum over the
contributions from all other layers as

4 ZF'(z) = g"Re(f ),
g

Based on these results, and results for other surfaces
of Al and Fe we believe that Eq. (8.4) provides a useful,
almost back-of-the-envelope method for prediction of re-
laxation trends. (The calculations take a few seconds on
a personal computer or a few minutes on a programmable
calculator. ) In the context of the present discussion,
however, it is of equal interest to enumerate some of the
simple physical consequences of Eqs. (8.3) and (8.4), some
of which apply also when the equations are generalized to
the case of nonvanishing relaxations.

Firstly, we note that it follows simply from Eq. (8.4)
that for surfaces with a mirror plane, say the xz plane,
the forces (and hence relaxations) are contained within
the mirror plane, since

m

e =e—
I g'V —I g 'V

but

g = —g

where g and g are connected by a mirror operation, and
thus F (y)=0.

Secondly, as noted previously, it follows from Eq. (8.3)
that F „=—F„.Thus the contributions of layers 1 to
m —1 to the total force on an ion in net m are cancelled
by the contributions of layers m + 1 to 2m —1, such that
the first effective contribution comes from layer 2m. This
accounts for the factor e in Eq. (8.4) which leads to
an overall exponential decay of the forces (and relaxa-
tions) with depth.

Thirdly, it is evident that the signs of the force com-
ponents on a given layer are governed by the phase fac-
tors e ' g'". For a surface with a bulk repeat period ofp
layers, where e '~ "=1, it follows that e ™'v
=e' +~'g", and thus that the signs of the forces are
periodic with periodicity p layers.

Fourthly, since the contribution of successively deeper
layers to the force on an ion in layer m falls roughly ex-
ponentially with depth, the signs of the forces are given

TABLE IX. Experimental interlayer relaxation of Al and Fe surfaces.

Surface

Al(111)
Fe(110)
Al(100)

Ad)

+1
+ 0.5
-0

Relaxations (%)
bd2 hd3 First layer

Missing
nearest neighbors

Second layer Third layer

Fe(1OO)

Al(110)
Fe(211)
Al(311)
Fe(310)

—9
—10
—13
—16

+5
+5
+9

+13

Al(331)
Fe(111)
Al(210)
Fe(210)

—12
—17
—16
—22

4
—10
—1

—11

+10
+4
+9

+17
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correctly by the approximations

4 ZF (z)=F— (z)= g"Re(f ),
(8.5)

4 ZF (x)-=F z (x)= g" Im
A

gx foo

where

~00 —mgd —im g.v=e e

The results in the final column of Table VIII were ob-
tained using Eq. (8.5).

Thus, for example, the total force on the second layer
is given approximately by the contribution of the fourth
layer only, since the contributions from the first and third
layers exactly cancel. For surfaces with a two-layer re-
peat period, it follows that F2(z) is positive, accounting
for the observed outward movements of the second layers
of Fe(100) and Al(110). F (x) and F (y) are always zero
for these surfaces, of course, due to the existence of two
orthogonal mirror planes.

More generally, evaluation of the signs of the force

components on the mth layer of an arbitrary surface in-
volves carrying out the summations over g. However, for
the surfaces considered here, the correct signs are ob-
tained by inclusion of only the first one or two pairs of
reciprocal-net vectors. Thus for fcc (210), where with the
choice of unit-mesh vectors and s defined in Fig. 1,
gl k v=(n/5)(7h +4k) and gzkd =(/2rrl5)(3h +2k
+. 2hk)'~, the correct signs of all F (z) and F (x) for
m= 1 to 10 are obtained by inclusion of the (h, k) pairs
(0,+1) and (+1,0) only.

To summarize, we have shown that the qualitative
trends of the multilayer relaxation of open metal surfaces
can be predicted simply by calculating the electrostatic
forces on the layers of the unrelaxed structures, and that
the nature of the trends can be understood in simple
physical terms. We confess, nevertheless, that considera-
tion of the interactions between infinite nets of ions has
for us a less-immediate intuitive appeal than considera-
tions based on the number and configuration of nearest
neighbors. We believe, therefore, that an examination of
the Hellman-Feynman forces on atoms of the unrelaxed
structure within the framework of the effective-medium
model might prove to be illuminating.

*Permanent address: Hefei Polytechnical University, Hefei,
Anhui, People's Republic of China.
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