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Resistance fluctuations in a four-probe geometry with infinite leads
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The mean-square variation in the magnetoresistance of small metal wires is calculated in a four-

probe geometry with infinite leads. Dephasing scattering is included in a simplified but current-
conserving manner. As a result, a region of each lead approximately one dephasing length from the
sample contributes to the fluctuations, which, however, then remain finite as the leads are made

long, as one would expect on phyiscal grounds. The calculated symmetric and antisymmetric parts
of the resistance fluctuations are in semiquantitative agreement with experiment.

That quantum interference is the cause of reproducible
aperiodic oscillations in the low-temperature conduc-
tance of small metal samples as a function of magnetic
field and Fermi energy is now conclusively estab-
lished. ' In the pioneering theoretical work on this sub-

ject, ' these conductance fiuctuations were calculated to
have a magnitude of e /h, in agreement with the early
experiments. As samples have become smaller, though, it
has become apparent that the variance of the conduc-
tance can be larger than the putative universal value. '
In particular, for sample lengths much smaller than a de-
phasing length, the fluctuations in the conductance, as
defined by the current injected divided by the voltage
measured, diverge. The fiuctuations in the resistance, on
the other hand, do remain finite, a fact which can be seen

by voltage additivity. '

The resistance fluctuations do not go to zero because
the actual region which a resistance measurement sam-

ples cannot be smaller than a dephasing length, even if
the lithographical sample can be. There have been a
number of attempts to make this simple intuitive idea
more precise. ' ' Benoit et al. have used voltage addi-
tivity and the Onsager relations to show that the antisym-
metric part of the voltage fluctuations in a magnetic field
is bounded as the length of the sample increases. Buttik-
er has used his generalization of the Landauer formula, '

which includes the leads in a multiterminal device, to es-
timate the voltage fluctuations for a three-terminal
geometry. Numerical simulations and analytic calcula-
tions using the same rnultiterminal Landauer formula for
four terminal geometries have also been done at the same
time as the present work. ' ' ' The numerical simula-
tions inc1ude dephasing through the placement of the
electron reservoirs. This does not correspond to present

experiments in small metal wires and metal-oxide-
semiconductor field-effect transistors (MOSFET's) be-

cause there are no perfect leads in these experiments.
The analytic calculations, ' ' which are equivalent to the
calculation presented here, include dephasing uniformly
throughout the system as in present experiments.

With the multiterminal Landauer formula in a four-
terminal geometry, there are four electron reservoirs
which are characterized by chemical potentials and taken
to be perfect conductors. The current flowing into reser-
voir i, denoted I, , is related to the voltage drops between
the reservoirs via the transmission probabilities, T;,

(The 2 here comes from the spin degeneracy —we do not
include the complication of spin-flip scattering. } A real
experiment, of course, does not have perfect conductors,
so we view the perfect conductors as mathematical con-
structs which simplify the problem by limiting the
scattering to a finite region. As such, the result for the
resistance should not depend on the length of the leads.
Our results are, for the first time, independent of where
the reservoirs are placed for long leads.

The average or classical transmission probabilities may
be calculated from Eq. (l) using the rules for adding clas-
sical resistors. For example, in the geometry shown in

Fig. 1 there are four probes of lengths I, , . . . , L4 and a
sample of length I, All of the wires have the same
cross-sectional area, A. For any given set of currents
coming out of the wires, the knowledge of the classical
voltage drops allows one to solve for the transmission
probabilities. One can also solve for the transmission
probabilities using the Fisher and Lee' relation between
the transmission probability and the nonlocal conductivi-
ty,
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=V2-V3 3
FIG. 1. Schematic of the four-terminal geometry used here.

The reservoirs are labeled by 1, . . . , 4.

T, =(2e "/h) ' fd x d x'o„(xEi, x'E j), (2)

and using the lowest-order current-conserving approxi-
mation for the average conductivity (the ladder graphs).
The transmission probabilities are not simply related to
the resistance of the leads. For example, the transmission
probability to go from reservoir 1 to reservoir 2 depends
on the resistance of all the leads, not just leads 1 and 2.
Nonetheless, they combine to give the classical result for
the resistance: ( V2 —V3)/I =(m /ne r)(L, /3 ).

For a particular configuration of the disorder, as op-
posed to the average case described above, each of the
transmission probabilities deviates by some small
amount, 5T;, from its average value. Using the calcula-
tion of the average T, above and Eq. (l), the change in
the resistance computed to linear order in the 5T; 's is

2

5R =2 — (5T~, —5T3, 5T24+5T3—4) . (3)
h ne2g A

To make the calculation more tractable, all the leads are
taken to have the same length, L, which is much greater
than L, . As with the average resistance, the resistance
measured for a particular configuration of the disorder
depends in a complex way on the transmission probabili-
ties. Here, the information about fluctuations in the
resistance of the leads far away from the sample is can-
celed by taking this particular combination of the 5T, s.
For example, suppose that one makes lead one slightly
longer than the other leads in the case of classical con-
ductors with L, =0. By symmetry, pairs of the transmis-
sion probabilities are equal, 5T» ——5T» and 5T24 ——5T34,
and hence the resistance change, 5R, is zero. Had we
made the sample longer instead and kept all of the lead
lengths the same, then symmetry implies that
5T2, ——5T34 and 5T3, =5T24. Because one also expects
5T2& g0 and 5T» &0 when the length of the sample sec-
tion is increased, the resistance change in this case is pos-
itive.

Although we cannot analytically compute the 5T's for
a particular configuration of the disorder, we can calcu-
late the mean-square fluctuation about average in a mag-
netic field using the so-called ergodic hypothesis. This
hypothesis is based on the idea that changing the magnet-
ic field by a sufficiently large amount randomizes the
phases between the different scattering paths which an

electron can undergo. Changing the distribution of im-
purities has the same effect. The ergodic hypothesis
states that changing the magnetic field and changing the
distribution of impurities produce fluctuations of the
same size. Thus, to obtain the mean-square resistance
fluctuations we need the average of 5R over all
configurations of the disorder.

Our calculation uses the ergodic hypothesis to compute
the mean-square fluctuation in the transmission probabil-
ities and hence to compute 5R . A typical diagram used
in computing the averages of products of the 5T's is
shown in Fig. 2. The dashed and wavy lines denote elas-
tic and dephasing scattering, respectively. There are an
infinite number of diagrams like that shown in Fig. 2.
The facts that the Fermi wavelength is much smaller
than the mean free path, and that the quantum deviations
in the transmission probabilities are small, restricts the
number of graphs which must be summed. The most res-
trictive requirement, however, is that the conductivity be
divergenceless: V' o &

——P'~
&

——0. This implies that the
divergence of the current density is zero. From Eq. (2)
we can see that it is crucial that current be conserved in
this manner to ensure that the transmission probabilities
do not depend on where the point z and z' are placed in
the leads. We have produced a set of diagrams which ex-
plicitly conserve current: taking the divergence of the
contributions of these diagrams produces a set of dia-
grams which cancel one another and a set of diagrams
which can be shown to give zero. ' The set of current
conserving diagrams includes all those that have been
previously used plus large classes not considered before.
This class of diagrams is generated by inserting current
vertices, both with and without vertex corrections, in all
possible positions in graphs like that shown in Fig. 2—a
result which is formally quite similar to the problem of
current conservation in paraconductivity. ' Besides
choosing which diagrams to evaluate, a number of ap-
proximations are made to simplify the evaluation of these
diagrams: the temperature is taken to be much less than
the dephasing rate, the width of the wires is taken to be
much less than the dephasing length, and the magnetic
field is taken to be large enough to suppress weak locali-

I
II

(a)

FIG. 2. Typical diagram in calculating the correlations be-
tween transmission probabilities. The wavy and dashed lines
represent dephasing and elastic scattering, respectively. Retard-
ed and advanced Green's functions are denoted by (r) and (a).
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zation. These approximations do not restrict the applica-
bility of these results to the experiments on small metal
wires.

The dephasing scattering included here, as in other
conductance-fluctuation calculations, introduces a finite

lifetime to the quasiparticles. It is not, however, inelastic
scattering. The dephasing is produced by averaging over
the positions of a small fraction of the elastic scatterers

I

before one computes the mean-square deviation from
average. In the graph in Fig. 2 this is indicated by the
wavy (dephasing) lines only connecting the same loop or
conductivity measurement, while the dashed (elastic)
lines can connect the two loops. Spatial averaging in this
way partially, but not completely, randomizes the phases
of the electrons producing dephasing.

The result of evaluating the diagrams is given by

r

2

5R„= 2
h

'4
m 1

4 z z' D~P z z' + z dz' D~P z z'
zE1, z'E2 z61, z'63

f+2
z61, z'Es

'4

dz dz'[D~P(z, z') ] (4a)

5Rs —5R „= 2
h

m 1 6f dzdz [DrP(z, z )]'.
ne T ~ zGs, z'Gs

(4b)

The antisymmetric and symmetric parts of the resistance
fluctuations in a magnetic field are referred to as 5R„
and 5Rs, respectively. The square of P is proportional to
the mean-square size of the quantum correction to the
probability to go from z to z' in the quasi-one-
dimensional wires. It satisfies the differential equation,

a2
5(z —z') = Dr P(—z,z')+

az2
P(z,z'),

p
0 1 2

FIG. 3. Calculated result for the symmetric and antisym-
metric part of the resistance fluctuations. R& is the average
resistance of a wire one dephasing length long and L, is the dis-
tance between the voltage probes.

so that it decays over a dephasing length, making

~

z —z'
~

&L& is the above integrals. In Eq. (4) the sym-

metry between the different leads after impurity averag-
ing has been used to express the integrals more compact-
ly. Solving for P and doing the integrals in Eq. (4) gives
the curves shown in Fig. 3. This result is in qualitative
agreement with experiment, ' ' since the symmetric part

of the voltage fluctuations increases as the square root of
the sample length for L, &L& and remains roughly con-
stant for L, &L&. The antisymmetric portion of the
resistance fluctuations is roughly constant for all sample
lengths.

From Eq. (4) the resistance fluctuations are due to
quantum deviations in the probability to go from a point
in a lead to somewhere in the sample, from one lead to
another, or between two points in the sample. There is
no contribution to the resistance fluctuation from quan-
tum deviations in the probability to go between two
points within the same lead. For points far away from
the sample compared to L&, such deviations can be asso-
ciated with fluctuations in the resistance of the leads,
which we do not expect to affect the resistance measured
in a four-terminal measurement. For points near the
junctions between the leads, these deviations do depend
on the disorder in the lithographical sample, but still do
not contribute to the resistance measured. Hence, it is
still meaningful to associate them with resistance fluctua-
tions in the leads.

Similarly, deviations in the probability to go between
two points in the sample can be associated with resistance
fluctuations in the lithographical sample and do contrib-
ute to the resistance measured. In Eq. (4) such deviations
enter only through 5R~ —5R ~, not 5R ~. That this is the
relevant combination for a resistance fluctuation in the
sample can be seen using the Onsager relations intro-
duced in this context by Buttiker. ' According to these
Onsager relations the symmetric part of the resistance
fluctuations can also be obtained by averaging the resis-
tance of the geometry in Fig. 1 with the resistance ob-
tained when one interchanges the current and voltage
probes. Likewise, the antisymmetric part is equal to half
the difference of the resistances for the two configurations
of the voltage and current leads. Thus, 5R+ —5R ~ is just
the average of the product of the resistance measured in
the two configurations. Classically, a change in the resis-
tance of the sample changes the resistance measured in
these two configurations by the same amount. Hence,
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Mz —5R ~ will contain such a change, but 5R ~ will not.
From Eq. 4(b) we can make the stronger statement that
on the average, there is no correlation between these two
measurements due to the quantum deviations in the prob-
ability to go between leads or from a lead to the sample.

While the antisymmetric part does not contain infor-
mation about the fluctuations in the resistance of the
lithographical sample, it does contain information on
what might be called the contact resistance. These are
fluctuations in the probability to go between two points
in different wire segments which are within L& of the

junctions. Because the region of interest is restricted to
within L& of the intersections, the size of these fluctua-

tions remains roughly constant as L, is increased. The
mean-square —resistance fluctuations of the lithographical
sample, on the other hand, grow linearly with the sample
length for samples larger than L& because the fluctua-

tions separated by more than L& are uncorrelated.
It is too early to discuss the quantitative agreement be-

tween experiment and theory because the dephasing
length is not known precisely. The best test of experi-
ment and theory will probably be to compare the values
for the dephasing length determined in a number of in-
dependent ways from the resistance fluctuations them-
selves. For example, the magnitude of the fluctuations
and the correlations of the fluctuations in a magnetic field
both give estimates of the dephasing length. For now,
there is clearly qualitative and semiquantitative agree-
ment between theory and experiment without any ad hoc
assumptions. We have also shown that when dephasing
scattering is included in the four-terminal Landauer for-
mula, the placement of the reservoirs drops out of the
calculation for long leads.
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